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Abstract: In many scientific applications, it is necessary to perform classification, which means discrimination 
between examples belonging to different classes. Machine Learning Tools have proved to be very 
performing in this task and can achieve very high success rates. On the other hand, the “realism” and 
interpretability of their results are very low, limiting their applicability. In this paper, a method to derive 
manageable equations for the hypersurface between classes is presented. The main objective consists of 
formulating the results of machine learning tools in a way representing the actual “physics” behind the 
phenomena under investigation. The proposed approach is based on a suitable combination of Support 
vector Machines and Symbolic Regression via Genetic Programming; it has been investigated with a series 
of systematic numerical tests, for different types of equations and classification problems, and tested with 
various experimental databases. The obtained results indicate that the proposed method permits to find a 
good trade-off between accuracy of the classification and complexity of the derived mathematical equations. 
Moreover, the derived models can be tuned to reflect the actual phenomena, providing a very useful tool to 
bridge the gap between data, machine learning tools and scientific theories. 

1 THE NEED FOR DATA MINING 
TOOLS IN BIG PHYSICS 
EXPERIMENTS 

In many fields of science, the complexity of the 
problems investigated is such that it can become 
difficult, if not impossible, to describe the 
phenomena to be studied with theoretical models 
based on first principles. A typical example in 
physics is the case of magnetic confinement 
thermonuclear fusion, whose plasmas are so 
complex that various levels of modelling (particle, 
fluid, kinetic etc) coexist without providing a 
satisfactory description of many aspects of the 
physics (Wesson, 2004). On the other hand, in the 
last decades much more data have become available, 
due to the diffusion of cheap sensors and powerful 
computers. For example, the Big Physics European 

experiments are affected by a data deluge. At 
CERN, the ATLAS detector can produce Petabytes 
of data per year. The Hubble space telescope 
managed to send to earth Gigabytes of data per day 
and the data warehouse of the Joint European Torus 
exceeds 350 Terabytes. Therefore the inadequacies 
of theoretical models and the vast amounts of 
information available have motivated the 
development of data driven tools, to complement 
hypothesis driven theories. In this perspective, 
various machine learning methods have been 
developed. They range from Neural Networks and 
Support Vector Machines to Fuzzy Logic classifiers; 
a series of examples from the field of thermonuclear 
fusion can be found in (Rattà, 2010; Vega, 2014; 
Murari, 2009). Manifold learning tools, such as Self 
Organising Maps and Generative Topographic 
Maps, and simple classifiers based on the Geodesic 
distance on Gaussian manifolds, have provided very 
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good results also in terms of describing the space in 
which the relevant physics takes place (Cannas, 
2013; Murari (A), 2013; Vega, 2009). 

Even if these data driven tools are providing 
quite impressive performance, their main problem is 
the mathematical formulation of their models. They 
have shown the potential to learn very efficiently 
from the provided examples but their results are 
expressed in such a way that does not allow an easy 
interpretation of the physics behind the phenomena 
under study. This aspect is quite worrying and has 
hampered the penetration of many machine learning 
tools in scientific disciplines such as physics. Some 
of the main problems are: a) poor “physics fidelity” 
i.e. excessive difference between the mathematical 
form of the models and the physical reality of the 
phenomena investigated b) difficulties to interpret 
the results in terms of traditional mathematical 
formulations c) consequent impossibility to compare 
the obtained results with traditional mathematical 
models and theories d) lack of extrapolability of the 
results.  

In order to overcome these limitations, a new 
methodology has been developed to profit from the 
knowledge acquired by the machine learning tools, 
but presenting it in a more traditional format, in 
terms of manageable formulas. The techniques, 
developed in the framework of the activities 
presented in this paper, address the basic goal of 
classification. This is a very important task in many 
scientific applications, both “per se” and as a 
preliminary step to more sophisticated 
investigations. The main idea behind this work 
consists therefore of combining the learning 
capabilities of the machine learning tools with the 
“realism” and interpretability of more traditional 
mathematical formulations.  

The sequence of steps required to implement the 
proposed technique is: 

1. Training of the SVM with the available data; 
2. Populating the hypersurface on a suitable grid 

of points 
3. Identification of the hypersurface equation 

with Symbolic Regression via Genetic 
Programming 

4. Double checking of the obtained equation 
using the SVM 

This approach reconciles the prediction and 
knowledge discovery capability of machine learning 
tools with the need to formulate the results in such a 
way that they can be related to scientific theories and 
models. It is worth emphasizing that the objective of 
the present work is not simply improving 
interpretability of machine learning tools, on which 

significant work has already been done. The most 
important aspect indeed is “physics fidelity” i.e. the 
formulation of the results in mathematical terms, 
which can be compared with theories and models of 
the various scientific disciplines. Therefore, the 
proposed method must have the potential to derive 
mathematical expressions, which reflect the 
underlining dynamics of the phenomena to be 
investigated.  

In the presented approach, the first knowledge 
discovery step is based on Support Vector Machines 
(SVM), whose mathematical background is 
summarized in Section 2. The choice of SVM is 
mainly due to their structural stability, their 
capability to maximize the safety margins in the 
classification. Indeed in many applications, SVM 
can classify with a success rate well in excess of 
95%; therefore their hyperplane can be considered a 
good approximation of the boundary between the 
classes (Murari (A), 2013). As a consequence, the 
equation of their hypersurface in the original space 
can be considered an excellent approximation of the 
boundary. On the other hand, their mathematical 
representation of the boundary is extremely non 
intuitive (see Section 2). Again referring to a 
complex system of the complexity of the Joint 
European Torus, in the case of disruptions, the 
equation of the hypersurface can comprise hundreds 
of support vectors and therefore the equation of the 
hypersurface contains an equal number of addends. 
More importantly, in addition to presenting serious 
problems for human understanding, the SVM 
models do not reflect the actual dynamics of the 
phenomena under study. It has indeed been shown, 
also with many numerical examples (see Section 6), 
that the models provided by SVM have absolutely 
no relation with the ones generating the data. A 
simple methodology has already been proposed and 
applied to complex problems, to recover the 
equation of the boundary in the case of linear kernels 
(Gaudio, 2014). In this paper, a new technique is 
developed, which is fully general. Indeed the 
proposed method can be applied to SVM with any 
type of kernel and therefore it has a much wider 
range of applications than the more traditional 
techniques. This aspect is very important in many 
scientific fields, whose phenomena cannot be simply 
modelled by linear tools or logistic regression.  

To formulate the outputs of SVM in way suitable 
for scientific investigations, extensive used is made 
of Symbolic Regression (SR) via Genetic 
Programming (GP); these tools are therefore 
described in Section 3. Symbolic regression is 
basically used to fit points on the hypersurface found 



by the SVM, which is the boundary between the 
classes.  

The actual combination of the various tools, to 
provide the equation of the boundary between two 
regions of the operational space in a physically 
relevant form, is described in detail in Section 4. The 
results of a systematic series of numerical tests, 
proving the potential of the proposed methodology, 
are the subject of Section 5. Some examples of 
application to experimental databases, covering 
different scientific disciplines, are provided in 
Section 6. Discussions and lines of future 
developments are the subject of the last Section 7. 

2 INTRODUCTION TO SVM FOR 
CLASSIFICATION 

SVM are mathematical tools which can perform 
more general tasks, such as regression, but which are 
used as classifiers for the studies described in this 
paper. In intuitive terms, given a set of input 
examples, which belong to two different classes, 
SVM map the inputs into a high-dimensional space 
through some suitable non-linear mapping. In this 
high dimensional feature space, an optimal 
separating hyperplane is constructed in order to 
minimize the risk of misclassification. The 
minimization of the error risk is obtained by 
maximizing the margins between the hyperplane and 
the closest points, the support vectors, of each class. 
This is achieved by a careful selection of the 
constraints of a suitable functional to minimize. In 
the case of non-separable problems, the points to 
classify are projected into a higher dimensional 
space with the help of suitable kernels. The 
minimization of the error risk and the maximization 
of the margins is then performed in this projected 
space. The hyperplane is identified by a subset of 
points of the two classes, named Support Vectors 
(SV). 

In mathematical terms, given a training set of 
samples (࢞૚, ,࢒࢞) ,(ଵݕ ࢏࢞ ௟), whereݕ ∈ ℛ௡, for a 
binary classification problem (i.e. ݕ௜ ∈ {+1,−1}), 
the SVM estimates the following decision function: 

(࢞)ܦ =෍ߙ௜ݕ௜࢞)ܪ௜, ௟(࢞
௜ୀଵ  (1)

Where ࢞)ܪ௜,  is a kernel function and the (࢞
parameters ߙ௜ୀଵ,ଶ,…,௟ are the solutions of the 
following quadratic optimization with linear 
constraints. 

Maximization of  the functional: ܳ(ࢻ) = ∑ ௜௟௜ୀଵߙ +− ଵଶ∑ ௝௟௜,௝ୀଵߙ௜ߙ ,௜࢞)ܪ௝ݕ௜ݕ (2)  (࢞

subject to the constraints: ∑ ௜ߙ௜ݕ = 0௟௜ୀଵ / 0 ≤ ௜ߙ ≤ ஼௟ , ∀	݅ = 1,… , ݈ (3)

Where C is a regularization parameter (Vapnik, 
2013). 

The data points ࢞௜ associated with nonzero 
values of the coefficients α୧ are called support 
vectors, which give the name to the technique. Once 
the support vectors have been determined, the SVM 
boundary between the two classes can be expressed 
in the form 

(࢞)ܦ = ෍ ,௜࢞)ܪ௜ݕ௜ߙ ௟(࢞
௜ୀௌ௏ = 0 (4)

is the distance (with sign) from the input x (࢞)ܦ  
to the hyper-plane that separates the two classes and, 
hence, the hyper-plane points satisfy	(࢞)ܦ = 0. 

The rule to classify a feature vector u as class C1 
or class C2 is given by: 

 
if sgn (D(u)) ≥ 0 
u ε C1 
otherwise 
u ε C2 
 
where sgn(t) is the sign function. 
A comment on the nomenclature is in place at 

this point. The SVM operates in the transformed 
space and finds a separating hyperplane in that 
space. On the other hand, the hyperplane is 
expressed in terms of Support Vectors in the original 
space, in which the boundary is a hypersurface. 
Since typically in scientific applications scientists 
are interested in equations in the original space, and 
not in the transformed one, the boundary between 
the two classes will be indicated with the term 
hypersurface and not hyperplane in the following.  

3 SYMBOLIC REGRESSION VIA 
GENETIC PROGRAMMING 

As mentioned in the first Section, this paper 
describes a technique to present the results of 
machine learning tools in a mathematical form 
describing realistically the actual phenomena to be 
studied. In the case of classification with SVM, this 
task consists of representing the hypersurface 



separating the classes in a more meaningful way 
than the sum of hundreds of terms as in (4). To this 
end, the main tool used is Symbolic regression via 
Genetic Programming.  The methods developed, on 
the one hand, allow identifying the most appropriate 
mathematical expression for the hypersurface 
without “a priori” hypotheses. In this way therefore 
the potential of SVM is fully exploited and no 
unnecessary restrictions are imposed on the form of 
the solutions. On the other hand, the complexity of 
the obtained solutions can be controlled, allowing to 
find the best trade-off between complexity, success 
rate of classification and realism of the final models, 
depending on the objectives of the study.  

The method of SR via GP consists of testing 
various mathematical expressions to fit a given 
database. The main steps to perform such a task are: 

 
1. Identification of the best mathematical form 

for the model with SR via GP 
2. Optimization of the models with nonlinear 

fitting 
3. Qualification and selection of the best model 

with the Pareto Frontier impleemnented with 
statistical criteria (e.g BIC, KLD) 

First of all, the various candidate formulas are 
expressed as trees, composed of functions and 
terminal nodes. The function nodes can be standard 
arithmetic operations and/or any mathematical 
functions, squashing terms as well as user-defined 
operators (Schmidt, 2009; Koza, 1992). This 
representation of the formulas allows an easy 
implementation of the next step, symbolic regression 
with Genetic Programming (GP). Genetic Programs 
are computational methods able to solve complex 
optimization problems (Schmidt, 2009; Koza, 1992). 
They have been inspired by the genetic processes of 
living organisms. They work with a population of 
individuals, e.g mathematical expressions in our 
case. Each individual represents a possible solution, 
a potential boundary equation in our case. An 
appropriate fitness function (FF) is used to measure 
how good an individual is with respect to the 
database. Genetic operators (Reproduction, 
Crossover and Mutation) are applied to individuals 
that are probabilistically selected on the basis of the 
FF, in order to generate the new population. That is, 
better individuals are more likely to have more 
children than inferior individuals. When a stable and 
acceptable solution, in terms of complexity, is found 
or some other stopping condition is met (e.g., a 
maximum number of generations or acceptable error 
limits are reached), the algorithm provides the 

solution with best performance in terms of the FF 
(Murari (D), 2015; Murari (C), 2015; Peluso, 2014; 
Murari, 2016). It is worth emphasizing that AIC is a 
criterion to be minimised; the lower the AIC, the 
better the model.  

The fitness function is a crucial element of the 
genetic programming approach and it can be 
implemented in many ways. To derive the results 
presented in this paper, the AIC criterion (Akaike 
Information Criterion) has been adopted (Hirotugo, 
1974) for the FF. The form of the AIC indicator 
defined here is: ܥܫܣ = 2݇ + ݊ ⋅ (5) 		(ܧܵܯ)݈݊

In equation (5), MSE is the Mean Square Error 
between the data and the model predictions, k is the 
number of nodes used for the model and "n" the 
number of "ydata" provided, i.e. the number of entries 
in the database (DB). The FF parameterized above 
allows considering the goodness of the models, 
thanks to the MSE, and at the same time their 
complexity is penalized by the dependence on the 
number of nodes.  

To assess the quality of the various equations and 
to select the final model, for each level of 
complexity the three best models are retained. This 
subset of very performing equations is used to build 
a Pareto Frontier, a plot of the quality of the 
equation versus its complexity (Lotov 2009). To 
quantify the quality of the various equations the 
well-known criteria of BIC (Bayesian Information 
Criterion) and Kullback-Leibler (KLD) divergence 
have been implemented. The Pareto Frontier, made 
up using the BIC and the complexity of the models, 
typically shows a trend resembling a “L”; above a 
certain level, improving the complexity does not 
increase the accuracy of the models significantly. 
Therefore, near the inflection point the models better 
describing the trade-off between complexity and 
interpretability can be found. Once selected, the 
KLD is used to perform the final sifting. The model 
with the lowest value of the KLD is in fact the one 
finally chosen. 

Coming to the indicators used to build the Pareto 
Frontier, in practice the BIC criterion (Hirotugo, 
1974) is typically defined as: ܥܫܤ = ݇ ⋅ ݈݊(݊) + ݊ ⋅ ݈݊൫ߪ(ఢ)ଶ൯	 (6)

where ߳ = ௗ௔௧௔ݕ −  their variance and the others symbols are	ଶ(ఢ)ߪ ,௠௢ௗ௘௟ are the residualsݕ
defined in analogy with the AIC expression. Again 
the better the model, the lower its BIC.  



The aim of the KLD is to quantify the difference 
between the computed probability distribution 
functions, in other words to quantify the information 
lost when ݌(ݕ௠௢ௗ௘௟ሬሬሬሬሬሬሬሬሬሬሬሬሬԦ(ݔԦ))is used to approximate ݍ(ݕௗ௔௧௔ሬሬሬሬሬሬሬሬሬሬԦ(ݔԦ)) (Murari (D), 2015). The KLD is 
defined as: ܦܮܭ(ܲ||ܳ) = (ݔ)݌׬ ⋅ ln ቀ௣(௫)௤(௫)ቁ (7)  	ݔ݀

Where the symbols are defined as above. The 
Kullback Leibler Divergence assumes positive 
values and is zero only when the two probability 
distribution functions (pdfs), p and q, are exactly the 
same. In our application p is the pdf of the data, 
considered the reference, and q the pdf of the model 
estimates. Therefore the smaller the KLD is, the 
better the model approximates the data, i.e. the less 
information is lost by representing the data with the 
model. A detailed overview of SR via GP for 
scientific applications is provided in (Kenneth, 
2002). 

4 SVM AND SYMBOLIC 
REGRESSION FOR 
BOUNDARY EQUATIONS 

This Section describes in detail the combination of 
SVM technology with SR via GP to obtain the 
equations of the boundary between classes in a form 
appropriate for scientific investigations. Subsection 
4.1 introduces the proposed way to find points on 
the hypersurface identified by the SVM. Subection 
4.2 describes the use of symbolic regression for the 
derivation of the actual formula of the boundary 
between the classes.  

4.1 How to Find Points on the SVM 
Hypersurface 

In order to interpret the results produced by the 
SVM, the first step consists of determining a 
sufficient number of points on the hypersurface 
separating the two classes. These points can be then 
given as inputs to the SR to obtain a more 
manageable equation for the hypersurface. To obtain 
the SVM hypersurface points, a mesh is built first, 
with resolution equal or better than the error bars of 
the measurements used as inputs to the SVM. In this 
step, a suitable mesh throughout the domain defined 
by the ranges of variables is generated; therefore, if 
the problem presents n dimensions and m grid points 
are generated for each dimension, the grid will  
 

consist of mn grid points.  
After building the grid, the algorithm starts from 

the closest points to the SVs on the positive side of 
the hypersurface and moves towards the closest 
points of the grid to the SVs on the other side, one 
point of the mesh at the time. At each step, the 
distance to the hypersurface is computed using the 
already trained SVM. If the distance remains 
positive, the process is repeated since the new point 
remains on the same side of the hypersurface. When 
the distance of a new point changes sign, the two 
points with different signs are considered points on 
the hypersurface. This assumption is more than 
reasonable because, by construction of the mesh, 
these points, for which the distance changes sign, are 
within a distance from the hypersurface equal or 
smaller than the error bar of the features (typically 
measurements). 

 
Figure 1: Illustrative example of the methodology to find 
the SVM hypersurface points. In red or blue the two 
classes (points either of the mesh or the class themselves 
and classified according to the SVM). In black the points 
found for the hypersurface. 

Therefore, for all practical purposes, the points 
found as previously described are sufficiently close 
to the hypersurface to be considered on it. This way 
to obtain SVM hypersurface points for synthetic data 
is shown pictorially in Figure 1.  

It is good practice to repeat the process also 
starting from the other side of the hypersurface, in 
order to avoid possible bias in the selection of the 
points on the hypersurface. An adequate number of 
points is typically a multiple of the support vectors. 
One order of magnitudes more points than SVs is a 
safe choice, in the sense that all the numerical tests 



performed have always provided more than 
satisfactory results with this number of points or 
higher. If a lower number of points on the 
hypesurface are considered, the final equation can be 
too smooth and might not fully represent the 
complexity of the boundary between the classes. 
Attention can also be usefully paid to the fact that the 
density of the points reflects the density of the SVs in 
the feature space. In any case, it is easy to incraese the 
number of points up to the number necessary. The 
main limitation here is mainly computational time 
(see Section 6) not any principle difficulty.  

Once obtained the candidate points sufficiently 
near to the hypersurface, before proceeding, it is in 
any case good practice to perform some checking. 
This can be easily achieved using again the already 
trained SVM. It is sufficient to input to the SVM the 
candidate points, obtained with the previously 
described procedure, and verify that the distance to 
the hypersurface is smaller than the error bars. 

4.2 How to Derive the Equation of the 
Hypersurface via SR 

Once it has been verified that sufficient points close 
to the hypersurface have been found, the equation of 
the hypersurface itself can be estimated using SR via 
GP. Indeed the points identified with the procedure 
described in the previous subsection are on the 
boundary between the two classes. Therefore the 
equation of that surface is the equation of the 
boundary between the two classes.  

An efficient way of retrieving the equation of the 
hypersurface from the points consists of regressing 
them with SR, using the quantity with the largest 
dynamic range as the independent variable. The 
quality of the obtained equation can be assessed first 
with the statistical indicators described in Section 3. 
Moreover, an additional and more conclusive test 
can be performed, exploiting again the trained SVM. 
In this case, it is indeed possible to generate a series 
of points from the candidate formula and insert them 
in the SVM. If the distance from these points and the 
hypersurface is sufficiently close to zero, it can be 
confirmed that indeed the equation is a good 
representation of the boundary between the two 
classes. As a criterion of closeness to the boundary, 
typically the value of the error bars of the 
measurements can be taken: if the points generated 
by the equation are at a distance from the 
hypersurface smaller than the error bars, for all 
practical purposes the obtained equation can be 
considered a sufficient approximation of the 
boundary between the two classes.   

5 NUMERICAL TESTS AND 
RELATED RESULTS 

The procedure described in the previous section has 
been subjected to a systematic series of numerical 
tests. The results have always been positive and the 
proposed technique has always allowed recovering 
the original equations describing the boundary 
between the two classes. In the following, the 
detailed procedures for these numerical tests are 
described and some results presented. For clarity’s 
sake, mainly low dimensional cases are illustrated in 
the following, but it has been verified that the 
approach is equally valid for high dimensional cases 
(up to 8 or 9 independent variables), provided of 
course a sufficient number of examples and adequate 
computational resources are available. 

5.1 Overall Procedure for Producing 
Synthetic Data 

The main technique to produce synthetic data and to 
test the methodology consists of the following 6 
steps: 

 
1- Definition of an initial function for the 

boundary; 
2- Generating samples of the two classes from 

the function 
3- Training the SVM for classification 
4- Building an appropriate mesh on the domain 
5- Determining a sufficient number of points on 

the hyper-surface identified by the SVM 
6- Deploying SR to identify the equation of the 

hypersurface from the points previously 
obtained 

In the following more details about this 
procedure are provided. To fix the ideas, the 
discussion is particularized for the case of two 
independent variables x1 and x2. 

In the first step, an initial function as a 
combination of arithmetic, trigonometric, and 
exponential operators of independent variables xi is 
defined. In general, this function can be written as 
follows: ݕ = ,ଵݔ)݂ ,ଶݔ … , (௡ݔ ௜ݔ					 ∈ (ܽ௜, ܾ௜) (8)

In the second step, for the case of two 
independent variables, it is typically sufficient to 
generate about 4000 random points in the range of 
variables for the xi and to calculate y for them. Then, 



a positive offset and some random values are added 
to the y for half of the data to produce the first class; 
a negative offset and some random values are added 
to y for the other half to produce the second class. 
The equations for producing the two classes (ݕଵ,ଶ) 
can be summarized as follow: ݕଵ = ݕ + ܷ(0, (ܮ + ଶݕ ܿ = ݕ + ܷ(0, (ܮ − ܿ 

(9)

Where c stands for the arbitrary offset and 
U(0,L) stands for a random uniform distribution 
between 0 and the bulk thickness of data L 

Table 1: General GP parameters for the calculation of the 
boundary equations. 

GP Parameters Value(s) 

Population size 500 

Selection method Ranking and Tournament 

Fitness function AIC 

Constant range Integers between -10 and 10

Maximum depth of trees 7 

Genetic operators 
(Probability) 

Crossover (45 %) 
Mutation (45 %) 

Reproduction (10 %) 

In the third step, an SVM with "Gaussian Radial 
Basis Function kernel" is trained. The method used 
to find the separating hyperplane is "Sequential 
Minimal Optimization". Depending on the level of 
random noise, different success rates can be 
obtained. For the numerical tests presented in the 
following, the success rate in the classification of the 
SVM is always very close to 100%.  

In the fourth step, a mesh on the domain has to 
be built in order to identify points sufficiently close 
to the hypersurface. For this reason, each dimension 
of the domain has been subdivided in one hundred 
intervals, producing one million mesh points ( 1003). 

The fifth step consists of the identification of the 
points sufficiently close to the hypersurface, with the 
algorithm described in Section 4.  

In the sixth step, the selected hypersurface points 
are used as inputs to the symbolic regression code, 
to find the appropriate formula for describing the 
hypersurface.  The settings adopted to run the GP 
implementing the SR are reported in Table 1. 

In the next sections, some examples are provided 
to illustrate the applicability and capability of the 
presented methodology for systems of increasing 
dimensionality and complexity. 

5.2 Examples for Two Independent 
Variables 

As a first test, a quite complex function comprising 
exponential, arithmetic, and power operators has 
been assumed for the boundary between the two 
classes. The function and ranges of the variables are 
reported in equation (10): ݕ = ݁√௫భ⋅௫మ					ݔଵ ∈ (0,1), ଶݔ ∈ (1,3)  (10)

After carrying out the six-step procedure 
previously described, the expression in equation (11) 
has been obtained: ݕ = 0.974 ⋅ ݁√௫భ⋅௫మ (11)

SR via GP converges on a final expression that is 
in excellent agreement with the initial function 
describing the boundary between the two classes, 
even without making recourse to the non-linear 
fitting step.  

As an additional test, a more complex function 
comprising trigonometric and arithmetic operators 
has been defined and 4% noise was added to the 
database. The function and ranges for the variables 
are reported in equation (12): 

ݕ = sin(ݔଵ) +   ଶݔ

ଵݔ  ∈ ଶݔ   ,(3,3−) ∈ (−2,2)  (12)

After carrying out the six-step procedure 
previously described, the expression in equation (13) 
has been obtained: ݕ = 0.985(sin(ݔଵ) + ଶ) (13)ݔ

Again SR via GP converges on a final expression 
that is in excellent agreement with the initial 
function describing the boundary between the two 
classes, even without making recourse to the non-
linear fitting step. Figure 2 presents the results of 
this example in pictorial form. 



 

Figure 2: Points and surfaces of the example of equation 
(12). Green rectangles are points generated from the initial 
function, Cyan points are the points belonging to the first 
class, Magenta points are the points belonging to the 
second class, and the Yellow surface identifies the hyper-
surface obtained with the SR via GP. 

5.3 Effect of Noise and High 
Dimensional Data  

The numerical examples presented previously 
include cases where the success rate of the SVM 
classification is close to 100%. This is certainly an 
interesting situation from a scientific point of view; 
the SVM has learned almost perfectly the boundaries 
between the classes and therefore the main issue 
remaining consists of formulating the equations of 
these boundaries in a mathematical form appropriate 
for understanding the phenomena. 

On the other hand, it has been checked with 
extensive numerical tests that, if the success rate of 
classification of the SVM is significantly lower than 
100%, the proposed method works well anyway, 
since its objective is the reformulation of the 
boundary equation found by the SVM. The success 
rate required for the SVM and the interpretation of 
the results is an issue which depends on the 
application and the objectives of the analysis but 
does not impact on the validity of the developed 
technique. 

Table 2: The range of the variables used to generate the 
data with function (15). 

Steps: Values: 

Initial Function Eq.(15) 

Ranges of Variables 
ଵݔ ∈ ଶݔ	,(0,2) ∈ ଷݔ (1.5,3) ∈ ସݔ ,(2,4−) ∈ ହݔ (0,6) ∈ ଺ݔ	,(4,12) ∈ (1,4) 

Number of Nodes for 
Each Class 

2000 

It is worth also emphasizing that the task of SR 
in this context is not to improve the success rate of 
the SVM classification. The real goal consists of 
representing the equations of the boundary between 
the classes in more realistic and interpretable 
mathematical forms, so that they can be used by the 
scientists for actual understanding (for example for 
comparison with theories and first principle models). 
To achieve this, a reasonable degradation of 
classification  success rate is tolerable and typically 
not a major issue. In any case, with an appropriate 
implementation of the proposed method, typically 
the performance of SVM can be preserved by the 
final equations obtained with symbolic regression. 

As mentioned, there is no conceptual difficulty in 
applying the proposed methodology to higher 
dimensional problems. Of course, the computational 
resources required increase exponentially with the 
number of independent variables (the so called curse 
of dimensionality). Also the number and quality of 
the examples must be adequate. But these are 
problems related to the available computational 
power and/or the quality of the data; in no way they 
affect the applicability of the proposed technique. 
Indeed it has been verified with a series of 
systematic tests that, with adequate level of 
computer time, problems in higher dimensions can 
also be solved. A quite demanding example is 
reported in the following, for an equation involving 
7 variables. The equation used to generate the data 
is: ݕ = ଶݔଵݔ + (ଷݔ)݊݅ݏ + (ସݔ)ݏ݋ܿ − 	଺ݔହݔ (14)

It is worth mentioning that in many applications 
in physic and chemistry one has to deal with 
problem of a dimensionality not higher than 7. 
Equation (15) is therefore of realistic complexity for 
many applications. A total of 4000 points, 2000 per 
class, has been generated starting from equation 
(14); more details about the synthetic data are 
provided in Table 2. After generating the grid, 
training the SVM and finding the hyper-surface 
points, SR via GP Genetic has been applied and the 
expression for the obtained hyper-surface is reported 
in equation (15): ݕ = (ଶݔଵݔ)0.9 + sin(ݔଷ) + cos(ݔସ) − ଺ (15)ݔହݔ

The equation found by the method is practically 
the original one. The slightly different multiplicative 
factor in front is not to be ascribed to a weakness of 
the method but to the dataset provided as input, 
since the accuracies of both the SVM and the 



mathematical equation obtained are equal to 100%. 
Again, this example proves that, provided the 
surface of the boundary between the cases is 
sufficiently regular, the dimensionality is not an 
insurmountable issue, if enough computational 
power is available. 

5.4 Computational Requirements 

As an indication about the computational resources 
required for the application of the proposed 
technique, the run time for an example of 5 variables 
has been calculated. Using a computer with 8 cores 
and 24 gigabyte of RAM (an Intel Xeon E5520, 2.27 
GHz, 2 processors), with Windows 64 bit operating 
system, finding the hyper-surface points takes 3 
hours and the SR calculation 48 hours. The number 
of points on the grid is 164 * 51; 16 for the four 
independent variables and 51 for the dependent one. 
In this respect, the run time to train the SVM is not a 
major problem, since it is typically of the order of 
minutes and therefore negligible compared to the 
other steps of the procedure. Moreover, the 
calculation of the grid is also not a major issue since 
the step requiring by far most of the computational 
resources is the SR. On the other hand, it should be 
mentioned that the codes used to obtain these results 
had not been parallelized. Therefore, since both the 
building of the grid and the Genetic Programs can be 
easily parallelized, reduction of the computational 
resources of orders of magnitude could be easily 
achievable.  

6 REAL WORLD EXAMPLES 

To show the potential of the proposed methodology 
to attack real life problems, in this section its 
application to some experimental databases is 
reported. The data have been collected in the 
framework of various disciplines but the original 
measurements have all been obtained via remote 
sensing. The term remote sensing indicates the set of 
techniques aimed at obtaining information about 
objects without being in contact with them. These 
techniques can be used to monitor various aspects of 
the atmosphere and also the effects of human 
activities on the environment. 

6.1 Botany: “Wilt” Database 

As an example of application to a real-world 
problem, first a database related to botany named 
“wilt” has been selected. This database was prepared 

by Brian Johnson from the Institute of Global 
Environmental strategies in Japan in 2013 and 
contains the results of a remote sensing study about 
detecting diseased trees with Qickbird imagery 
(Johnson, 2013). The data set consists of image 
parts, generated by segmenting the pansharpened 
pictures. The segments contain spectral information 
from the Quickbird multispectral image bands and 
texture information from the panchromatic (Pan) 
image band. In the following, the entries of this 
database are listed: 

• Class: “w„ (diseased trees) or “n„(all other 
land cover) 

• GLCM_Pan: GLCM mean texture (Pan 
band) 

• Mean_G: Mean green value  
• Mean_R: Mean red value 
• SD_Pan: Standard deviation (Pan band) 

This database contains 4339 samples: 74 of them 
related to diseased trees and the rest related to all 
other land cover. The new proposed methodology 
has been applied to this database for finding the 
classification hyper-surface between the two 
mentioned classes. The entries have been classified 
first with the SVM (with the RBF kernel). The 
subsequent application of our technique, grid plus 
SR, has allowed to find the following equation: ீ݊ܽ݁ܯ = 22.39 ⋅ ଴.ସ଻଴ହ (16)(ோ݊ܽ݁ܯ)

The previous equation provides a Train Accuracy 
equals to 99.4% and a Test Accuracy of 99.5 %, 
which are practically the same as the SVM, not only 
in terms of global statistics but also with regard to 
the individual cases properly or improperly 
classified. Given the success rate in excess of 99%, 
the derived equation (16) indicates that the important 
attributes for classifying this database are  the  Mean 

 

Figure 3: Distribution of data in the “wilt” database. The 
red points are diseased trees and the blue points indicate 
all other types of land cover. The black line indicates the 
equation obtained for the hyper-surface. 



 

Figure 4: Examples of LIDAR back scattered signals: a) 
Clear atmosphere (blue line) b) strong smoke plume 
(green line) c) widespread smoke (red line). 

green values and the Mean red values. Figure 3 
reports the entries of the database projected on the 
plane of these two variables, together with the 
hyper-surface obtained with equation (16). 

It is also worth mentioning that, to obtain the 
same success rate, the SVM has to utilize 1299 
support vectors. Therefore the application of the 
proposed methodology results in a simplification of 
orders of magnitude in the complexity of the 
equation, without any significant loss in terms of 
classification accuracy. Moreover, the obtained 
formula is susceptible of comparison with models 
and theoretical considerations, whereas the SVM 
model is practically intractable from this point of 
view. It is worth noting that a metric taking into 
account the unbalance in the data, such as positive-
predictive ratio, could in principle be considered, 
given the fact that examples of diseased trees are 
about two orders of magnitude fewer than the 
healthy ones. On the other hand, given the accuracy 
already achieved, this would not add much to the 
present treatment.  

6.2 Remote Sensing of the Atmosphere: 
Detection of Widespread Smoke 
with LIDAR 

One of the remote sensing techniques, which is 
gaining increasing importance, is LIDAR an 
acronym of Light Detection And Ranging. Lidar 
originated in the early 1960s, shortly after the 
invention of the laser, and combines laser-focused 
imaging with radar's ability to calculate distances by 
measuring the time for a signal to return. Its first 
deployment was in meteorology and now it is 
popularly used as a technology to make high-

resolution maps, with applications in geomatics, 
archaeology, geography, geology, geomorphology, 
seismology, forestry, remote sensing, atmospheric 
physics, laser altimetry and contour mapping. 

Wild fires have become a very serious problem 
in various parts of the world. The LIDAR technique 
has been successfully applied to the detection of the 
smoke plume emitted by wild fires, allowing the 
reliable survey of large areas (Fiocco, 1963; 
Andreucci, 1993; Bellecci, 2007; Bellecci, 2010; 
Vega, 2010; Gelfusa, 2014; Gelfusa, 2015). 
Recently, mobile compact systems have been 
successfully deployed in various environments. Up 
to now, the attention has been devoted to early 
detection of quite concentrated smoke plumes, 
characterizing the first stage of fires, as soon as 
possible. The main operational approach consists of 
continuously monitoring the area to be surveyed 
with a suitable laser and, when a significant peak in 
the backscattered signal is detected, an alarm is 
triggered. In these applications, the backscattered 
signal presents strong peaks, which are detected with 
various techniques. In other applications, it would be 
interesting also to detect the non concentrated, 
widespread smoke, which can be the consequence of 
strong wind dispersion or non concentrated sources 
(Marrelli, 1998). In this case, the signature of the 
presence of the smoke is not a strong peak in the 
detected power but an overall increase of large 
regions of the curve. Typical examples of 
backscattered signals for the alternatives of no 
smoke, strong smoke plume and widespread smoke 
are shown in Figure 4. Starting from the typical 
Lidar equation (Andreucci 1993), it has been 
decided to fit the backscattered signal intensity with 
a mathematical expression of the form: 

ܲ = ଵܴଶܭ ∙ ݁ିଶ∙௄మ∙ோ (17)

where K1 and K2 are constants and R is the 
range. The data of Figure 4 have been fitted with this 
formula. The result of the non linear fit, for the 
widespread smoke is reported in equation (18) and 
for clear atmosphere in equation (19): ܲ = 2.648 ∙ 10ିଵܴଶ ∙ ݁ିଵ.ଶହଽ∙ଵ଴షయ∙ோ (18)

ܲ = 1.734 ∙ 10ିଵܴଶ ∙ ݁ିଵ.ଵ଻ଵ∙ଵ଴షయ∙ோ (19)

The results of the fit, equations (18) and equation 
(19), indicate quite clearly that the parameter K2 are 
very similar for both the case of widespread smoke 



and clear atmosphere. On the other hand, there is a 
clear difference, of the order of 25% in the constants 
K1. This is expected since K1 includes the effect of 
the coefficient β, which indeed quantifies the 
backscattering properties of the atmosphere 
(Andreucci, 1993; Bellecci, 2007; Bellecci, 2010; 
Vega, 2010). 

Table 3: Main characteristics of the database used for the 
LIDAR application. 

Total number of data: 521 

Number of non-smoke data 312 

Number of widespread smoke 
data 209 

Number of train data (~80%) 431 

Number of test data (~20%) 90 

Since the attempt to identify the presence of 
widespread smoke is a quite pioneering application 
of the LIDAR technique, it is important not only to 
be able to discriminate between the two situations 
but also to provide models for the interpretation of 
the physics. In particular, the identification of the 
boundary in the space of the parameters K1 and K2 
for the two cases is considered an essential piece of 
information for comparison with theories. The 
proposed methodology has therefore been applied to 
a quite substantial database summarized in Table 3. 

For the SVM, a radial basis functions kernel has 
been used. The best equation found is with SR:  ܭଵ = 0.1083 ⋅ ൣsin൫15.61 ⋅ ଶଶ൯ܭ ++cos൫1.59 ⋅ ଶ଴.ଶ଺ସ൯൧  (20)ܭ

The above equation provides a Train Accuracy 
of 89.33 % and a Test Accuracy of 91.11 %, 
practically the same as the SVM success rate. The 
equation of the boundary between clear atmosphere 
and widespread smoke, in the space of the 
parameters K1 and K2, is shown in Figure 5. To 
understand the importance of the results obtained, it 
should also be considered that the model of the SVM 
consists of 154 support vectors. Therefore the level 
of simplification obtained with equation (20) is 
substantial.  

 

Figure 5: Equation (18), describing the boundary between 
the boundary between the cases of clear atmosphere and 
widespread smoke, in the space of the parameters K1 and 
K2. 

7 CONCLUSIONS 

An original methodology has been devised to obtain 
the equation of the boundary between two classes, 
starting from an SVM classifier. In this way, using 
SR via GP, the power of machine learning tools is 
combined with the realism, physics fidelity and 
interpretability of equations expressed in the usual 
formalism of typical scientific theories. In particular, 
the choice of SVM ensures that their structural 
stability, their capability to maximize the safety 
margins in the classification, is fully retained in the 
final result. On the other hand, symbolic regression 
allows finding the best trade-off between accuracy 
of the classification and complexity of the final 
equations of the boundary, depending on the 
application. Moreover, “a priori” information can 
also be exploited in order to steer the solutions 
towards mathematical expressions, which reflect the 
actual dynamics of the phenomena under study. This 
can be achieved for example by selecting properly 
the basis functions or by constraining the structure 
of the trees. Given the fact that the objectives of the 
approach are realism and interpretability, a 
reasonable reduction of the classification 
performance is not a major issue and can be 
tolerated. It is also true that symbolic regression via 
genetic programming can reproduce the accuracy of 
the classification by the SVM, provided a 
sufficiently high number of mesh nodes and the 
necessary complexity of the SR are allowed for.  

The numerical tests shown have proved the 
effectiveness of the proposed technique to identify 
the real equation of the boundary between classes 
even in relatively high dimensions, provided the 



shape of the boundary is a sufficiently regular 
surface. Again, this seems to be fully adequate since, 
in the majority of the scientific applications, the 
boundaries between the various classes are quite 
regular functions. This has been confirmed by the 
application of the technique to experimental 
databases of different scientific disciplines.  

On the other hand, the method is susceptible of 
various improvements. First of all, the technique 
should be extended to other machine learning tools, 
such a neural networks. More fundamentally, the 
approach is now limited to identifying the 
mathematical expressions of boundaries which can 
be expressed as functions. It is a topic of future 
investigations to apply the method to the 
investigation of more complex boundaries (for 
example multiply connected hypersurfaces). 
Moreover, the task of regression, and not only 
classification, should also be tackled (Murari (D), 
2015; Murari (C), 2015; Peluso, 2014; Murari, 
2016). Also applications to various aspects of 
tomography inversion and disruptions are envisaged 
(Martin, 1997; Murari (B), 2013).  
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