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Abstract: This paper presents new deep associative neural networks that can semantically associate any data, represent 
their complex relations of various kinds, and be used for fast information search, data mining, and knowledge 
exploration. They allow to store various horizontal and vertical relations between data and significantly 
broaden and accelerate various search operations. Many relations which must be searched in the relational 
databases are immediately available using the presented associative data model based on a new special kind 
of associative spiking neurons and sensors used for the construction of these networks. The inference 
operations are also performed using the reactive abilities of these spiking neurons. The paper describes the 
transformation of any relational database to this kind of networks. All related data and their combinations 
representing various objects are contextually connected with different strengths reproducing various 
similarities, proximities, successions, orders, inclusions, rarities, or frequencies of these data. The 
computational complexity of the described operations is usually constant and less than operations used in the 
databases. The theory is illustrated by a few examples and used for inference on this kind of neural networks.  

1 INTRODUCTION 

Efficient and safe collecting, storage, retrieval, 
processing, mining, and exploration of big data are 
the most important tasks of contemporary computer 
science (Apiletti et al., 2017), (Han and Kamber, 
2000), (Piatetsky-Shapiro and Frawley, 1991), 
(Fayyad, 1996), (Jin et al., 2015), (Linoff and Berry, 
2011), (Pääkkönen and Pakkala, 2015). To get 
benefits from various big data collections, we need to 
use smart and very fast methods for data search, 
mining, and knowledge exploration. It is not an easy 
task because data are typically stored in relational 
databases which relate data and entities only 
horizontally. Data must be sorted, indexed, or joined, 
and vertical relations must often be found and 
processed in many time-consuming nested loops.  

This paper introduces new deep associative 
semantic neuronal graphs (DASNG) which allow for 
storing data where the data are automatically 
horizontally and vertically associated and ordered 
according to all attributes without any substantial 
computational or memory costs. Moreover, these 

relations can be easily supplemented by any further 
relations or related objects that can be added to this 
structure or stored in a result of data exploration using 
extra neurons and connections. Vertical data 
associations describe many useful relations like 
similarity, proximity, order, or succession in space or 
time. They can also easily determine minima, 
maxima, medians, average numbers, and data ranges. 
Data mining and knowledge exploration methods 
usually try to find interesting groups of similar, 
different, frequent, or infrequent patterns for a given 
minimum support and minimum confidence to define 
associative rules, cluster objects or draw some useful 
conclusions about objects or their groups (Agrawal et 
al., 1993), (Apiletti et al., 2017). The introduced 
model of the data representation and storage in the 
DASNG structure supplies us with an ability to 
directly or indirectly connect related data. This 
strategy excludes computationally expensive loops 
and reduces the computational complexity of 
operations on the related data. All minima and 
maxima are available in constant time. All other 
values of each attribute are organized using the 
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introduced aggregated values B-trees which 
automatically aggregate and count duplicated values 
and order them linearly during their construction 
process. This strategy reduces the computational 
complexity of many operations. 

The introduced DASNGs consist of a special kind 
of spiking neurons introduced in this paper and 
referring to the earlier models presented in (Horzyk, 
2014), (Horzyk et al., 2016), (Horzyk, 2017). Spiking 
neurons are reactive and use a time approach for 
computations (Gerstner and Kistler, 2002), so data 
exploration routines can be triggered in these graphs 
automatically by stimulation of neurons representing 
any search context. It is very useful because some 
frequently performed operations are built-in this 
neural system and do not need to be implemented in 
the form of typical algorithmic procedures. The 
connection network between neurons allows us to 
quickly find associated data, objects, and patterns 
accordingly to their frequency, similarity, or vicinity 
in raw data. Furthermore, all important findings can 
be almost costless converted into new neuronal 
substructures that will store them in the same graph 
for any further use and inference. 

The way, in which the DASNGs work, classify 
them as emergent cognitive neuronal systems. They 
have a few similar features to semantic networks and 
other emergent cognitive systems (Duch and Dobosz, 
2011), (Nuxoll and Laird, 2004), (Parisia et al., 2017), 
(Starzyk, 2007), (Starzyk, 2015). The semantic 
networks represent semantic relations between 
concepts that are linked together (Sowa, 1991), while 
in the introduced DASNGs, neurons can represent 
any sets of elementary or complex sub-combinations 
of input data and directly or indirectly related objects 
for defining differing contexts affecting the neurons 
with different strength. Semantic networks are 
browsed through using various search routines 
operating on graph structures, while the presented 
associative graphs are equipped with special reactive 
spiking neurons that can automatically perform some 
search operations by stimulating them. It will be 
shown how neurons process such search operations 
and how this neural graph works on exemplary data 
in section 6. 

2 RELATIONAL DATABASE 
MODEL DRAWBACKS 

In computer science, we used to store data in 
relational databases, consisting of tables, which use 
primary and foreign keys to represent related entities. 

In relational databases, we use entity-relational model 
(ER model) that describes interrelated things of 
interest in a specific domain of knowledge (Bagui and 
Earp, 2011), (Chen, 2002). The above-mentioned ER 
model is composed of entity types which classify the 
things of interests and specifies various horizontal 
relationships that can exist between instances of those 
entity types. This model is also an abstract data model 
that defines a data structure that can be implemented 
as a relational database. The ER modeling was 
developed for database design by Peter Chen (Chen, 
2002). However, the ER model can also be used in the 
specification of domain-specific ontologies. 

Entities may be characterized not only by 
relationships but also by additional properties 
(attributes), which include special identifies called 
primary keys. In the databases, each row of a table 
represents one instance of an entity type, and each 
field represents an attribute type, where a relationship 
between entities is implemented by storing a primary 
key of one entity as foreign keys in other entities of 
other tables (Fig. 1). 

   

Figure 1: A sample of the small database with typically 
repeated attribute values and relations to the same objects 
of another table represented by the primary keys. 

In the relational database model, features are 
grouped in rows defining entities (records, tuples, 
objects) collected in tables. The rows of different 
tables can be horizontally linked together using 
primary and foreign keys. This kind of row linking 
allows defining more complex objects by other 
already represented objects in other tables. Keys are 
unique, sorted, and usually quite quickly available 
using B-trees, B+trees, hash-tables, or other methods 
typically in logarithmic time (Cormen et al., 2001), 
(Hellerstein et al., 2007).  

All modern databases use a Cost Based 
Optimization (CBO) to optimize queries and to create 
and an individual execution plan for each query. 
Usually, there are many possibilities, which 
dependently on row numbers and created indices can 
differ computational cost and complexity of various 
execution plans. Execution plans can comprise 



dynamically created temporal indices for the current 
query if it improves the cost of the execution plan. 
Many times, heuristic or greedy algorithms are also 
used to quickly find out a “good” enough execution 
plan without brute force search (Hellerstein et al., 
2007). 

Moreover, we distinguish various join operations 
as nested loop join, hash join, and merge join which 
can be more efficient in some specific situations. The 
join operations are frequently executed on every 
database, so their optimization is crucial. The nested 
loop join takes O(N*M) time, the hash join is 
processed in O(N+M) time, and the merge join in 
O(N+M) or O(N*log N + M*log M) dependently on 
working on the sorted or unsorted data, where N and 
M are the numbers of merged records of two joined 
tables (Hellerstein et al., 2007). 

Statistics are also very useful and help to estimate 
the disk I/O and CPU operations and memory usage 
to find a “good” enough execution plan, however, 
there is a certain cost of updating statistics as well. 
The I/O disk data access for reading and writing 
operations are bottlenecks of databases, especially 
when a database is huge and do not fit into memory 
because disk operations are typically at least hundreds 
of times slower than operations executed in the RAM. 

Despite the many advantages of such a solution, 
we also come across many difficulties and 
bottlenecks, where the ER data model is not effective 
enough (Hellerstein et al., 2007), e.g. the time 
necessary to update statistics and indices, sorting 
operations, cope with hundred times slower I/O disk 
operations, quick finding a good enough execution 
plan for each query, or the necessity to frequently 
search for various vertical relations between entities 
of the same table. One of the main drawbacks of the 
relational database model, which is addressed in this 
paper, is in the limited way of binding data and 
objects vertically. Vertical relations between entities 
and their defining values stored in columns are not 
represented (Fig. 1). This lack forces database 
management systems (DBMS) to search for vertical 
relations in many loops using SQL operations if the 
information about such relations is required. The SQL 
search operations (SELECT) in relational databases 
are typically the most frequent operations, so 
inefficiency of them costs a lot of time which is most 
annoying and very expensive when managing huge 
data collections. 

Moreover, the objects can be naturally ordered 
only after a single selected attribute in each table. If it 
is necessary to have data sorted after several attributes 
simultaneously, indices must be used. The indices 
typically use B+trees or hash tables to sort and 

organize data to make them available in logarithmic 
time. The main drawbacks of using indices are the 
relevant additional memory cost and the slowdown of 
addition, updating, and removal operations. In result, 
it is not recommended to add indices for data 
attributes which data are not frequently used in search 
operations. This paper presents how to overcome 
these drawbacks and organize data in such a way that 
both horizontal and vertical relations are represented 
in the proposed associative neuronal graph data 
structure described in the following sections. 

3 AVB-TREES 

In this section, a new self-ordering and self-balancing 
tree structure is proposed to efficiently organize input 
elements of the further introduced associative neural 
structures and get a very fast access to all stored 
features and objects. This structure, called AVB-tree 
(Aggregated-Values B-tree), is similar to the well-
known B-tree structure, but it automatically 
aggregates and counts all duplicates (Fig. 2). Thus, 
the AVB-trees store only unique values of each 
attribute defining stored objects. Despite the 
aggregation of duplicates, this operation does not 
diminish the information about the stored objects. 
The neurons representing these unique attribute 
values can have many connections to neurons 
representing objects. Hence, AVB-trees are usually 
much smaller than B-trees or B+trees constructed for 
the same data, where duplicates are not aggregated.  

The aggregation of the same values also saves the 
memory and accelerates the access to the stored 
objects, especially to the related objects which are on 
the top of interests and usually searched by queries. 
The counting of duplicates makes possible to remove 
data from this structure correctly. 

 

Figure 2: Construction of an exemplary AVB-tree. 

The AVB-trees are constructed in a very similar 
way as the B-trees, however, several important chan- 



ges must be implemented in it: 
 

The insertion of the next key to the AVB-tree is 
processed as follows (Fig. 3): 
1. Start from the root and go recursively down along 

the edges to the descendants until the leaf is not 
achieved after the following rules: 
 if one of the keys stored in the node equals to 

the inserted key, increment the counter of this 
key, and finish this operation, 

 else go to the left child node if the inserted key 
is less than the leftmost key in the node, 

 else go to the right child node if the inserted 
key is greater than the rightmost key in the 
node, 

 else go to the middle child node. 
2. When the leaf is achieved: 

 and if the inserted key is equal to one of the 
keys in this leaf, increment the counter of this 
key, and finish this operation, 

 else insert the inserted key to the keys stored 
in this leaf in the increasing order, initialize its 
counter to one, and go to step 3. 

3. If the number of all keys stored in this leaf is 
greater than two, divide this leaf into two leaves 
in the following way:  
 let the divided leaf represent the leftmost 

(least) key together with its counter; 
 create a new leaf and let it to represent the 

rightmost (greatest) key together with its 
counter; 

 and the middle key together with its counter 
and the pointer to the new leaf representing the 
rightmost key pass to the parent node if it 
exists, and go to step 4; 

 if the parent node does not exist, create it (a 
new root of the AVB-tree) and let it represent 
this middle key together with its counter, and 
create new edges to the divided leaf 
representing the leftmost key and to the leaf 
pointed by the passed pointer to the new leaf 
representing the rightmost key (Fig. 2). Next, 
finish this operation. 

4. Insert the passed key together with its counter to 
the key(s) stored in this node in the increasing 
order after the following rules:  
 if the key comes from the left branch, insert it 

on the left side of the key(s); 
 if the key comes from the right branch, insert 

it on the right side of the key(s); 
 if the key comes from the middle branch, 

insert it between the existing keys. 
5. Create a new edge to the new leaf or node pointed 

by the passed pointer and insert this pointer to the 

child list of pointers immediately after the pointer 
representing the edge to the divided leaf or node. 

6. If the number of all keys stored in this node is 
greater than two, divide this node into two nodes 
in the following way: 
 let the existing node represent the leftmost 

(least) key together with its counter; 
 create a new node and let it represent the 

rightmost (greatest) key together with its 
counter; 

 the middle key together with its counter and 
the pointer to the new node representing the 
rightmost key pass to the parent node if it 
exists and go back to step 4 (Fig. 2); 

 if the parent node does not exist, create it (a 
new root of the AVB tree) and let it represent 
this middle key together with its counter, and 
create new edges to the divided node 
representing the leftmost key and to the node 
pointed by the passed pointer to the new node 
representing the rightmost key (Fig. 2). Next, 
finish this operation. 

The removal of the key from the AVB-tree is 
processed very similarly as for B-trees with respect to 
the counters of individual keys that must be gradually 
decreased to zero for each removed object before 
removing a given countered key from this structure. 
During this operation, the AVB-tree is self-balanced 
in the same way as is proceeded for B-trees (Cormen 
et al., 2001). 

 

Figure 3: The intermediate steps of passing the middle key 
to the parent node after the division of a leaf or a node. 

The search operation in the AVB-tree is 
processed as follows: 
1. Start from the root and go recursively down along 

the edges to the descendants until the searched key 
or the leaf is not achieved after the following 
rules: 
 If one of the keys stored in the node equals to 

the searched key, return the pointer to this key. 
 else go to the left child node if the searched 

key is less than the leftmost key in this node. 
 else go to the right child node if the searched 

key is greater than the rightmost key in this 
node. 

 else go to the middle child node. 



2. If the leaf is achieved and no stored key in it 
equals the searched key, return the null pointer. 
 

The search operation for any key in the above-
introduced AVB-trees is very efficient because the 
maximum number of search steps is equal to the 
logarithm of the number unique keys stored in them, 
i.e. ܱሺ݈݃݋ଶܯ௔ೖሻ, where ܯ௔ೖ is the number of the 
unique keys of the attribute ܽ௞. Considering that the 
attribute values are typically many times repeated in 
the database table rows, the number of all entities ܰ 
in the table is usually much bigger than the number of 
unique values ܯ௔ೖ of each attribute ܽ௞ (ܰ ≫  .(௔ೖܯ
Hence, the logarithm computed for the usually 
constant number of unique values ܯ௔ೖ for AVB-trees 
is usually smaller than the logarithm of the number of 
all entities (rows) ܰ used in the search operations 
using B-trees or B+trees in relational databases, i.e. 
ܱሺ݈݃݋ଶܰሻ ൐ ܱሺ݈݃݋ଶܯ௔ೖሻ ≅ ܱሺ1ሻ. The 
computational complexity of the insertion, removal, 
and update operations in AVB-trees is the same as for 
the search operation. It is typically constant 
independently of the size of data tables thanks to the 
aggregation property of AVB-trees. 

Each key element in the AVB-tree structure 
represents a sensor which is most sensitive to the 
value represented by the key. The sensors stimulate 
connected value neurons which can be connected to 
any number of object neurons representing objects.   

4 SENSORS AND ASSOCIATIVE 
SPIKING NEURONS 

The presented associative neural graph structures in 
the next section will use special kinds of sensors and 
associative spiking neurons (ASN), which enable fast 
inference using various combinations of stimuli of the 
network elements. These graphs consist mainly of 
numerical and symbolic sensors, value neurons, and 
object neurons to represent tabular data. 

In these associative neural graphs, all non-key 
database table attributes ܽଵ,… , ܽ௄ are transformed 
into sensory input fields ܨ௔భ,… ,  ௔಼ and all attributeܨ
values are represented by sensors ௜ܵ

௔ೖ, … , ூܵ
௔ೖ which 

are organized using the introduced AVB-trees. 
Sensors aggregate all duplicates of each attribute ܽ௞ 
separately. Each sensor ௜ܵ

௔ೖ represents all duplicates 
of the value ݒ௜

௔ೖ, so for large data collections, we 
usually achieve high memory savings without any 
loss of information. It is possible because each value 
௜ݒ
௔ೖ represented by the sensor ௜ܵ

௔ೖ and subsequently 
by a connected value neuron ௜ܸ

௔ೖcan be repeatedly 

connected to various object neurons that represents 
various entities which contains this value. While 
attribute values can define entities in database tables, 
here sensors together with value neurons representing 
values can define object neurons representing entities.  

Each sensor ௜ܵ
௔ೖ is connected to a value neuron 

௜ܸ
௔ೖ which is stimulated by this sensor with a constant 

stimulus ݔ௩೔
௔ೖ computed after: 

௩೔ݔ
௔ೖ ൌ

ە
ۖ
۔

ۖ
ۓ 1 െ

หݒ௜
௔ೖ െ ௔ೖหݒ
௔ೖݎ

௔ೖݎ	݂݅							 ൐ 0

หݒ௜
௔ೖห

หݒ௜
௔ೖห ൅ หݒ௜

௔ೖ െ ௔ೖหݒ
௔ೖݎ	݂݅					 ൌ 0

 (1)

Value neurons ௜ܸ
௔ೖ and ௝ܸ

௔ೖ representing numerical 

neighbor values ݒ௜
௔ೖ and ݒ௝

௔ೖ of the same attribute ܽ௞ 

are additionally mutually connected, and their 
weights are computed after the formula: 

௜,௝ݓ
௔ೖ ൌ ௜,௝ݓ

௔ೖ ൌ 1 െ
ቚݒ௜

௔ೖ െ ௝ݒ
௔ೖቚ

௔ೖݎ
 (2)

where ݎ௔ೖ ൌ ௠௔௫ݒ
௔ೖ െ ௠௜௡ݒ

௔ೖ  is the range of all already 
represented values of the attribute ܽ௞, and ݒ௠௜௡

௔ೖ   and 
௠௔௫ݒ
௔ೖ  are the minimum and maximum values of this 

attribute appropriately. The range is automatically 
updated by each sensory input field ܨ௔಼ when a new 
minimum ݒ௠௜௡

௔ೖ  or maximum ݒ௠௔௫
௔ೖ  is introduced. 

Each numerical attribute ܽ௞ is additionally 
equipped with special extreme sensors ܵ௠௜௡

௔ೖ   and 
ܵ௠௔௫
௔ೖ  sensitive for existing and new minima and 

maxima. These sensors compute their output values 
using the following formulas: 

௠௜௡ݔ
௔ೖ ൌ ቐ

௠௔௫ݒ
௔ೖ െ ௔ೖݒ

௔ೖݎ
௔ೖݎ	݂݅										 ൐ 0

௠௜௡ݒ
௔ೖ െ ௔ೖݒ ൅ ௔ೖݎ	݂݅					1 ൌ 0

 (3)

௠௔௫ݔ
௔ೖ ൌ ቐ

௔ೖݒ െ ௠௜௡ݒ
௔ೖ

௔ೖݎ
௔ೖݎ	݂݅											 ൐ 0

௔ೖݒ െ ௠௔௫ݒ
௔ೖ ൅ ௔ೖݎ	݂݅					1 ൌ 0

 (4)

 

The output values of sensors define the strength of 
stimulation of the connected extreme neurons ܸ݉݅݊

ܽ݇  

and ܸ ݔܽ݉
ܽ݇  which continuously stimulated achieve their 

spiking thresholds after the certain periods of time: 

௠௜௡ݐ
௔ೖ ൌ ቐ

1

௠௜௡ݔ
௔ೖ ௠௜௡ݔ	݂݅

௔ೖ ൐ 0

∞ ݂݅ ௠௜௡ݔ
௔ೖ ൌ 0

 (5)



௠௔௫ݐ
௔ೖ ൌ ቐ

1

௠௔௫ݔ
௔ೖ 		 ௠௔௫ݔ	݂݅

௔ೖ ൐ 0

∞				݂݅ ௠௔௫ݔ
௔ೖ ൌ 0

 (6)

The extreme sensor ܵ݉݅݊
ܽ݇  or ܵ݉ܽݔ

ܽ݇  stimulate the 

extreme neurons ܸ݉݅݊
ܽ݇  and ܸ݉ܽݔ

ܽ݇  with strength equal 
to one only if the current minimum or maximum 
value is presented on the ܨ௔ೖ. The stimulation ݊݅݉ݔ

ܽ݇  or 

ݔܽ݉ݔ
ܽ݇  is stronger than one only if there is presented a 

new minimum or maximum value which causes the 
achievement of the spiking threshold of the ܸ݉݅݊

ܽ݇  or 

ݔܸܽ݉
ܽ݇  neuron in time ݊݅݉ݐ

ܽ݇ ൏ 1 or ݔܽ݉ݐ
ܽ݇ ൏ 1. Such a 

strong stimulation of the extreme neuron starts a 
conditional plasticity routine that brakes the existing 
connection from extreme neuron ܸ݉݅݊

ܽ݇  or ܸ݉ܽݔ
ܽ݇   to the 

connected value neuron ܸ ௜
௔ೖ, and a new connection to 

the new created value neuron representing a new 
extreme value is established, and its weight is set to 
one. It updates the minimum value ݒ௠௜௡

௔ೖ  or maximum 
value ݒ௠௔௫

௔ೖ  and range ݎ௔ೖ appropriately. In other 
cases, the extreme sensors stimulate the connected 
neurons with strength less than one, so the neurons 
fire later (5) or (6) according to the distance of the 
presented value to the extreme ones. 

Each sensor ௜ܵ
௔ೖ is connected to its value neuron 

௜ܸ
௔ೖ  which is stimulated and charged by this sensor 

as long as the input value ݒ௔ೖ is presented on the 
sensory input field ܨ௔ೖ. All value neurons used for 
the associative transformation of databases into the 
DASNG neuronal systems have their activation 
thresholds equal to one (ߠ௜

௔ೖ ൌ 1). According to this 
fact, each stimulated value neuron ௜ܸ

௔ೖ solely by its 
connected sensor ௜ܵ

௔ೖ  achieves its spiking threshold 
௜ߠ
௔ೖ after the time ݐ௩೔

௔ೖ calculated after: 

௩೔ݐ
௔ೖ ൌ

ە
ۖ
۔

ۖ
ۓ

௔ೖݎ

൫ݎ௔ೖ െ หݒ௜
௔ೖ െ ௔ೖห൯ݒ

௔ೖݎ	݂݅ ൐ หݒ௜
௔ೖ െ ௔ೖหݒ

1 ൅ ቤ
௜ݒ
௔ೖ െ ௔ೖݒ

௜ݒ
௔ೖ ቤ ௔ೖݎ	݂݅											 ൌ 0															

∞																																	 ௔ೖݎ	݂݅ ൌ หݒ௜
௔ೖ െ ௔ೖหݒ

 (7)

In the next step of the associative transformation, 
there are created object neurons 	 ௝ܱ

೙் , … , 	 ௃ܱ
೙் for each 

table ௡ܶ that does not contain foreign keys. These 
neurons represent entities, so they are connected to 
the adequate value neurons representing attribute 
values which define these entities. The weights of the 
connections from these value neurons to the object 
neurons should reproduce rarity of the values 
represented by value neurons in the defining various 

object neurons, so they are defined as the reciprocal 
of the numbers of all connections that come from the 
given value neuron ௜ܸ

௔ೖ to all connected object 

neurons 	 ௝ܱ
೙் representing the entities of the table ௡ܶ: 

,௜ݓ ೙்
௔ೖ ൌ

1

ቛ݆: ௜ܸ
௔ೖ	 ௝ܱ

೙்ቛ
 (8)

These weights can be easily updated when a new 
entity is added, or an existing one is removed. These 
weights do not even need to be stored in a neural 
network structure because they can be locally and 
very fast calculated before each neuronal spike. 

Next, there are created object neurons 	 ௟ܱ
೘் for the 

tables ௠ܶ which contain not only attributes but also 
some foreign keys for which the object neurons 	 ௝ܱ

்ೖ 

representing primary keys have been already created 
in the previous steps. The connection weights that 
come from the object neurons 	 ௝ܱ

்ೖ representing 

primary keys to the object neurons 	 ௟ܱ
೘் containing 

adequate foreign keys are computed as the reciprocal 
of the numbers of connections that comes from the 
given object neurons 	 ௝ܱ

்ೖ to all connected object 

neurons 	 ௟ܱ
೘் representing the entities of the table ܶ ௠: 

,௝ݓ ೘்
೙் ൌ

1

ቛ݈: ௝ܱ
೙்	 ௟ܱ

೘்ቛ
 (9)

The weights (8) and (9) allow for the stimulation of 
the postsynaptic object neurons with the strength 
reflecting the rarity of the values or the entities 
represented by the presynaptic neurons. It means that 
frequent values and entities have a smaller impact on 
the postsynaptic object neurons, while rare values and 
entities have a bigger impact and can faster charge 
postsynaptic neurons to their spiking thresholds. Each 
unique value and entity which primary key is used 
only once as a foreign key in another table 
(representing the relation 1:1) have the biggest 
possible impact because its connection weight is 
equal to one, and such a connection can solely charge 
the postsynaptic object neuron to its spiking 
threshold. The interpretation is quite intuitive because 
such features or entities exclusively identify objects 
that should also be automatically recognized in any 
natural or artificial cognitive neural system. 

The spiking threshold of each object neuron must 
be achieved ultimately when all defining inputs start 
to charge it. However, it can be achieved earlier when 
any sub-combination of enough rare inputs happens. 
All defining inputs of each object neuron can achieve 
the following maximum strength of stimulation: 



ைܹ೗
೙் ൌ ෍ݓ௜, ೙்

௔ೖ ൅෍ݓ௝, ೘்
೙்

௝௜

 (10)

The object neuron’s spiking threshold is defined as: 

ை೗ߠ
೙் ൌ ൝

1														݂݅	 ைܹ೗
೙் ൒ 0

ைܹ೗
೙் 								݂݅	 ைܹ೗

೙் ൏ 0
 (11)

The associative spiking neurons used for modeling of 
the value and objects neurons incorporate the concept 
of time and implement charging, discharging, 
relaxation, and absolute and relative refraction 
processes (Fig. 4) (Kalat, 2012). They can also be in 
resting state when not stimulated for a longer time. 
All internal neuronal processes are modeled using 
linear functions that can be easily added, subtracted, 
or combined for charging, discharging, or 
overlapping stimuli (Fig. 4). All external stimuli 
influence on internal neuronal processes which 
change states of neurons (Fig. 4-5). 

 

Figure 4: Overlapping charging and discharging external 
stimuli influencing the state changes and internal neuronal 
processes of associative spiking neurons. 

 

Figure 5: The illustration of the operation that combines the 
new stimulus S3 with the processes P0 and P1 in the IPQ 
created for previous stimuli S1 and S2 where di determines 
the duration of the stimulus Si, and si is its strength. 

The ASNs work parallel and combine the external 
input stimuli that can appear at any time. To simulate 
them on a sequential CPU, they use an internal 
process queue (IPQ) to manage and switch internal 
processes Pk and update neuronal states at the right 
time (Fig. 5), and a global event queue (GEQ) to order 
and execute these internal processes of all neurons at 
an appropriate moment and sequence. The GEQ 
watches out the time when processes finish to start 

updating neurons at the right time. The expected 
moments of achievement of spiking thresholds (11) 
of individual neurons are always calculated in 
advance and watched out. Different than in the 
artificial neural networks of the second generation 
(Haykin, 2009), which answers are produced by 
various values of the output neurons, ASN answers 
are produced based on their frequencies of spikes and 
the elapsed time from a given external stimulation 
moment to the moments when these neurons start 
spiking. Hence, the most frequently spiking neurons 
represent the answer that can be read from connected 
neurons representing the associated objects and 
values. 

5 DASNG - DEEP ASSOCIATIVE 
SEMANTIC NEURAL GRAPHS 

Brains consist of many complex and very deep graph 
structures of connected neurons of various kinds 
(Longstaff, 2011), which use thousands of 
connections to represent our knowledge and make our 
intelligence work smartly, quickly, and context-
sensitively (Kalat, 2012). 

In this section, new deep associative semantic 
neural graphs (DASNG) will be introduced to 
demonstrate how relational databases can be 
transformed into these graphs. Figure 6 illustrates a 
neuronal DASNG structure that represents all data 
and their relations from the sample database 
presented in Fig. 1. This neuronal structure does not 
reduce any information so that it can always be 
transformed back into the original database. The 
DASNG can be constructed for any database storing 
related records. In any formal database or cognitive 
model, we can distinguish individual data which are 
related in different ways. Some groups of related data 
model objects (represented by e.g. entities) that can 
also be related between themselves in various ways 
(e.g. using primary and foreign keys), which describe 
semantic relations between them. Such relations can 
reproduce similarity, proximity, inclusion, sequence, 
actions etc. Such relations can group objects and 
define their classes based on similar features. Such 
kinds of tasks should be solved in computational 
intelligence and knowledge engineering because our 
intelligence is based on the ability to discover various 
relations and find interesting groups among other 
things. To find such relations, the algorithms use 
various conditions, limitations, search routines, and 
operations which compare or group objects to satisfy 
defined requirements or achieve given goals. 

The introduced DASNG model can naturally 



reproduce data, entities, and all relations that are 
represented by the primary-foreign key relational 
model. Classes of objects can be defined based on the 
similarity between objects which some subsets of 
attribute values are the same or close. In the DASNG 
model, all the same values are aggregated and all 
similar attribute values are directly or indirectly 
connected. Consequently, all related objects are fast 
accessible thanks to these aggregations and 
connections between neurons representing similar 
values. The similarity between objects can be 
defined as any subset of close attribute values 
(features) that relates the group of objects. Thus, all 
possible clusters coming from similarity are naturally 
included in the DASNG model. In consequence, any 
class of objects can be quickly found in the DASNG 
network because the stimulation of a subgroup of 
sensors representing selected features will gradually 
induce activation of connected neurons representing 
objects (entities) which the most meet the given 
limitations defined by these features as will be 
described in the following section. 

The DASNG model can also represent other 
relations that usually come from object vicinity in 
time or space. Vicinity can be defined as an attribute 
of time or space where the two compared objects 
occur in the close time interval, or their coordinates 
are not too far away. Therefore, the vicinity is a 
distance in space or time in which objects can interact 
with each other or can be perceived as being 
neighboring or subsequent by somebody. Close 
objects in space or time cannot be similar at all, so we 
do not include vicinity as an attribute that groups 
objects into classes, but we talk about object 
neighborhood or succession. Thus, vicinity can relate 
objects independently of their similarity or 
differences. Therefore, we can define any sequence of 
objects or actions, and elaborate various procedures 
and algorithms that come from our intelligence and 
knowledge about objects, their features, and 
usefulness. Moreover, not only directly subsequent 
objects but also more distant ones in any sequence or 
neighborhood can be connected and these 
connections appropriately weighted to emphasize the 
right contexts of their occurrences which exclude 
ambiguity. This feature is very important in view of 
storing various complex sequences, procedures, or 
algorithms that can be applied only in some specific 
situations, contexts, constraints, or circumstances, in 
which our brains make us undertake a specific 
strategy or action selected from the portfolio of the 
possible ones that are available to us. 

In the DASNG model, objects represented by 
neurons are connected to other neurons that represent 

other objects or specific features. Each connection is 
appropriately weighted to reproduce the strength of 
the similarity, vicinity, or defining relations between 
them. In comparison to the non-weighted primary-
foreign key binding mechanism used in databases, we 
achieve more precise information about the relation 
strengths of related objects when representing them in 
the DASNG model, so we can conclude about the 
represented relations easier and more accurately. 

Summarizing, the DASNG model enriches the 
horizontal relations used in the databases with 
additional vertical relations between objects thanks to 
aggregations of the same values and connections 
between neighbor values. The use of reactive sensors 
and neurons instead of passive database records 
allows for fast automatic exploration of information 
according to the context given by the stimulation of 
any selected subset of sensors and/or neurons. 

 

Figure 6: A deep associative semantic neural graph 
(DASNG) constructed for the database presented in Fig. 1 
without any loss of information, where first letters represent 
appropriate words from the database tables. 

In the relational database model, we can 
distinguish one-to-one, one-to-many, and many-to-
many relationships between related entities. The one-
to-many relationship is represented by a primary key 
in one entity (e.g. in table E in Fig. 1) which is related 
to many foreign keys of other entities (e.g. in table A 
in Fig. 1). The many-to-many relationship defines 
multiple relations between various objects from two 
tables, so we typically use an additional link table 
which binds together primary keys of these tables 
(e.g. the table D relates entities of the tables A and C 
in Fig. 1). The link tables are unnecessary in the 
DASNG networks because we can directly represent 
many-to-many relations using direct connections 
between objects represented by neurons (Fig. 6). This 
is also true for one-to-many relations where objects 
are directly connected in the same way. Hence, we do 



not need to distinguish between various cardinalities 
of relations as in relational databases. 

Each attribute is represented by a separate sensory 
input field ܨ௔ೖ which consists of sensors representing 
aggregated attribute values, i.e. various features of 
objects. All sensors of each field ܨ௔ೖ are organized 
using a separate AVB-tree (Fig. 2). Such a structure 
makes all values quickly available, usually in 
constant time, however, the sub-linearithmic access 
time may also happen for rarely frequent features. 
Moreover, numerical value neurons connect in order, 
so there is no need to sort data later (Fig. 2). 

In the relational databases, modeled objects are 
stored in separate or connected table entities 
(records), while in the DASNG model, each object 
can be represented by a single neuron connected to 
other neurons defining features and included objects 
in it. If more than one database record contains the 
same set of attribute values and foreign keys, these 
records can be aggregated and represented by the 
same object neuron that counts the number of 
aggregated records. This aggregation does not 
eliminate diversity because the aggregating neuron 
can be further connected to various other neurons 
representing differing features for various aggregated 
objects. However, during such an aggregation, we 
lose the unique identity of the aggregated objects 
represented by the primary keys that diversify such 
records, e.g. two people with the same first and last 
name. When the diversity of records (objects) is 
necessary, the primary key must be treated as an 
attribute feature that cannot be reduced in the 
aggregation process. In result, such objects will not 
be aggregated and do not lose their identity and 
separateness fixed by their primary keys. On the other 
hand, the aggregation is many times beneficial, and 
we do not need to store the separate identities of all 
objects, e.g. it is usually unimportant to store the 
information about which exact entities of the same 
products have been sold by which the seller. It is 
possible to automatically distinguish between tables 
that represent objects that cannot lose their identity 
and other tables where we can do aggregations. The 
primary keys that are directly used by SQL queries to 
search for records are non-reducible and should be 
treated as other attributes that store important data. 
On the other hand, when the primary keys are used 
only to join records from the related tables, such keys 
are reducible and can be converted to connections 
between neurons. Hence, we need to analyze a 
possibly large subset of real SQL queries that have 
been processed on the given database in the past to 
automatically and correctly distinguish between 
reducible and non-reducible primary keys. In case, 

when we get a collection of empirical data records, 
where some records are identical (e.g. a few samples 
in the Iris data set from ML Repository), they can also 
be aggregated and represented by the same neurons. 
Concluding, aggregations are very important in view 
of generalization, knowledge formation, and drawing 
conclusions about objects, so we should not always 
trend to store identities of all objects if not necessary. 

Another benefit of direct connections between 
neurons representing objects is that we do not need to 
browse primary and foreign keys to join records from 
various tables and waste time. In the DASNG 
network, we simply go along the connections to 
associated information in constant time. 

 

Figure 7: Various kinds of sensory stimuli and interactions 
with sensors in the sensory input fields (SIFs). 

During the construction process, there is created a 
sensory input field ܨ௔ೖ for each attribute ܽ௞ (the grey 
fields in Figs. 6, 8-10). The sensory input fields (SIFs) 
can be of various types alike the senses in a human 
body. These fields constitute input interfaces for the 
remaining part of the neural structure (Fig. 6). The 
SIFs contain sensors that are sensitive for some 
values, their ranges, or subsets (Fig. 7). The sensors 
can be differently sensitive to various values 
presented to their SIF. They are no sensitive to the 
values presented to the other SIFs. The way the 
sensors work can be described by suitable 
mathematical functions introduced in section 4. 

The structure presented in Fig. 6 represents not 
only horizontal relations between objects but also 
vertical relations between data of each attribute. 
These data are ordered, and all duplicated values of 
each attribute are removed. Despite this reduction, 
there is no loss of information because the duplicated 
values have been replaced by connections to various 
neurons representing various objects in Fig. 1. 
Moreover, the aggregation of duplicates and their 
joined representation allow for very fast access to any 
data. Databases use B-trees or B+trees to achieve a 
logarithmic time of search operations while DASNGs 
use AVB-trees which for a constant set of stored 
unique attribute values usually work in constant time. 
Hence, we also do not waste so much time during 
insertion or delete operations like when using indexes 
in databases. We do not need to sort data or add 
indices to this structure because data are always 
automatically sorted simultaneously for all attributes. 
Furthermore, the transformation of the table structure 
to the presented graph structure automatically 



extracts additional relations of their order, similarity, 
minima, maxima, ranges from the data, which are 
available on demand in constant time. Thanks to the 
aggregation and joined representation of duplicates 
we have direct access to all objects (records) that have 
some given value which we want to explore. We also 
have indirect but very fast access to all similar objects 
which are defined by similar attribute values. Thus, 
we can also define various clusters of similar objects 
or recognize their defined classes represented by 
neurons very fast for any criteria. The stimulation of 
any subset of features, their ranges, or any subset of 
objects induces gradual activations of the associated 
objects neurons, which can be clustered on this basis. 
The object class can be retrieved based on the first or 
most frequently activated class neuron. Every such 
stimulation of DASNG takes constant time, so it is 
fast in comparison to many other methods.  

The use of ASNs in the DASNG network makes 
possible to develop a reactive graph structure that can 
execute some operations on the represented data fully 
automatically. Such operations let us draw useful 
conclusions about objects and their features 
represented in this neural network. 

6 NEURONAL INFERENCE 

After the transformation of the database tables into 
the DASNG neural network presented in Fig. 6, this 
network can be used for inference about represented 
objects to find similar objects quickly, various classes 
of objects, identify shared features, filter or sort 
objects after various criteria, attributes, or draw some 
useful conclusions about selected groups of objects. 
Figures 8, 9, and 10 present exemplary inference 
processes that can be performed in this DASNG 
network. To filter out objects including some features 
or other objects, it is enough to stimulate these 
features or objects via sensors or neurons representing 
them in the DASNG network and wait for spikes of 
neurons representing answers (Fig. 8). In such a 
network, it works like associative reminding in a 
human brain when recalled information together with 
the previous calling context create a new context for 
recalling of the next memories associated with the 
information represented by the recently activated 
neurons. Therefore, the further stimulation of the 
initial context (here: the sensor representing 
“science”) induce the gradual activations of the next 
connected neurons representing associated 
information about previously recalled objects (Fig. 
9). Thus, we can automatically find out what are the 
names of pupils who like science, what subjects they 

like at most, and what are their living conditions. We 
can conclude about them as far as the created 
structure contains such information and as long as the 
sensor “science” is stimulated providing subsequent 
spikes of the directly or indirectly connected neurons. 
If the network works parallel, then we always get all 
this information in constant time. 

 

Figure 8: Direct connections from the stimulated value 
neuron representing “science” let us quickly filter out pupils 
who are interested in science. 

 

Figure 9: The next stimulation lets us find out what subjects 
do these pupils like and what are their living conditions. 

The inference processes in the DASNG neural 
network are based on measuring the time when the 
ASN neurons representing the desirable answer(s) 
start spiking and on counting the numbers of their 
spikes (Fig. 10). Neurons representing the answer 
spike most frequently and typically start to spike at 
first. The less frequently or later spiking neurons 
usually represent other weaker alternatives, i.e. 
objects that only partially satisfy the input conditions 
or the associated features of the objects representing 
the answer. On this basis, we can conclude that pupils 



represented by the most frequently spiking neurons 3 
(Jack Brown) and 5 (Luke Hanks) are interested in 
science and live in the apartments. The other pupil 
neurons 2, 6, 7, 8, 9, 10, 11, 14, and 16, which spike 
less frequently, represent the pupils who like science 
or live in apartments. The pupil neurons 1, 4, 12, 13, 
and 15, which do not spike at all, represent pupils with 
the other interests and those, who do not live in 
apartments. The chronology of activations of 
individual neurons automatically sorts the objects or 
features represented by these neurons. These kinds of 
neuronal structures do not only represent data 
transformed from the database but also have the built-
in inference routines available thanks to associations 
represented by the connections between ASNs. 

 

Figure 10: Neurons representing the conjunction of the 
stimulated features spike the most frequently and usually 
also at first (the violet pupil neurons 3 and 5), while neurons 
representing the other alternatives spike less frequently and 
usually start spiking later (the red and blue pupil neurons). 

Each database table which represents only a single 
attribute is transformed into a single SIF, sensors, and 
value neurons, while database tables containing more 
attributes and foreign keys are represented by 
separate layers of object neurons. Hence, such an 
associative graph can have many appropriately 
connected layers dependently on the size and 
complexity of the transformed database. 

The construction and inference processes in the 
DASNG networks are parallel in their nature, so there 
can be used many processors and many cores of 
processors to accelerate such computations and make 
them even faster in comparison to sequential methods 
often used in many relational DBMS systems.  

Today, the main limitation of DASNG networks 
is in the capacity of RAM memory installed on the 
server because the efficiency of operations proceeded 
on these kinds of networks can be significantly 

reduced by the disc operations. Therefore, it is 
recommended to keep the whole DASNG network in 
the RAM memory during its work like the biological 
neurons in brains which are still ready to use in a 
human brain (Kalat, 2012). Despite this limitation, 
thanks to the possible aggregations of duplicates, 
even large databases can be successfully transformed 
into the DASNG networks, fit into the RAM, and can 
benefit from the very fast operations on them and 
automatic inference about represented objects. 

7 CONCLUSIONS 

This paper presented new complex deep associative 
semantic neuronal graph structures consisting of the 
special kind of spiking neurons which let us associate 
data and objects in various ways and run fast 
inference in constant time. It was also investigated 
that such networks produce answers based on speed 
and frequency of spikes of neurons which represent 
the most associated values or objects in the DASNG 
network. This paper also provides the information 
about the possible interpretation of how biological 
and spiking neurons represent information using 
frequencies of spikes and the time of being activated 
that had elapsed from the input stimulations that had 
a real influence on these spikes (Kalat, 2012). 

It was presented how this network can represent 
horizontal and vertical relations between data and 
objects, expanding possibilities of the relational 
model used in relational databases (Hellerstein et al., 
2007). It was also explained why the most frequent 
operations of this model are typically processed in 
constant time thanks to its automatic ordering 
mechanism which works for all attributes 
simultaneously. The presented AVB-trees manage 
attribute data and allow for very fast access to them 
in comparison to other popular algorithms used in 
relational databases due to the aggregations of 
duplicates and connections of successive values. The 
presented associative spiking neurons can be used to 
create complex neuronal structures which represent 
related objects defined by attributes and other objects. 

The DASNG abilities were demonstrated on 
several examples which showed how these networks 
could be used for inference and searching for related 
information according to some initial contexts, 
including filtering, conjunction, and alternative. Due 
to the aggregation properties of the DASNG 
networks, they could be used for mining and finding 
frequent itemsets for Big Data (Apiletti et al., 2017) 
and be applied to overcome new challenges (Jin et al., 



2015) thanks to their built-in self-organizing neural 
network mechanisms (Parisia, 2015). 

The future works include further studies on deep 
architectures consisting of the associative spiking 
neurons and possible ways of complex inference 
using various kinds of associations. The presented 
model will be developed to represent and use 
sequential patterns, ranges, clusters, and classes to 
allow for deeper inference, mining, and appropriate 
generalization during classification. The future 
studies will strive to create a self-developing graph 
structure to store and reinforce the gained conclusions 
and build neural knowledge-based cognitive systems. 

However, this paper is not a complete solution for 
solving all difficulties and inefficiencies of databases, 
but it has shown how neurons and DASNG networks 
could help to solve some of the problems mentioned 
above, and make the computations on big data more 
efficient in the future. The associative spiking 
neurons used in the DASNG networks as well as 
biological neurons do not calculate output values 
directly but using time-based approaches and 
frequencies of spikes. They represent and associate 
various data combinations in many ways to recall 
these associations in the future when the similar 
ignition contexts will happen again. They can also 
generalize about associated data, especially when 
new input contexts are used. It is planned to construct 
intelligent associative knowledge-based cognitive 
systems on their basis in the future. Finally, deep 
associative spiking neural models can be an 
interesting alternative to databases not only to store 
data but also to supply us with conclusions and enable 
very fast access to various pieces of information that 
can be drawn from the collected and associated data. 
The presented neural networks can support the future 
big data mining and knowledge exploration systems. 
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