
When Data Science Becomes Software Engineering

Lito Perez Cruz
School of Business, Monash University, 7/271 Collins St., Melbourne Vic 3000, Australia

Keywords: Data Science, Data Analytics, Software Engineering, Education.

Abstract: Data science is strongly related to knowledge discovery. It can be said that the output of the data science
work is input to the knowledge discovery process. With data science evolving as a discipline of its own, it
is estimated that the U.S.A alone, needs more than 1M professionals skilled in the discipline by next year.
If we include the needs of the rest of the world, then internationally, it needs more than that. Consequently,
private and public educational institutions are hurriedly offering data science courses to candidates. The
general emphasis of these courses understandably, is in the use of data mining and machine learning tools and
methods. In this paper, we will argue that the subject of software engineering should also be taught to these
candidates formally, and not haphazardly, as if it is something the would-be data scientist can pick up along
the way. In this paper, we will examine the data science work process and the present state of skills training
provided by data science educators. We will present warrants and arguments that software engineering as a
discipline can not be taken for granted in the training of a data scientist.

1 INTRODUCTION

By now it is probably safe to say that most in the
field of IT have heard of the McKinsey & Co report
(Strawn, 2016) that says the USA needs 1.5M data
savvy managers. If this is the number of managers
in the USA who must be have insights and knowl-
edge from data, we can only imagine the huge num-
ber needed by the world. It is predicted that in 2018,
the demand for data scientists will out run the sup-
ply by 60% according to the same report Co (Strawn,
2016). If that is true, there is very little time left
to supply that great demand. Consequently, even a
few years before this publication, educational institu-
tions, and even private training companies have been
offering data science courses. Many are in a hurry to
produce data scientists that will meet that great need.
The depth of offering varies, from short courses up to
masters degree level. However, in these courses, the
emphasis is in the use of data mining and statistical
software which is understandable. Unfortunately, the
pragmatics necessitate that the style of teaching is in
the cook book method approach and in such a hurried
pace, there is no time to reflect if the data scientist
is being equipped sufficiently for the road ahead. No
time is devoted to teaching the prospective data scien-
tist the art of properly crafting software. Meaning, the
engineering of software is taken for granted in many
of these courses, which we believe is short-sighted. In

this position paper, we will offer evidences, critiques,
and suggestions for the improvement on the present
emphasis given by course providers on the use of sta-
tistical and data mining software tools. Though there
is programming in the courses, software engineering
principles and practices are hardly touched on. In this
work, we will argue that software engineering should
be a mandatory subject or unit that must be taken in
some form in any data science training program. In
the process, we will imply the benefits to the com-
munity when its data scientists are knowledgeable in
software engineering theories, practices, and manage-
ment1.

2 THE DATA SCIENTIST’S WORK

In order to know the scope of work performed by data
scientists, we need to know first the nature of data
science itself. The term originated in 2008 and so it
is not even a decade long, a very young discipline in-
deed (Cage, 2017). In the article of (Cage, 2017), we
do not find the definition of what is data science but
it describes what data scientists do. (Rose, 2016) for
instance, agrees that it is hard to define because right

1For word economy in this work, we will use DS to de-
note data science/data scientist. We will use SE to denote
software engineering.

Cruz L.
When Data Science Becomes Software Engineering.
DOI: 10.5220/0006508502260232
In Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (KEOD 2017), pages 226-232
ISBN: 978-989-758-272-1
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



now it exists as a practice rather than a discipline and
as such a multi-disciplinary enterprise as well. Being
mathematical and statistical is only part of the job but
more importantly, it involves insight and the ability to
see behind the data such as spotting what conclusions
can be drawn from a dataset. Then there is also the
ability to explain all of these findings to stakeholders.
Clearly, there is a mixture of specialist skills at play
but one thing is for sure, the data scientist is a profes-
sional who acts as a consultant to the people he/she
serves and normally they are decision makers high up
in the business organization.

One idea that will help us understand deeper the
duties and responsibilities of a data scientist is to ex-
amine a typical workflow involved in this work. Var-
ious practitioners may interpret or classify their pro-
cesses uniquely. Below are three examples of work-
flows or lifecycle phases that are usually taken by typ-
ical data scientists.

3 THE DATA SCIENCE
WORKFLOW

We will now offer an assessment of the present data
science practice through its self-understanding of it’s
workflow. This will make clear that software en-
gineering, and not just coding, is important in the
job of a data scientist. By SE, we mean the sys-
tematic procedure for the analysis, design, devel-
opment/implementation, testing, and maintenance of
software(Leach, 2016). However, before we jump in,
it is best to pause and mention the two crucial contri-
butions of software engineering in the process of de-
veloping software. We suggest that we bear in mind
the following concepts below as we go along in our
discussion. Data science involves itself, perhaps even
reluctantly, in the discipline of SE because the mod-
els discovered are embodied in a set of code. On the
other hand software engineering ensures the product
is of high:

• Quality - code should work flawlessly as expected

• Maintainability - code can be modified seamlessly

Each of the above treat code as an organization’s as-
set that needs to be maintained and managed because
it provides its owners intangible benefits in the long
run. Those two basic tenets are meant to protect
the client’s investment and to gain as much return in
utility from its software product. We will comeback
to other advantageous concepts provided by software
engineering that affects data science, but for now, we
shall illustrate how it emerges in the data scientist’s
practice.

Figure 1: Typical Waterfall Process.

Figure 2: CRISP-DM Process.

In Figures 1 (Guo, 2013), 2 (Rose, 2016), 3 (Rose,
2016) we depict the typical lifecycle understanding
that may be adopted by a DS practitioners. We have
highlighted in red the part of the process relevant to
our point. Figure 1 may be called the typical ”water-
fall” process where the output of a process becomes
input to the next. Figure 2, is the famous CRISP-DM
process for data mining and lastly Figure 3, is an ag-
ile method of incremental moving backwards and for-
wards between processes. This method is explained
in (Rose, 2016) but the details of this will not inval-
idate the arguments we will make here, the point are
the highlighted processes that are relevant to our SE
argument.



Figure 3: An Agile Process.

In Figure 1, the end of the data science work, the
”product” that results in the workflow is disseminated
or shared. The result of the data science work is typ-
ically embodied in a program code, that is why in
the process there is the task of ”dissemination”(Guo,
2013). This is what is meant by ”deployment” in
Figure 2. In Figure 3, an agile process method, the
”deployment” starts off from the Results −→ Insight
−→Learn phase.

For once off adhoc decision making single in-
stance of ”deployment may do, but experience says
that vital solutions sought by businesses require the
repeated execution of the ”product”. Note that in all
these workflows, the cyclical nature of some parts of
the DS process. Observe the arrows iterating from
one process to the other. Let us give a concrete ex-
ample from the author’s experience with one of his
clients. Assume we have a transport bus company that
has a fleet of buses used for moving passengers. As-
sume further that the fleet is composed of a couple of
hundred buses operating 24×7 and these vehicles are
getting on in age. The data scientist may be tasked of
producing a system that reports to management which
vehicles are worthy of being repaired or which buses
need to be retired/replaced by brand new ones because
it is more economical to do so. Such a system will not
only run once but will have to run at a minimum, once
a month. Such running obviously involves mathemat-
ical and statistical analysis for sure. In this regard,
there is an important reality embedded in those high-
lighted processes where SE is lurking at the core of
those steps.

All have code iteration editing. If we notice, all of
the lifecycle models have an iteration process where
code is edited and refined. This is true for all of
them (see steps highlighted in red). There is con-
tinued testing and refinement going on in all of the
processes. However, in such refinement work, this is
where knowledge of SE principles will help. If the

code is written right with SE best practices in mind,
it will help the DS trap defects easily, extensively and
efficiently. It will also make the code easier to modify
and so, easier to edit.

A model has a life span and is valid only for a
certain time At a certain point in time, the model has
to be updated because things change in time and the
parameters of the model may have to be checked or
revalidated. Thus, the model may simply need to be
updated and the code made current as well. It may not
be necessary to altogether discard the code, indeed it
may be economical to retain parts of the it for after
all, the client paid for it by way of time and money
already. So for this reason, since it is sometimes pru-
dent to maintain the code, a knowledge of SE will
help the DS produce code geared for maintainability
and perhaps even portability etc. Such knowledge can
only help rather than harm. The fact that code is de-
ployed does not mean the code ends there.

Some have the idea that once the DS gets into the
deployment stage, he/she then passes the result to an
SE who will then integrate it into the production sys-
tem. In an organization which is large and employs an
army of SEs and DS personnel, this might fly. Though
indeed, this setup might work, in general this is not
suitable or not an ideal situation for the client. We can
surely surmise that whether a client is from a small
or large organization, the executive using the DS will
prefer to have an integrated final solution from the
data scientist.

Some businesses want a one stop shop of services.
We mean that often, clients do not wish to deal with
several skill providers. Dealing with various mix of
people to get a solution implemented is just too much
of an administrative burden for small or medium busi-
ness operators. Such a scheme will only dissuade ex-
ecutives in embracing the benefits of data science. It
will not work for them because they do NOT enjoy
big project funding, unlike bigger organizations.

We mentioned in the previous section that the
DS is a consultant. As such, small to medium or-
ganizations most likely will hire a DS for a project
with the intention of obtaining a finished and com-
plete decision system. It will be impractical, if not
cost inefficient, if the client obtains a half-finished
product which still has to be turned into industrial
grade/quality code going forward. For this reason,
the DS will give added value to the client if he/she
is knowledgeable of SE principles, i.e., he/she can at
least hand over the code engineered in such a way that
it follows sound SE practices.



4 THE SOFTWARE
ENGINEERING TERRITORY

As we have seen in the sample of workflows that we
examined in the data science discipline, it is inevitable
that the work of a data scientist gets wind up into a
set of code. Thus, into a product that will produce
reports that business management/executives will use
for decision making. In this regard, once something
is put into code, that program becomes a property or
an object that has value to its owners, i.e. the clients
who commissioned the project, a ”property” if you
like. Because the product is in the form of a code, in
that respect, the software engineering discipline has a
lot to contribute to the code’s lasting benefits.

4.1 Goals

Perhaps the quickest way to convince data scientists
and their educators the help provided by software en-
gineering is to list its goals. This list is taken from
Software Engineering Book of Knowledge (SWE-
BOK) (Leach, 2016). Again, we are dealing with this
because the data scientists effort is enclosed in code
and that is where software engineering becomes a ne-
cessity:

1. Correctness

2. Reliability

3. Modifiability

4. Testability

5. Reusability

6. Maintainability

7. Efficiency

8. Usability

9. Portability

10. Interoperability

It is hard to believe that the above goals do not af-
fect the code produced by data scientists. Portabil-
ity and interoperability are none issues if we speak
about R or Python as the languages of choice. These
all run in all present existing operating system plat-
forms. However, points 1-7 are extremely relevant to
the work produced by data scientists.

For example, the subject of correctness is crucial
in the DSs code. The old principle of garbage-in
and garbage-out (GIGO) is true in DS as it is true
in computer science. Reusability, modifiability and
maintainability are related goals and imply each other.
Why would we not code in such a way that our func-
tions are self-contained and can be called, or be used

in the new programs we might code? Surely this is
less work for the DS and an increase in productivity.
Or, would it not be a great turn of events if by just a
slight modification of an old code, the DS arrives at
a useful version of the program applicable to current
problem case? All of these imply that the code has to
be written in such a way that it is easily maintainable.

4.2 Testing

The DS employs data mining or machine learning al-
gorithms used for modeling. These are embodied in
tools but crafted in code. Because of this the DS in-
variably will go through a cycle of coding and testing
until he/she settles on the version that is satisfactory
for the problem. For this reason we give special men-
tion to testing here because it is vital in DS work. It
pertains to job quality. Testing then touches upon the
quality of the model and so the quality of code pro-
duced by the DS professional. If we go back to the
workflow, both of them mentioned ’debugging’ and
’validation’ which pertains to the testing of software
and the model together. In DS, not only is the code
tested but effectively the model is tested as well be-
cause the code is the ”physical” object that reflects
the model. The question is two fold. First is the model
accurate enough to be useful? Then is the code writ-
ten correctly to the specification of the model? In SE,
testing covers a huge aspect of the discipline and there
have been extensive methods and techniques devel-
oped by SE practitioners to help pinpoint for the DS
where the code could be made robust or secure from
obvious errors.

For example in big data processing, the calcula-
tion could take some hours to complete. What will
happen if the DS’s code encounters an unexpected
data that makes it abnormally terminate? This spells
wastage of resources and can be frustrating to stake-
holders as well as to the DS him/herself. SE practi-
tioners have gathered recommendations that can an-
ticipate such incidences, by developing guidelines for
the testing regime. For example, SE has a method
for directing code testing based on data partitioning,
boundary value testing, path testing, data flow testing,
etc. Another one, which is becoming popular is the
so-called ”test driven development”. Here the coder
builds up the code in small portions and tests these
portions as the code is grown. The programmer then
does not insert additional new code unless the exist-
ing once are clean. As the coder extends the code, so
is the testing as well (Jorgensen, 2014).



4.3 Packages

We cannot leave this discussion without saying some-
thing about the importance of goals 1-7 in the busi-
ness of writing packages or libraries. Whether one
is using R, Python, SAS or SPSS in the DS enter-
prise, we can expect that these languages or platforms
support the creation and activation of common code
routines in the form of functions housed in packages
or libraries. Functions of course are reusable. An out-
side program can call functions external to itself. This
aspect in the language use, by default, necessitates the
need to use SE design principles and goals. Hence,
another encroaching of the SE discipline into the DS
enterprise. When a DS deploys code in a form of a
package, especially in open source environments, the
code achieves lasting value and mature usage as far
as it adheres to best practice ideas found in SE. Con-
sequently, SE has something to say in the way code
should be structured or formed.

5 THE NEGLECT IN DATA
SCIENCE EDUCATION

Unfortunately. most DS courses are wanting in cover-
ing issues where SE can provide good contribution to
the DS field. We can expect this lack in short courses
because there is not enough time to cover these top-
ics in detail. There should be plenty of opportunities
though, to address these issues in the bachelors and
graduate level DS degree programs.

Below are a couple of recent research works on
the subject of DS education.

5.1 A Survey on DS Education

Doing a survey on the present state of DS education
at the moment is not easy. The reason is because
the terminology is not settled. For example, some
course providers use the term Data Science while oth-
ers use the term Business Analytics for the same dis-
cipline. Because people are in a hurry to produce DS,
it is expected that those entering the field will likely
avail of on-line based education for their master’s de-
grees in DS. To find out if course providers are offer-
ing SE subjects in DS training, our first impression
is to look at the OCR (The Online Course Report -
http://www.onlinecoursereport.com/), who published
an article in their site - the ”Best Online Masters in
Data Science”. The report classified programs ac-
cording to affordability, flexibility, and student sup-
port.

We looked at the first in the list, the most afford-
able one – Dakota State University’s program, but as
can be expected there is a subject on programming but
not SE as such. We looked also at big name univer-
sities, like University of California’s offering but we
noticed none of them dealing specifically in the art
of SE. Of course, there are subjects about algorithms
and so forth, but SE is broader than that (see SE goals
mentioned above).

The recent work of (Song and Zhu, 2015), seems
to be the most recent survey conducted on the sub-
jects taught in DS education in the USA. Due to its
shear volume of programs and degrees delivered, we
can for now, look at this study as representative of DS
education around the globe. The study surveyed DS
offerings in universities and have been published in
2015. We repeat here their findings.

Table 1: Subjects offered in Bachelor’s level.

Course No. of
unis of-
fering the
subject

Probability and Statistics 7
Data Mining 7
Programming 5
Discrete Mathematics 4
Data Structures and Algorithms 4
Database 4
Machine Learning 4
Statistical Modelling 3
Data Visualization 3
Introduction to Data Science 2
Artificial intelligence 2
Computer Security 2

We can see in Tables 1 and 2, none of them men-
tion SE education formally speaking. Now granted
there are those who offer data structures and algo-
rithms and they are computer science topics indeed,
but as we mentioned before they are a small part of
SE . A course in programming language teaches a stu-
dent how to use the syntax of the language and its
semantics. Coverage of philosophical issues on how
to architect modules and code, document them, how
to design, test and package code are topics too large
to be covered in a programming subject and properly
should be covered in a separate SE course. What we
are talking about are the considerations for the sys-
tematic designing, developing and debugging of the
software product produced by the DS effort.

To illustrate this, we take the case of deciding to
split a block of code into a function. Normally the
programmer makes a chunk of code to a function be-



Table 2: Subjects offered in Master’s level.

Course No. of
unis of-
fering the
subject

Exploratory Data Analysis 10
Database 10
Data Mining 9
Data Visualization 8
Statistical Modeling 8
Machine Learning 6
Information Retrieval 5
Information and Social Network
Analysis

4

Data Warehouse 4
Introduction to Data Science 3
Research Methods 3
Social Aspects of Data Science 3
Algorithms 2
Data Cleaning 2
Text Mining 2
Healthcare Analytics 2

cause the coder sees that such a sub-routine can be
used by some other parts of a program. However, that
is not the only decision to farm out code into a func-
tion. We know some programmers do this because
the work done by the function stands alone and from
a reading perspective, doing so makes the code easier
to handle and understand. Thus writing a function in-
volves some reflection on the programmer’s part. Dis-
cussion such as these and theories about function cou-
pling and cohesion are topics found in SE courses and
can be a very informative and revealing. Yet these are
topics in SE and not just a topic in the use of a pro-
gramming language.

5.2 DS Education by Transdisciplinary
Approach

(Topi, 2015) reported a workshop conducted on DS
education by the ACM Education Board and Council.
The workshop brought twenty-five academic experts
from various disciplines not only from the STEM
group but even those academics from arts and social
sciences. There were also representatives of profes-
sional societies like IEEE-CS, ASA(American Statis-
tical Association), etc. The objective of this work-
shop is for academics and professionals in the field to
have a respectful conversation on the future of DS ed-
ucation. It also explored the feasibility of developing
curriculum guidance for DS degree programs.

Below is a list of identified competencies a DS ed-

ucation should provide (Topi, 2015):

• Broad areas of statistics

• Research design

• Predictive modeling

• Visual Analytics

• Computational and algorithmic thinking

• Programming

• Machine learning

• Data and database management

• Distributed and parallel technologies

• Data mining

• Domain knowledge

• Ethics and DS implications

The group recognized that there are varying compe-
tencies for those doing the analytic algorithms and
complex statistical models versus those who acquire,
prepare and transform data versus again on those who
effect the results of the analytics work to the domain
of practice.

A few things worth noting about the results of the
workshop. Firstly, again we do not see SE being men-
tioned as a competency required of a DS education.
We do see programming and other computer science
topics like concurrent or parallel processing and so
on, making the list (something we have also seen in
the OCR article). However, as we mentioned before,
SE now is a recognized discipline just like Statistics
and Computer Science, and should be part of the DS’s
education. The direct benefit of this is not only to the
DS in expanding and making his/her education whole
but the clients that will be served by the DS. They too
will get a holistic solution to their decision support
problem. Secondly, we are not sure if it is a good idea
for the competencies of the entire DS work to be split
into compartments as the workshop seems to suggest.
This does not bode well with the idea that clients of
DS want an integrated solution. Splitting the compe-
tencies into different DS roles mean that some will
become specialists in a skill but that means that the
DS client will have to deal with various people and
coordinate the management of them. Experience sug-
gests that this adds consulting cost and puts an over-
head into the coordination of these activities, not to
mention the problem of dealing with personalities in
those roles.

5.3 One Course Alluding to SE

In our finding, the closest course program that deals
with SE as a lesson by itself, though again barely



touching upon SE is the session ”What is software
engineering in data science” found in the Coursera
course ”A Crash Course in Data Science” given by
Dr. Roger Pang and produced by John Hopkins Uni-
versity. It lasts for 6 minutes, which clearly is just
an informative video that intends for the listener to
dig in deeper into the subject on their own. As can
be expected, the session does not elaborate greatly on
systematic addressing of SE topics. However, the fact
that there is a lesson devoted to this question, is by de-
fault a recognition of what we are saying here, that SE
can not be avoided in the practice of DS and should
be learned as well. Also, this is a welcome insight
and the course developers should be encouraged for
the topic. We hope others will follow that lead but in
an expanded way.

6 THE WAY FORWARD

First, we need to state what we are not advocating.
We definitely are not implying that DS reduces to SE,
no, not at all. We are not saying they should be SE
with DS knowledge either. Rather what we are saying
is that SE should be taught in some small but mean-
ingful way to DS students. We are advocating that
SE fundamentals should be discussed if not in a very
substantial way, at least sufficient enough for the DS
to ensure the resulting code produced in the effort are
manageable and reliable.

We propose additionally the following:
• The continued conversation as reported in (Topi,

2015) should be promoted. Indeed, it is good that
such a discussion amongst academics and profes-
sionals is happening at this stage. The question
as to what competencies a DS should have is a
worthy question to mull over as it will only help
rather than hinder DS as a separate discipline and
profession. They can serve as a guide in forming
he elements of DS education. Rather than keep-
ing this local to USA, its composition should be
extended internationally.

• If time permits in a degree or course program, then
definitely at least a half-course, if not a full one,
in SE should be included. Below is a core list of
SE areas we believe should be taught in some way
to people entering the DS world.
– Software Architecture and Design
– Software Engineering Process and Manage-

ment
– Software Quality and Testing
The course supplier can embed the above as com-
ponents in a broad course like Data Science En-

gineering Issues. We believe such a course will
do well in addressing the importance of SE and
will add value to the DS person’s capability and
professionalism.

7 CONCLUSION

In this paper, we examined the work performed by
the DS practitioner and we noted that SE issues crop
up in the DS work. The DS has to write code and
by that, relevant SE issues enters the DS field and we
have proven knowledge of SE principles will greatly
help the DS in his/her work and indirectly benefits the
clients as well. We have shown the importance of SE
and that the DS should have not just a cursory under-
standing of this skill. We then examined the courses
offered right now by DS educators and demonstrated
that there is a present neglect for the skill. We can per-
haps theorize that the skill is taken for granted by DS
education providers except for one who alluded to its
importance gained from their experience as DS prac-
titioners. Finally, we suggested some solutions for ad-
dressing this need that matches SE importance to the
DS work. We hope that through this work, more and
more DS education providers might incorporate SE
fundamentals into their programs so that the profes-
sion and its consumers might benefit from the gains
already accumulated by the SE discipline.

REFERENCES

Cage, D. (2017). What is a data scientist, anyway? The
Wall Street Journal.

Guo, P. (2013). Data science workflow: Overview and chal-
lenges. Communications of the ACM, blog@CACM.

Jorgensen, P. C. (2014). Software Testing, 4/ed. CRC Press.
Leach, R. J. (2016). Introduction to Software Engineering,

2/ed. CRC Press.
Rose, D. (2016). Data Science: Create Teams That Ask the

Right Questions and Deliver Real Value. Apress.
Song, I.-Y. and Zhu, Y. (2015). Big data and data science:

What should we teach. Expert Systems.
Strawn, G. (2016). Data scientist. IT Professional, 18:55–

57.
Topi, H. (2015). IS EDUCATION : Advancing data sci-

ence education through a transdisciplinary conversa-
tion. ACM Inroads, 7:26–27.


