
Towards the Enrichment of Arabic WordNet with Big Corpora

Georges Lebboss1, Gilles Bernard1, Noureddine Aliane1 and Mohammad Hajjar2

1LIASD, Paris 8 University, Paris, France
2Lebanese University, IUT, Saida, Lebanon

Keywords: Semantic Relations, Semantic Arabic Resources, Arabic WordNet, Synsets, Arabic Corpus, Data
Preprocessing, Word Vectors, Word Classification, Self Organizing Maps.

Abstract: This paper presents a method aiming to enrich Arabic WordNet with semantic clusters extracted from a large
general corpus. The Arabic language being poor in open digital linguistic resources, we built such a corpus
(more than 7.5 billion words) with ad-hoc tools. We then applied GraPaVec, a new method for word vec-
torization using automatically generated frequency patterns, as well as state-of-the-art Word2Vec and Glove
methods. Word vectors were fed to a Self Organizing Map neural network model; the clusterings produced
were then compared for evaluation with Arabic WordNet existing synsets (sets of synonymous words). The
evaluation yields a F-score of 82.1% for GrapaVec, 55.1% for Word2Vec’s Skipgram, 52.2% for CBOW and
56.6% for Glove, which at least shows the interest of the context that GraPaVec takes into account. We end up
by discussing parameters and possible biases.

1 INTRODUCTION

The Arabic language is poor in open digital linguis-
tic resources, especially semantic ones. Work in the
field of automatic semantic analysis is not as devel-
oped as for European languages; improving such re-
sources is an important goal for researches on Ara-
bic language and semantics. Among these resources
we choose Arabic WordNet (Black et al., 2006; Ro-
driguez et al., 2008; Regragui et al., 2016), an open
semantic database where lexical items are organized
in synsets (sets of synonymous words), linked by
semantic relationships, based on WordNet (Miller,
1995), now version 2.1 (Miller et al., 2005). Arabic
WordNet (hereafter AWN) is still poor in words and
synsets and needs to be enriched.

The end-to-end system presented here (figure 1)
generates semantic word clusters computed from a
large general corpus (Lebboss, 2016). Existing meth-
ods (subsection 2.1) are based on dictionaries (either
digitized paper ones or database dictionaries as Wik-
tionary), on translation and aligned multilingual cor-
pus, on WordNets and ontologies, on morphological
parsing or on combinations of those resources. There
are not any methods based on large general corpora.
Available Arabic corpora are small, and researchers
working on Arabic corpora usually have had to de-
vise their own. Our first step was to build the biggest

Figure 1: Global view of our system.

possible open corpus (section 3), keeping in mind
that it should be dynamically computed (so as to ex-
pand as much as possible as resources grow) and that
the building tool should be freely available for re-
searchers. The corpus built contains more than 7.5
billion words; it is by large the biggest one ever made
for Arabic language.

Arabic corpora usually are preprocessed by or-
thographic normalization and lemmatization. Ara-
bic lemmatization has been thoroughly analyzed by
Al Hajjar in his PhD thesis (Al Hajjar, 2010); we

Lebboss G., Bernard G., Aliane N. and Hajjar M.
Towards the Enrichment of Arabic WordNet with Big Corpora.
DOI: 10.5220/0006505701010109
In Proceedings of the 9th International Joint Conference on Computational Intelligence (IJCCI 2017), pages 101-109
ISBN: 978-989-758-274-5
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

choose the lemmatizer that according to his evalua-
tion yielded the best results (Khoja et al., 2001).

The main issue is word vectorization. Methods
considered here are based upon distributional proper-
ties of words (subsection 2.2). The main character-
istic of GraPaVec as opposed to the state-of-the-art
methods is that the context taken into account is the
surrounding pattern of high frequency words rather
than a window of neighbouring lexical items or skip-
gram of lexical items (section 4). In other words, we
keep what others throw away and throw away what
others keep.

Vectors are fed to a clustering algorithm. We have
chosen here the neural network model Self Organiz-
ing Maps (Kohonen, 1995), because of two advan-
tages: minimization of misclassification errors (mis-
classified items go to adjacent clusters) and easy vi-
sualization of the results. Those results are then eval-
uated by comparison with AWN synsets (section 6).

2 RELATED WORK

2.1 Building Semantic Resource

In 2008, three methods were proposed by the AWN
team.

One (Rodriguez et al., 2008) builds a bilingual
lexicon of <English word, Arabic word, POS> tu-
ples from several publicly available translation re-
sources. It merges in one set the base concepts
of EuroWordNet (1024 synsets) and Balkanet (8516
synsets). Keeping only the tuples whose English
word was included in the merged set, they produced
<English word, Arabic word, Concept> tuples. Ara-
bic words linked to the same concept were candidates
to enter an synset in AWN. Their candidatures were
to be validated by lexicographers; however, as of to-
day only 64.5% have been processed, of which 74.2%
were rejected as incorrect.

They obtained better results with another method
(Rodriguez et al., 2008), where they generated new
Arabic forms by morphological derivation from the
words in AWN synsets, controled their existence with
databases such as GigaWord non free Arabic cor-
pus, the Logos multilingual translation portal, or New
Mexico State University Arabic-English lexicon, and
used their translation to link them to WordNet synsets
and then back to AWN, to be validated by lexicog-
raphers. A similar method was proposed later (Al-
Barhamtoshy and Al-Jideebi, 2009); words were mor-
phologically hand-parsed by linguists, then translated
and associated to synsets with equivalence relations

between the synsets made explicit in the Inter-Lingual
Index deep structure (Vossen, 2004).

The third method (Alkhalifa and Rodriguez, 2008)
extracted named entities from Arabic Wikipedia,
linked them to named entities from the corresponding
English Wikipedia page, linked those to named enti-
ties from WordNet, and then back to synsets of AWN.
Though the result was much better (membership was
correct up to 93.3%), the coverage was scarce.

A different approach (Abouenour et al., 2008)
exported the entire set of data embedded in AWN
into a database integrated with Amine AWN ontol-
ogy, tapped by a Java module based on Amine Plat-
form APIs. This module used the mapping between
English synsets in WordNet and Suggested Upper
Merged Ontology (Niles and Pease, 2003) concepts to
build the Amine AWN type hierarchy. Then, it added
Arabic synonyms based on the links between Word-
Net synsets and AWN synsets.

Later the same team (Abouenour et al., 2010;
Abouenour et al., 2013) used YAGO (Yet Another
Great Ontology) from Max-Planck Institute, translat-
ing its named entities into Arabic with Google transla-
tion, then added them to AWN according to two types
of mappings (direct mapping through WordNet, map-
ping through YAGO relations to AWN synsets).

Abdul Hay’s PhD thesis (Abdulhay, 2012) ex-
tracted semantic categories from a multilingual
aligned corpus with English and two langages from
EuroWordNet. If all but Arabic words were mem-
bers of synsets linked by Inter-Lingual Index, then
the Arabic word should also be in a linked synset in
AWN. Results were correct up to 84%.

Another team worked on iSPEDAL, a database
monolingual dictionary digitizing monolingual pa-
per dictionaries (Al Hajjar, 2010). Two methods
have been proposed (Hajjar et al., 2013) for enrich-
ing iSPEDAL. One used semi-structured information
from plain dictionaries to deduce links (synonymy,
antonymy). The other used translation by available
resources to and from a foreign language to com-
pute synonymy of Arabic words by correlating their
translations. A somewhat similar approach (Abde-
lali and Tlili-Guiassa, 2013) extracts synonymy and
antonymy relationships from Arabic Wiktionary.

Arabase platform (Raafat et al., 2013) aims to
integrate every available Arabic semantic resource,
from King Abdulaziz City for Science and Technol-
ogy database, to Arabic StopWords Sourceforge re-
source and AWN. It has, according to the authors, “a
good potential to interface with WordNet”. Arabase
computes by hand-made rules semantic properties of
vocalized words1 and forms a sort of virtual WordNet.

1Short vowels are not written in Arabic words in normal

As one can see, researches on Arabic seman-
tic categories has extensively used foreign resources;
very little has been done on extracting semantic infor-
mation from Arabic data alone, and nothing based on
an Arabic general corpus.

2.2 Word Vectorization

Structural linguistics (Harris, 1954) postulated that
words with similar distributions have similar cate-
gories and meanings. Since (Salton et al., 1975)
first proposed it, projecting words in vector space has
been the first step in many models of word clustering,
where semantic properties could be linked to similar-
ities in the distribution of the word vectors.

In such models a distribution is defined by a vector
of the contexts of a word. A context is defined by two
elements: units and distance to the word. Units can be
words, phrases or ngrams, more recently skipgrams
(ngrams with “holes”). The distance can be a step
function, as in the bag of word model (only words in
the same document are nearby contexts), or a function
of the number of units separating word and context.

On the resulting matrix {words × contexts}
(where each component is the frequency of a word
in a context), mathematical models have been applied
in order to reduce it to a bunch of clusters, from the
most simple, tf-idf, to much more complex ones, such
as latent semantic analysis, latent Dirichlet allocation,
neural networks (various models), linear or bilinear
regression models... Clustering models display quite
a big variety of reduction methods, which contrasts
with the poverty of context variety. Usually units are
lexical items or ngrams of lexical items and sets are
either documents or fixed-length windows.

Some examples: in Hyperspace Analogue to Lan-
guage (Lund et al., 1995), context is a fixed-length
window of lexical items around the word. In Web-
SOM (Honkela et al., 1997), a model with two lay-
ers of Self Organizing Map neural network, context
is a fixed-length window of lexical items around the
word. Among the rare exceptions to the lexical items
context was a SOM classifier applied to a context of a
fixed-length window of grammatical categories to the
left of the word (Bernard, 1997).

Word2vec (Mikolov et al., 2013) is a set of two
unsupervised neural models, with log-linear classi-
fiers, where words and context vectors are trained si-
multaneously; in CBOW (Continuous Bag Of Words)
context is defined by a fixed-length window of lexical
items around the word, in Skipgram lexical items are
grouped in skipgrams, that is, ngrams with holes.

use and in a majority of documents.

Glove (Global Vectors for Word Representation)
(Pennington et al., 2014) is a global log-bilinear re-
gression model designed by the NLP team at Stanford
University. Paraphrasing the authors, this model com-
bines the advantages of the global matrix factorization
with windowing local context methods. Context is a
fixed-length window of lexical items centered on the
word.

Both models represent the state of the art. One
should note that though they use fixed-length win-
dows, they use a continuous function for distance,
thus introducing a un-bag-of-word approach (even in
CBOW) which had rarely been used before.

3 CORPUS

To extract semantic categories from general corpora,
a large corpus is needed. We merged the entire avail-
able Arabic corpora and found it to be small, even
adding Arabic Wikipedia and Wiktionary. This static
corpus was the starting point of our large corpus,
but the bulk comes from the Alshamela library on-
line resource (http://shamela.ws) and, over all, crawl-
ing/converting web sites (more than 120, mostly news
web sites) and their documents.

Open-source web crawlers as HTTtrack failed
to fit our purpose: no queuing, hard resuming
of download, thousands of blank pages in the re-
sult and no easy way to convert documents on the
fly. We created our own Arabic Corpus Builder,
that crawls queues of sites, merges them in plain
text format with the outcome of previous corpus,
and imports it in a database. It also converts on
the fly usual encodings of Arabic characters (Mi-
crosoft and MacOS) in unicode. It can be found on
https://sites.google.com/site/georgeslebboss.

Our corpus is mostly dynamic as the results of
crawling varies in time. In its present state, it con-
tains about 85,000 documents and is described in the
following table:

Table 1: General corpus.

Source Word number Unique words
Static corpus 207 878 809 3 589 374
Arabic
Wikipedia
+ Arwiki-
tionary

6 242 131 2 376 805

Alshamela li-
brary

1 862 000 347 4 007 846

Corpus
Builder

5 543 097 123 5 987 391

Total 7 619 218 410 6 894 986

Arabic writing conventions, especially concerning
vowels, entail that every word can have several writ-
ings (not counting errors). Orthographic normaliza-
tion is usual in Arabic language processing systems,
even though it introduces ambiguities.

As Arabic language has a rather complex mor-
phology, especially in derivation, and as writing con-
ventions do not separate morphemes inside accented
words, lemmatization of Arabic text, though difficult,
is much more useful than it is in European languages
(with the exception of German).

In our case, orthographic normalization and
lemmatization are left to the choice of the experimen-
tor. We used the best lemmatizer according to the re-
sults of Al Hajjar (Al Hajjar, 2010), Khoja lemmatizer
(see section 1).

4 GRAPAVEC

For our own method of word vectorization, we ex-
plored the idea of semantic clustering build on gram-
matical context found in (Bernard, 1997), but with
important modifications, mainly due to our aim to
develop a method as independant from specific lan-
guages as possible. So the stopword list and the stop-
word categories used in this paper were out of the pic-
ture. The left window (or any fixed-length window for
that matter) was also too restrictive as we did not want
to make any assumption as to order of parts of speech
or type of syntax rules. Instead, we wanted to em-
pirically discover recurrent patterns of very general
words.

So the context we take into account is composed
of (ordered) patterns of such words in the vicinity of a
given word, inside sets that are delimited by punctua-
tion markers. We called our method Grammatical Pat-
tern Vector, or GraPaVec, though the relation of this
algorithm to grammar is indirect (see subsection 4.2).
GraPaVec has four steps:

• Trie preparation

• Pattern element selection

• Pattern discovery

• Word vectorization

4.1 Trie Preparation

We begin by importing every word in the corpus in a
prefix Trie. A Trie is a structure that can represent a
very large number of words in a format that is both

Figure 2: General view of GraPaVec.

economical and fast to explore2; it is more efficient
here than hash-code or binary trees.

Each path from the root to a leaf of the Trie rep-
resents a word (see figure 3). Each node contains a
unicode character. A node is marked as leaf the first
time a word ends there, and its occurrences are incre-
mented each time. Thus a node is a simple structure
with a unicode character, a field indicating the number
of occurrences (if not zero, the node is a leaf), point-
ers towards its sons and towards its brothers. A leaf
can have sons, as words can be part of other words.

Figure 3: A Trie.

4.2 Pattern Element Selection

This is the most important step and the one where
a human eye is necessary (for now). If the corpus
is big enough, the most frequent words are markers
with grammatical or very abstract function (with no
independant meaning or referent, the syncategoremes
of Aristotle); we tested this on English as well as on
Arabic. The user – which just needs to know the lan-
guage – has to set the frequency threshold that sepa-
rates markers and “ordinary” words (lower frequency
words). This is done by looking for the most frequent
lexical item appearing in the list displayed by our sys-
tem and establishing its frequency as threshold.

2Its maximal depth is given by the longest word in the
corpus and its maximal breadth is given by the number
of possible characters at any point. As shown by (Harris,
1968), in language the number of successors is constrained,
so the tree quickly shrinks.

With the subcorpus used for evaluation (section
6), a threshold of 3,500 selected 155 markers. With
the whole corpus, a threshold of 9,000 separated 196
markers. The whole corpus is about 980 times big-
ger than the evaluation corpus, the number of unique
words is about 17.5 times bigger, but the number of
markers is only 1,26 times bigger, and the threshold
only 0.26 bigger. Thus there does not seem to be a
clear relationship between the size of the corpus and
this threshold.

Looking more closely, with the whole corpus, 53
markers were added, 12 were lost. Half of these 12
were combinations of markers that had correctly been
classified; with better lemmatization, those would
be eliminated, leaving an error margin of 3% rela-
tively to the number of markers detected. On the
whole, the biggest the corpus, the more homogeneous
marker distribution is, and more neat its identification
to grammatical words.

We compared these 196 words with the hand-
made Arabic Stopwords Sourceforge resource: half
of them (97) were not included in the resource (77
words on the 155 list). Most of them should have been
included as stopwords; others were combinations of
stopwords. More generally, though Arabic Stopwords
includes 449 words, it seems rather incomplete, and
could easily be enriched by our method.

4.3 Pattern Building

A pattern is a sequence of markers including se-
quences of ordinary words. For instance:

• the red book of Peter

• the car of George

• the heart of London

As the and of are higher frequency words, these
phrases are instances of the same pattern: “the * of
*”. The star (joker) represents a sequence of ordinary
words. Patterns are build according to the following
principles (m represents a marker, x an ordinary word,
p a punctuation):

• A pattern does not contain p.

• A pattern is a sequence of m and *.

• A pattern contains at least one *.

• * is a string of x with n as maximum length.

• * contains at least one x.

The maximum length n is called JokerLength. Let us
take the following sequence, representing an extract
from the corpus:

xmmxxmxxxpmxmmxxxxmpmmxxxm

Our objective is to generate all possible patterns com-
patible with this sequence. These patterns will be rep-
resented by sequences of m and *, as in <*mm*m>.
Supposing that JokerLength = 3, we first obtain the
following patterns:

• *mm*m* (followed by p)

• m*mm* (followed by more than 3 x)

• *m (followed by p)

• mm*m (end-of-file considered as p)

From each of these patterns all potential patterns in-
cluded are deduced. For instance, <*mm*m*> con-
tains the following sub-patterns:

• *m

• *mm

• *mm*

• *mm*m

• *mm*m*

Then we skip the first element and do the same with
<mm*m*> and its subpatterns, and recurse until the
pattern is finished. Of course, in real patterns, m is
replaced by true markers; thus pattern <*m*m> is in
reality a set of patterns differing by the nature of both
‘m’.

In the actual implementation, patterns are read
from the corpus in a prefix Trie similar to the one used
for words. Every star is a node that permits back ref-
erence from the ordinary word in the database to the
positions it can occupy in the pattern Trie.

4.4 Word Vectorization

As the preceding process builds all possible patterns
in the vicinity of a word, most of them will not be
relevant and will not be repeated. We need a fre-
quency threshold to eliminate spurious patterns that
won’t discriminate words.

We compute for each word the number of times it
occurs in every selected pattern. This process yields
a (sparse) matrix {words × patterns}. We then elim-
inate from this matrix all patterns whose frequency is
less than the pattern threshold selected.

Thus word vectorisation depends on three pa-
rameters: marker threshold, JokerLength and pattern
threshold.

5 SELF ORGANIZING MAP

Self Organizing Map is an unsupervised neural net-
work model designed by Kohonen (Kohonen, 1995).

In its standard version, it projects the space of input
data on a two-dimension map. It implicitly does a
dual clustering: on one hand, the data is clustered into
neurons, and on the other hand the clusters themselves
are grouped by similarity in the map. Its operation is
in “best matching unit” mode: all neurons compete
for each input vector and the best matching neuron is
the winner.

X being the input vector, j an index on the n neu-
rons in the map, Wj the memory vector of the neuron
j, the winner, j∗, is determined by equation 1, where
d(x,y) is a distance measure:

d(X ,Wj∗) = min
j∈{1−n}

d(X ,Wj) (1)

The distance can be euclidian (usual value), Manhat-
tan, or some other. It can be replaced with a similarity
measure as cosine (normalized dot product, eq. 2), if
min is replaced by max in eq. 1. With sparse vectors
cosine similarity drastically reduce computation time.

CosSim(X ,Wj) =
∑n

i=1 XiWi, j

‖ X ‖ × ‖Wj ‖
(2)

Every neuron has a weigth vector Wj of the dimension
of the input vector, initialized randomly and maybe
pre-tuned to the set of possible values. In the learning
phase the winner and every neuron in its neighbour-
hood learn the input vector, according to eq. 3, where
Nσ(i, j) is the neighbourhood in radius σ; the brack-
eted superscript indicates the epoch.

W (t+1)
j =W (t)

j +α(t)N(t)
σ (j, j∗)(X (t)

i −W (t)
j) (3)

The learning rate α decrease in time following equa-
tion 4, where α(0) is its initial value.

α(t) = α(0)(1− t
tmax

) (4)

Learning in the neighbourhood of the winner decrease
in space following here the gaussian in equation 5,
which yields better results than mexican hat or other
variants. M(i, j) is the Manhattan distance between
indexes.

N(t)
σ (j, j∗) = e

−M(j, j∗)
2σ2(t) (5)

σ obeys equation 6, where σ(0) is the radius initial
value, typically the radius of the map, and σ(tmax) is
its final value, typically 1.

σ(t) = σ(0)(
σ(0)

σtmax

)
t

tmax (6)

Our implementation gives the choice of euclid-
ian distance, Manhattan, cosine similarity; different

topologies for the neighbourhood (square or hexag-
onal), initialize memory to the center of learning set
values or randomly.

6 EVALUATION

As our final objective was to produce new synsets,
we wanted to check whether AWN existing synsets
were correctly retrieved, that is, whether the words
of a synset were all clustered together. At first we
thoroughly assessed the quality of the 11,269 existing
AWN 2.1 synsets. This study yielded the following
issues:

A) 4,712 synsets are singletons.

B) 1,110 are subsets of others.

C) A non-negligible number of synsets are false.

Type (A) synsets would have artificially increased
the recall value of any method (they would always
be in the same cluster). As synsets of type (B)
do not form a complete partition of their supersets,
some words would not have been taken into account
and the number of singletons would have increased.
After eliminating these synsets, we were left with
5,807 synsets. It is easy to see why type (C) synsets
were not to be used, but much less easy to elimi-
nate them, as it has to be done by hand. For our
experiments, we controled and choose 900 synsets
grouping 2,107 words. Those synsets can be found
at https://sites.google.com/site/georgeslebboss.

The evaluation corpus contained the documents of
our large corpus containing at least one of the words
of these synsets. We ended up with an evaluation cor-
pus of 7,787,525 words and 395,014 unique words.
Quality of evaluation will increase as AWN itself in-
creases in quality.

In order to compute the F-score (harmonic mean
of recall and precision) of the four methods tested
here, we run them on the evaluation corpus, insert re-
sult in database, then cluster vectors obtained from
each method with SOM model. The resulting clusters
are compared to our synsets: we count the number
of synsets whose at least two words are clustered to-
gether. Let us call C this number, T the total number
of synsets, and S SOM number of output cells; recall
is computed as C

T and precision is computed as C
S .

We tuned parameters to their best values sepa-
rately for each method with many tests.

• Best values for common parameters

1. orthographic normalization: true
2. lemmatization: true
3. SOM topology: hexagonal

4. SOM measure: cosine similarity
5. SOM mapsize: 35 x 26

• Best values for GraPaVec parameters

1. marker threshold: 3500 in evaluation corpus,
9000 in the large one

2. JokerLength: 4
3. pattern threshold: 300

These parameter values yield the following
vector dimensions: 1,571 in evaluation corpus,
1,869 in the large one.

• Best values for Word2Vec (Skipgram and CBOW)
and Glove parameters

Table 2: Word2Vec and Glove Parameter Values.

Skipgram CBOW GloVe

Vector dim. 300 300 50

Window size 10 7 15

Sample 1e-3 5 N/A

Hier. softmax 0 0 N/A

Negative samp. 10 5 N/A

Iterations 10 5 15

Min count 5 5 5

Learning rate 0.025 0.05 N/A

X Max N/A N/A 10

Normalization and lemmatization were the param-
eters that, along with the SOM map size most influ-
enced the results. Normalizing increments the F-score
of any method by 12%; lemmatizing increments it by
17%; adding both increments it by 28%. The table
3 shows F-scores with raw, normalized, lemmatized
and both (normalized and lemmatized) corpus.

Table 3: Effect of preprocessing on F-scores.

Corpus GraPaVec Skipgram CBOW GloVe

raw 54.1 27.2 24.3 28.6

norm. 65.5 38.5 35.6 40.0

lemm. 70.7 43.7 40.8 45.1

both 82.1 55.1 52.2 56.6

When SOM mapsize is 10% bigger than the num-
ber of synsets to be retrieved, it downgrades the re-
sult of more than 20% with all three methods; it is
also the case when the map size is smaller, which is
expected, but the effect is less drastic. The table 4
shows some results (all with lemmatization and nor-
malization); we have indicated also the results with

Table 4: Effect of map sizes on F-scores.

Mapsize GraPaVec Skipgram GloVe
34 x 24 80.72 54.82 56.17
Chosen 82.1 55.1 56.6
35 x 27 79.78 52.47 53.98
35 x 28 77.23 51.81 52.23
35 x 30 61.54 41.44 42.05

the chosen value (35 x 26), corresponding to the num-
ber of synsets.

The final evaluation using the best parameters for
each method yields a F-score of 82.1% for GrapaVec,
55.1% for Word2Vec’s Skipgram, 52.2% for CBOW
and 56.6% for Glove.

7 CONCLUSION AND
DISCUSSION

To be completely open, we did not expect such gap
between the results of GraPaVec and the other meth-
ods. We looked for biases in our procedure. The only
parameters that are common to all methods are those
of SOM (topology, distance and map size). The map
size mostly depends on the number of clusters to be
found and we had to be close to the number of synsets.
The choice of hexagonal topology, recommended by
Kohonen himself on general grounds, gave the best
results for all methods. Cosine similarity has no rea-
son to favor one method. That leaves SOM choice,
but there is no clear reason why it should biase in fa-
vor of GraPaVec.

Could sparsity be a factor? The below results
show vector sparsity in the evaluation corpus; while
GraPaVec vectors are indeed six times sparser than
Word2Vec’s, these are in turn six times sparser than
GloVe’s, with no noticeable effect on the results:

• GraPaVec : 0.27 %

• Skipgram : 1.65 %

• CBOW : 1.65 %

• GloVe : 9.89 %

One bias is clear, though: GraPaVec is twice as
time consuming as Skipgram, the most time consum-
ing of the other methods, as shown by the below re-
sults in minutes (using Laptop Core i5 with 8 GB
RAM); pattern construction consumes 4/5 of Gra-
PaVec time:

Method big corpus evaluation corpus
GraPaVec 483 125
Skipgram 242 63

Glove 66 16
CBOW 48 12

But this does not explain the F-score gap.
Perhaps the solution is to look at what Levy et al.

(Levy et al., 2015) call hyperparameters. Here the
type of context could have played the major role. It
would be interesting to twist Word2Vec and Glove to
apply them to such contexts. Another element could
have played some role: the corpus itself and the lan-
guage under study. As Goldberg (Goldberg, 2014)
puts it,

It is well known that the choice of corpora
and contexts can have a much stronger effect
on the final accuracy than the details of the
machine-learning algorithm being used [...]

Either way we achieved here two aims: building
Arabic word clusters on the basis of Arabic corpora,
a first step in enriching AWN, and showing that pat-
terns of higher frequency words, mostly grammatical
words, thrown away as “empty words” by most meth-
ods, are operative in semantic lexical clustering at
least in Arabic. More work on the contexts is needed
here.

There are still a number of questions to be
adressed. Is it possible to automatize the selection
marker threshold? What impact on the results would
have moving this threshold down or up? Reducing the
computational cost of GraPaVec is a must in order to
be able to do more extensive tests and is one of our
first objectives for now.

In a near future we also aim to produce synsets
based on our work; to try our hand at other languages,
in order to see if those results are language specific,
and to use a dynamic growing neural model that can
find by itself the number of categories.

REFERENCES

Abdelali, B. and Tlili-Guiassa, Y. (2013). Extraction des
relations sémantiques à partir du Wiktionnaire arabe.
Revue RIST, 20(2):47–56.

Abdulhay, A. (2012). Constitution d’une ressource
sémantique arabe à partir d’un corpus multilingue
aligné. PhD thesis, Université de Grenoble.

Abouenour, L., Bouzoubaa, K., and Rosso, P. (2008). Im-
proving Q/A using Arabic WordNet. In Proc. of the
2008 International Arab Conference on Information
Technology (ACIT’2008), Tunisia.

Abouenour, L., Bouzoubaa, K., and Rosso, P. (2010). Using
the Yago ontology as a resource for the enrichment
of named entities in Arabic WordNet. In Proceed-
ings of The 7th International Conference on Language
Resources and Evaluation (LREC 2010) Workshop on
Language Resources and Human Language Technol-
ogy for Semitic Languages, pages 27–31.

Abouenour, L., Bouzoubaa, K., and Rosso, P. (2013). On
the evaluation and improvement of Arabic WordNet
coverage and usability. Lang Resources & Evaluation,
47(3):891–917.

Al-Barhamtoshy, H. M. and Al-Jideebi, W. H. (2009). De-
signing and implementing Arabic WordNet semantic-
based. In the 9th Conference on Language Engineer-
ing, pages 23–24.

Al Hajjar, A. E. S. (2010). Extraction et gestion de
l’information à partir des documents arabes. PhD the-
sis, Paris 8 University.

Alkhalifa, M. and Rodriguez, H. (2008). Automatically ex-
tending named entities coverage of Arabic WordNet
using Wikipedia. International Journal on Informa-
tion and Communication Technologies, 1(1):1–17.

Bernard, G. (1997). Experiments on distributional catego-
rization of lexical items with Self Organizing Maps.
In International Workshop on Self Organizing Maps
WSOM’97, pages 304–309.

Black, W., Elkateb, S., Rodriguez, H., Alkhalifa, M.,
Vossen, P., Pease, A., and Fellbaum, C. (2006). Intro-
ducing the Arabic WordNet project. In Sojka, Choi, F.
and Vossen, editors, In Proceedings of the third Inter-
national WordNet Conference, pages 295–300.

Goldberg, Y. (2014). On the importance of comparing ap-
ples to apples: a case study using the GloVe model.
Google docs.

Hajjar, M., Al Hajjar, A. E. S., Abdel Nabi, Z., and Lebboss,
G. (2013). Semantic enrichment of the iSPEDAL cor-
pus. In 3rd World Conference on Innovation and Com-
puter Science (INSODE).

Harris, Z. S. (1954). Distributional structure. Word, 10(2-
3):146–162.

Harris, Z. S. (1968). Mathematical structures of language.
John Wiley & Sons.

Honkela, T., Kaski, T., Lagus, K., and Kohonen, T. (1997).
WEBSOM–Self-Organizing Maps of document col-
lections. In Proceedings of WSOM’97, Workshop on
Self-Organizing Maps, Espoo, Finland, pages 310–
315. Helsinki University of Technology.

Khoja, S., Garside, R., and Knowles, G. (2001). An Ara-
bic tagset for the morphosyntactic tagging of Arabic.
A Rainbow of Corpora: Corpus Linguistics and the
Languages of the World, 13:341–350.

Kohonen, T. (1995). Self-Organizing Maps. Springer,
Berlin.

Lebboss, G. (2016). Contribution à l’analyse sémantique
des textes arabes. PhD thesis, University Paris 8.

Levy, O., Goldberg, Y., and Dagan, I. (2015). Improv-
ing distributional similarity with lessons learned from
word embeddings. Transactions of the Association for
Computational Linguistics, 3:211–225.

Lund, K., Burgess, C., and Atchley, R. A. (1995). Semantic
and associative priming in high-dimensional semantic
space. In Proceedings of the 17th annual conference
of the Cognitive Science Society, volume 17, pages
660–665.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vec-
tor space. In Proceedings of the International Con-
ference on Learning Representation, Workshop Track,
page 1301.

Miller, G. A. (1995). Wordnet: A lexical database for En-
glish. Communications of the ACM, 38(11):39–41.

Miller, G. A., Fellbaum, C., Tengi, R., Wolff, S., Wakefield,
P., Langone, H., and Haskell, B. (2005). WordNet 2.1.
Cognitive Science Laboratory, Princeton University.

Niles, I. and Pease, A. (2003). Linking lexicons and on-
tologies: Mapping WordNet to the Suggested Upper
Merged Ontology. In Proceedings of the International
Conference on Information and Knowledge Engineer-
ing (IKE 03), Las Vegas, Nevada, volume 2, pages
412–416, Las Vegas, Nevada, USA.

Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors forword representation. In
EMNLP, volume 14, pages 1532–1543.

Raafat, H., Zahran, M., and Rashwan, M. (2013). Arabase:
A database combining different arabic resources with
lexical and semantic information. In Proceedings
of the International Conference on Knowledge Dis-
covery and Information Retrieval, pages 233 – 240.
Scitepress.

Regragui, Y., Abouenour, L., Krieche, F., Bouzoubaa, K.,
and Rosso, P. (2016). Arabic WordNet: New con-
tent and new applications. In Proceedings of the
Eighth Global WordNet Conference, pages 330–338,
Bucharest, Romania.

Rodriguez, H., Farwell, D., Farreres, J., Bertran, M.,
Alkhalifa, M., Martı́, M. A., Black, W., Elkateb, S.,
Kirk, J., Pease, A., Vossen, P., and Fellbaum, C.
(2008). Arabic WordNet: Current state and future ex-
tensions. In Proceedings of The Fourth Global Word-
Net Conference, Szeged, Hungary, number 387–405,
Marrakech (Morocco).

Salton, G., Wong, A., and Yang, C.-S. (1975). A vector
space model for automatic indexing. Communications
of the ACM, 18(11):613–620.

Vossen, P. (2004). EuroWordNet: a multilingual database
of autonomous and language-specific WordNets con-
nected via an Inter-Lingual Index. International Jour-
nal of Lexicography, 17(2):161–173.

