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Abstract: Itemset mining is the challenging step of association rule mining that aims to extract patterns among items 
from transactional databases. In the case of applying itemset mining on the shared data of organizations, each 
party needs to hide its sensitive knowledge before extracting global knowledge for mutual benefit. Ensuring 
the privacy of the sensitive itemsets is not the only challenge in the itemset hiding process, also the distortion 
given to the non-sensitive knowledge and data should be kept at minimum. Most of the previous works related 
to itemset hiding allow database owner to assign unique sensitive threshold for each sensitive itemset however 
itemsets may have different count and utility. In this paper we propose a new heuristic based hiding algorithm 
which 1) allows database owner to assign multiple sensitive threshold values for sensitive itemsets, 2) hides 
all user defined sensitive itemsets, 3) uses heuristics that minimizes loss of information and distortion on the 
shared database. In order to speed up hiding steps we represent the database as Pseudo Graph and perform 
scan operations on this data structure rather than the actual database. Performance evaluation of our algorithm 
Pseudo Graph Based Sanitization (PGBS) is conducted on 4 real databases. Distortion given to the non-
sensitive itemsets (information loss), distortion given to the shared data (distance) and execution time in 
comparison to three similar algorithms is measured. Experimental results show that PGBS is competitive in 
terms of execution time and distortion and achieves reasonable performance in terms of information loss 
amongst the other algorithms.  

1 INTRODUCTION 

Association rule mining uncovers frequent sequence 
of items (itemsets) to produce relationships 
(association rules) among items in a given 
transactional database (Agrawal et al., 1994; Bodon, 
2003; Brijs et al., 1999; Han et al., 2000; Pei et al., 
2000; Zheng et al., 2001). The rapid growth in the use 
of association rule mining and its challenging step of 
itemset mining exposed privacy problems while 
sharing data. Although in modern business, shared 
data brings mutual benefits in terms of decision 
making, itemset mining on the shared data may lead 
to malicious usage of private information if the 
database is shared without any precautions. Some 
itemsets may contain private information or 
knowledge; in other words the database owner might 
be unwilling to show them. These itemsets are called 
sensitive itemsets. Itemset hiding problem focuses on 
preventing the disclosure of sensitive itemsets.  

The process of converting a database to a new one 
which does not comprise any sensitive itemset is 
called the sanitization process (Atallah et al., 1999). 

During this process, preserving the privacy while 
preventing the loss of non-sensitive knowledge and 
reducing the distortion on the database must be 
considered at the same time. Due to combinatorial 
nature of such a problem, there are various proposed 
sanitization methodologies; heuristic based 
approaches (Amiri, 2007; Keer and Singh, 2012; 
Oliveira and Zaiane, 2003; Verykios et al., 2004; Wu 
et al., 2007; Yildiz and Ergenc, 2012), border-based 
approaches (Moustakides and Verykios, 2008; 
Stavropoulos et al., 2016; Sun and Yu, 2004; Sun and 
Yu, 2007), reconstruction based approaches (Boora et 
al.,  2009; Guo, 2007; Lin and Liu, 2007; Mohaisen 
et al., 2010) and exact hiding approaches (Ayav and 
Ergenc, 2015, Gkoulalas and Verykios, 2006; 
Gkoulalas and Verykios, 2008; Gkoulalas and 
Verykios, 2009; Menon et al., 2005). All these 
algorithms hide sensitive itemsets by decreasing their 
supports (number of occurrences of the itemset in the 
database) below a sensitive support threshold 
(defined by the user).  

Most of the proposed algorithms allow user to 
define single sensitive support threshold. However 
single minimum itemset support threshold is not 
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adequate since it does not reflect the nature of 
different itemsets. During the sanitization process if 
supports of all itemsets are decreased below a given 
unique sensitive threshold then some itemsets may 
redundantly be protected while some may not be 
protected. Itemset hiding approach should enable the 
user to assign different sensitive thresholds for each 
sensitive itemset (Verykios and Divanis, 2004). 

In this study we focus on hiding sensitive itemsets 
on a given transactional database by decreasing their 
supports below user specified multiple sensitive 
thresholds. Finding sensitive transactions 
(transactions that contain sensitive itemsets), 
counting supports of sensitive itemsets are essential 
operations in sanitization process. In order to speed 
up these operations we first represent the database as 
Pseudo Graph since performing scan operations on 
Pseudo Graph rather than the actual database or other 
data structures like matrix or inverted index provides 
significant improvement in terms of execution time. 
Our sanitization algorithm; Pseudo Graph Based 
Sanitization (PGBS) uses heuristics that minimize the 
loss of non-sensitive knowledge and distortion done 
on the database. PGBS does not create any artificial 
itemsets (itemsets that does not exist in the original 
database) during the sanitization process. 

We carry on experiments to measure the 
execution time and side effect performance of our 
algorithm. In our experiments, we compare PGBS 
with two recent heuristic based algorithms; Sliding 
Window Algorithm (SWA) (Oliveira and Zaiane, 
2003)and Template Table Based Sanitization (TTBS) 
(Kuo et al., 2008). Execution time and side effect 
(distortion and loss of non-sensitive knowledge) 
performance of all algorithms are measured on 4 real 
life databases with different characteristics in two 
scenarios; 1) single support threshold, and 2) multiple 
support thresholds. In both scenarios we measure the 
performance of the algorithms by varying the number 
of sensitive itemsets. Experimental results show that 
PGBS is competitive in terms of execution time and 
distortion while achieving reasonable performance in 
terms of loss of non-sensitive knowledge amongst the 
other algorithms especially on dense databases and 
with multiple support thresholds. Superiority of 
PGBS can better be observed on dense databases. 

This paper is organized as follows; in section 2 
basic definitions and metrics of frequent itemset 
hiding is introduced and a motivating example which 
is referred throughout the paper is given. In section 3 
the proposed Pseudo Graph Based Saniti-zation 
(PGBS) algorithm is given. Section 4 gives 
performance evaluation of PGBS in comparison to 
other 3 algorithms on 4 real databases. Section 5 

presents detailed survey of the related work.  Section 
6 is dedicated for conclusion remarks. 

2 PRELIMINARIES  

In this section we define the preliminaries which 
should be known in order to understand the problem 
of itemset hiding. Preliminaries include the basic 
definitions and metrics used in the itemset hiding 
process. At the end of the section we give our moti-
vating example used throughout the paper.  

2.1 Basic Definitions 

Support and Frequent Itemset: Let I = {i1,…in} be 
a set of items, a k-itemset  X is a non-empty subset of 
I with length k. A transaction is an ordered pair of 
items denoted as <TID, X> where TID is the unique 
identifier and X is the itemset. A transactional 
database is a set of transactions and total number of 
transactions in D is denoted as |D|. Support count of 
an itemset X is denoted as scount(X) and it is the 
number of transactions containing X, the support of 
an itemset X is denoted as supp(X) and it is calculated 
as scount(X) divided by |D|. An itemset X is frequent 
if supp(X) ≥ σ, where σ is the user specified minimum 
support threshold.  

Sensitive Itemset and Sanitization: If FI is the set of 
frequent itemsets in database D and SI (SI ⊂ FI) is 
sensitive itemsets (the set of itemset to be hidden), the 
sanitization operation transforms the given 
transactional database D into D’ where none of the 
itemsets in SI can extracted and the data and 
knowledge loss from D is kept as minimum as 
possible. One of the ways to hide sensitive itemsets 
SI from database D is to decrease their supports till 
the sensitive itemsets become infrequent. This 
process of modifying the transactions to the point 
where no sensitive itemset can be discovered is called 
the sanitization process (Atallah et al., 1999). 
Decreasing the support of sensitive itemsets can be 
achieved by deleting items called victim items 
(selected for deletion) from a sufficient amount of 
transactions called victim transactions (selected for 
modification). The support threshold used for hiding 
a given sensitive itemset X is the sensitive support 
threshold and it is denoted as sst(X). 

Cover Degree: An item can be common in more than 
one sensitive itemsets. If more than one sensitive 
itemsets have a common item then deleting this item 
may sanitize more than one sensitive itemset at once 
(Pontikakis et al., 2004). Hiding sensitive itemsets at 



once reduces the distortion on the modified database. 
As an example; assume that XY and YZ are two 
sensitive itemsets, removing the common item Y 
from a transaction containing XYZ decreases the 
support value of both XY and YZ by 1 at the same 
time. The cover degree of an item is the number of 
sensitive itemsets containing the item, e.g., cover 
degree of item Y in this example is 2 since it is 
contained by two of the given sensitive itemsets.  

2.2 Sanitization Metrics 

The main objective of the distortion based 
sanitization is hiding all sensitive itemsets while 
keeping the side effects at minimum level. Objective 
is achieving zero hiding failure.  
Hiding Failure (HF) is the metric that defines the 
ratio of sensitive itemsets which can still be 
discovered with mining techniques after the database 
is sanitized. HF = |SI’| / |SI| where |SI| is the number 
of sensitive itemsets in the original database D and 
|SI’| is the number of sensitive itemsets in the 
sanitized database D’. 

Side effect in this context is the unintentional loss 
of knowledge and data from the original database. 
Basic side effects are distance and information loss. 
Distance (Dist) is the metric that defines the number 
of modifications made on the original database during 
the sanitization process. Dist = (total number of items 
in D) – (total number of items in D’) where D is the 
original database and D’ is the sanitized database.  
Information Loss (IL) is the metric showing the 
number of non-sensitive frequent itemsets 
unintentionally removed during the sanitization 
process. IL = ((|FI| - |SI|) - (|FI'| - |SI’|)) / (|FI| - |SI|) 
where |FI| is the number of frequent itemsets and |SI| 
is the number of sensitive itemsets in the original 
atabase D, |FI’| is the number of frequent itemsets in 
D’ and |SI’| is the number of sensitive itemsets in the 
sanitized database D’. 

2.3 Motivating Example 

In this paper we refer the transactional database given 
in Table 1 as a motivating example. Suppose sensitive 
itemsets are defined by the database owner as AD, 
CD and BD with 15%,10% and 5% sensitive support 
thresholds (sst) respectively. Degree column in Table 
1 gives the number of sensitive itemsets contained by 
a transaction, e.g., degree of transaction 6 is 2 since it 
contains two sensitive itemsets AD and CD. 

 

 

Table 1: Transactional database. 

TID Transactions Degree 
1 CF 0 
2 ABCE 0 
3 DE 0 
4 ABCD 3 
5 ADE 1 
6 ACD 2 

3 PGBS ALGORITHM 

We propose Pseudo Graph Based Sanitization 
(PGBS) algorithm that aims to i) convert given 
database D into D’ where no sensitive itemsets 
defined by the user initially can be extracted, in other 
words Hiding Failure is zero, ii) keep maximum  
number of non-sensitive itemsets present in D to 
minimize information loss, iii) cause minimum 
distortion on D to minimize distance. Conversion or 
sanitization is done by reducing the support of 
sensitive itemsets below user defined sensitive 
thresholds by deleting items from sufficient amount 
transactions till all sensitive itemsets in D become 
infrequent. Two sub problems arise with this strategy; 
first is determining the victim transactions to be 
modified and the second is selecting the victim item 
to be removed. 

Block diagram given in Fig. 1 illustrates 
sanitization process of PGBS algorithm with our 
motivating example. Transactional Database D and 
Sensitive Itemsets Table are main inputs of the PGBS. 
Sensitive itemsets (SI) and their sensitive support 
thresholds (SST) shown in Sensitive Itemsets Table 
are assumed to be defined by the preferences or 
privacy policies of the user.  

There are 4 sub processes in PGBS; 1) Convert 
Pseudo Graph converts the Transactional Database 
into a Pseudo Graph (PG), 2) Create Sensitive Count 
Table creates the Sensitive Count Table (SCT) that 
holds the number of necessary 
modifications/distortions for each sensitive itemset 
given by the user, 3) Create Sanitization Table is the 
main sanitization process that works on PG and 
creates Sanitization Table that keeps the necessary 
modifications to be applied on the original database, 
4) Sanitize Database deletes each victim item in D 
from its corresponding transaction in the Sanitization 
Table and prepares sanitized database D’. 

 
 
 
 

 



 

Figure 1: Block diagram of PGBS algorithm. 

In the following sections we explain these 
processes in detail. 

3.1 Convert Pseudo Graph 

We use Pseudo Graph (PG) data structure to represent 
all transactions of the given database D. PG provides 
an efficient way to identify and modify transactions 
without accessing the actual database. A PG is a 
directed graph which allows multiple edges and 
loops.  In this graph each item is represented as vertex 
and vertices are connected to each other by edges 
where edges are labelled with transaction ids, e.g.  if 
item X appears with item Y in transaction k then 
vertex X is connected with vertex Y with a directed 
edge from X to Y with label k. Reflexive edges are 
required since the database might contain single 
length transactions resulting in loops. 

Insertion of transactions to the PG is a simple 
process; first transactions in database D are sorted in 
lattice order and then each transaction is inserted one 
by one. For illustration Fig.2 (a), (b) and (c) shows 
the PG after transactions {CF}, {ABCD}, and {DE} 
in Table 1 are inserted into PG respectively and  

Fig.2(d) shows the PG after the remaining 
transactions in Table 1 are inserted into PG. 

Counting the support count of a given item X is 
performed  by  counting  the  total  number  of  distinct 

transaction ids on incoming and outgoing edges of 
vertex X. Let XY be a 2-itemset and prefix(X) be the 
transactions on outgoing edges of vertex X and 
postfix(Y) be the transactions on incoming edges of 
vertex Y. Support of XY is simply computed as 
prefix(X) ∩ postfix(Y). Support of an k-itemset Z 
where k>2 is calculated by prefix(item1) ∩ 
postfix(item2) ∩… ∩ postfix(itemk) where itemi is 
the item at ith position in Z.  As an example in Fig.2 
d) transactions containing itemset {ACE} is equal to 
({2,4,5,6} ∩ {2,4,6}) ∩ {2,3,5} = {2} so the support 
of itemset {ACE} is 1.   

The inverted index structure is similar to the PG. 
The inverted index is used to store list of transaction  

 

The inverted index is used to store list of 
transaction ids containing each item As in PG 
transactions of an itemset can be uncovered by 
performing intersection operation between inverted 
indexes of all items in the given itemset. The iteration 
number for uncovering transactions ids of an itemset 
using the inverted index is always greater than or 
equal to the iteration number for uncovering 
transactions ids of an itemset with using PG. PG data 
structure considers whether an item is prefix or 
postfix in a given itemset and tries to put least number 
of transaction ids to the intersection operation. 
 

 

 
 

(a) (b) (c) (d) 

Figure 2: PG by adding transaction (a) CF (b) ABCE (c) DE (d) all. 



3.2 Create Sensitive Count Table 

Create Sensitive Count Table process takes sensitive 
itemsets with their sensitive thresholds and pseudo 
graph representation of the database as input and then 
creates the Sensitive Count Table (SCT) as shown in 
Figure 1. SCT has three fields; SID is the unique 
identifier, SI is the sensitive itemset and NModify is the 
minimum number of transactions that are needed to 
be modified for hiding the given sensitive itemset. 
NModify value of a sensitive itemset X is calculated by 
the following equation:  

NModify(X) = ہscount(X) - sst(X) * |D| + 1(1) ۂ

where scount(X) is the number of transactions 
containing the itemset X, sst(X) is the sensitive 
support threshold that is given by the user for the 
itemset X, |D| is the total number of transactions in D. 
Records in the Sanitization Table are sorted according 
to NModify values of the sensitive itemsets in 
descending order. 

3.3 Create Sanitization Table 

Create Sanitization Table procedure conceals 
sensitive itemsets from PG and creates the 
Sanitization Table by using the SCT, the steps of this 
procedure is given below.   
For all the rows of SCT do; 

1. Select the victim item: Select the victim item 
among items in sensitive itemsets stored in the 
first record of SCT having the maximum cover 
degree. If there is more than one victim item with 
the same cover degree, select the item which has 
the maximum support count. If there is still more 
than one victim item with the same support count, 
select the victim item randomly.  

2. Unify sensitive itemsets: Unify all sensitive 
itemsets in SCT that contain the victim item 
selected in Step 1.  

3. Select the sensitive transactions: Find enough 
sensitive transactions containing unified sensitive 
itemsets in PG (less than or equal NModify value in 
the active row of SCT). 

4. Delete item: Add victim item and sensitive 
transactions id pairs to the Sanitization Table. 
Update the PG by deleting victim item from 
sensitive transactions.  For each sensitive itemset 
that is in the unified sensitive itemsets, reduce the 
NModify values of their corresponding rows of 
Sanitization Table by the number of sensitive 
transactions uncovered. If NModify value of any 
record in SCT becomes zero, then remove it from 
the SCT and update the cover degree of  

each item in remaining sensitive itemsets stored in 
SCT.  

5. Control: If active NModify value is still greater than 
zero and none of the sensitive itemsets in SCT is 
deleted, then remove the sensitive itemset that has 
the least NModify value from the unified sensitive 
itemsets and go back to Step 3, else go back to 
Step 1.  

3.4 Sanitize Database 

This procedure updates the database D by using the 
Sanitization Table. Each victim item is deleted from 
corresponding transaction ids stored in Sanitization 
Table and the resulting database brings out thee 
sanitized database. 

3.5 Illustrating Example 

Suppose we have our motivating example given in 
Section 2.3. Our proposed processes work as follows 
to hide all sensitive itemsets. 
1. Convert Pseudo Graph: The Convert Pseudo 

Graph procedure converts the database  into PG 
form as shown in Fig.2 (d).  

2. Create Sensitive Count Table:  NModify value of 
each sensitive itemset is calculated by using the 
equation (1), and then added to the SCT. After 
SCT is created it is sorted in descending order of 
NModify value. The resulting SCT for this example 
is shown in Figure 1. 

3. Create Sanitization Table: The process Create 
Sanitization Table first selects the victim item. In 
this example there are three sensitive itemsets in 
SCT: AD, CD and BD. The sensitive itemset AD 
has the highest NModify value, so the victim item is 
selected among items in AD. The item “D” (cover 
degree = 3) is selected as victim item (Step 1). 
Sensitive itemsets in SCT containing “D” are 
unified. The unified sensitive itemset is ABCD 
and according to Fig.2 (d) only the transaction {4} 
contains ABCD (Step 2 - 3).  

Item “D” is removed from 4th transaction in 
PG, then the pair {D, 4} is added to the 
Sanitization Table and NModify value of each 
sensitive itemset in SCT is decreased by 1. NModify 
value of the sensitive itemset BD becomes zero so 
this row is removed from the SCT. Since the 
NModify value of AD is still greater than zero and 
one of the records is removed from the SCT, the 
sensitive itemset BD is discarded from the 
unification operation and the new unified 
sensitive itemset becomes ACD (Step 4).  



The NModify value of AD is 2 so the algorithm tries 
to find out 2 sensitive transactions containing 
ACD from the PG. For the itemset ACD, 
supporting transactions is only {6}, so the victim 
item “D” is deleted from this transaction and the 
pair {D,6} is added to the Sanitization Table.  
After the delete operation the NModify value of CD 
becomes zero and AD becomes 1, so CD is 
removed from the SCT. The only remaining 
sensitive itemset left in SCT is AD, because both 
item “A” and “D” has cover degree 1, the item 
having the highest support count is selected as 
victim item which is “A” (support count of “A” is 
4 in PG). Then item “A” is removed from 5th 

transaction in PG and the pair {A, 5} is added to 
the Sanitization Table as shown in Figure 1. 

4. Sanitize Database: For this example, the Sanitize 
Database procedure deletes each item with 
corresponding transactions stored in Sanitization 
Table from the original database D given in Table 
1. The resulting sanitized database D’ is shown in 
Figure 1. As we see item “D” is deleted from 
transactions 4 and 6, item “A” is deleted from 
transaction 5. 

4 PERFORMANCE EVALUATION  

We compared our Pseudo Graph Based Sanitization 
(PGBS) algorithm with Sliding Window Algorithm 
(SWA) (Oliveira and Zaiane, 2003) and Template 
Table Based Sanitization (TTBS) (Kuo et al., 2008) 
using 4 real databases and these four databases are 
sorted in lattice order before processing but we 
neglect the sorting time in performance measures. 
The main objective of all algorithms is to achieve zero 
hiding failure in other words; they hide all sensitive 
itemsets by reducing their support below their 
sensitive support thresholds. We chose SWA and 
TTBS algorithms for performance evaluation because 
both focus on overlapping items in sensitive itemsets 
and they enable assigning different sensitive 
thresholds for each sensitive itemset. We measure 
execution time, information loss and distance 
performance of all algorithms. All the experiments 
are conducted on a computer with Intel core i7-5500 
2.4 GHZ processor and 8GB of RAM running on a 
Windows 10 operating system. The execution times 
include I/O and CPU time.  
 
 
 
 
 

Table 2: Characteristics of experimental databases. 

Database 
Name 

# of  
Transactions 

Distinct  
Items 

Avg. 
Trans. 
Length 

Density 
(%)  

Chess 3,196 75 37 49.4 
Connect 67,557 129 43 33.4 
Mushroom 8,124 119 23 19.4 
Pumsb 49,047 2,113 75 3.6 

4.1 Databases 

We conduct our experiments using 4 real databases; 
Mushroom, Chess, Connect and Pumsb. The 
characteristics of these databases in terms of number 
of transactions, number of distinct items, average 
transaction length and density (density of a database 
is the average transaction length divided by number 
of distinct items) are given in Table 2. We indicate 
the notion of sparse and dense for each database 
because as pointed out in (Bayardo et al., 1999; 
Gkoulalas and Divanis, 2010; Han et al., 2000; Pei et 
al., 2000) frequent itemsets generated from dense 
databases may result in generating long frequent 
itemsets at various levels of support. Chess, Connect 
and Mushroom databases are obtained from UCI 
Repository (Blake and Merz, 1998).  Pumbs database 
contains census data from PUMS and can be obtained 
from http://www.almaden.ibm.com/soft- ware/quest.  

Table 3: Support ranges for databases. 

 Chess  Mushroom Connect Pumsb  

Bin Support 
Range 

Support 
Range 

Support 
Range 

Support 
Range 

1 (0.6001, 
0.6136] 

(0.1100, 
0.1218] 

(0.85, 
0.8575] 

(0.85, 
0.8575] 

2 (0.6136, 
0.6308] 

(0.1218, 
0.1388] 

(0.8575, 
0.8672] 

(0.8575, 
0.8672] 

3 (0.6308, 
0.6555] 

(0.1388, 
0.1540] 

(0.8672, 
0.8792] 

(0.8672, 
0.8792] 

4 (0.6555, 
0.6974] 

(0.1540, 
0.2053] 

(0.8792, 
0.8985] 

(0.8792, 
0.8985] 

5 (0.6974, 
0.9962] 

(0.2053, 
1] 

(0.8985, 
0.9987] 

(0.8985, 
0.9987] 

4.2 Results with Multiple Sensitive 
Support Thresholds  

In this section we compare our PGBS algorithm with 
SWA and TTBS algorithms using 4 real databases by 
assigning multiple sensitive thresholds. PGBS, TTBS 
and SWA algorithms allow user to define different 
sensitive thresholds for each sensitive itemset 
however RS algorithm does not. Because of this, we 
do not use the RS algorithm for performance 
evaluation. We partition the Chess, Connect, 
Mushroom and Pumsb databases into 5 bins, and then 



we randomly select 2 itemsets from each bin and 
assign the minimum support threshold as the 
minimum support given in the support range. Support 
ranges of the bins for each database are shown in 
Table 3.  

The results of SWA, TTBS and PGBS are given 
in Table 4 where time is CPU execution time in 
seconds, information loss is in percentage and 
distance is in percentage. We underline each best 
performance result among 4 algorithms for execution 
time, information loss and distance for better 
readability.   

Last row of the table shows the number of best 
results achieved by the algorithm corresponding to 
execution time, information loss and distance. If we 
analyse the algorithms with their best result 
summaries; we see that SWA [0, 11, 5], TTBS [3, 0, 
4] and PGBS [9, 1, 6]. In other words, PGBS achieves 
best execution time in 9 out of 12 cases, best 
information loss in 1 out of 12 and best distance 6 out 
of 12 cases. SWA achieves best information loss in 
most of the cases with a very high cost of execution 
time. PGBS is better than others in terms of execution  

time and distance especially on dense databases like 
Chess and Mushroom.  

5 RELATED WORK  

Privacy preserving association rule hiding problem 
was first introduced in (Atallah et al., 1999). 

The authors proposed heuristic algorithms and 
gave the proof of NP-Hardness of optimal 
sanitization. Since then, many approaches have been 
proposed to preserve privacy for sensitive patterns or 
sensitive association rules in database. Most common 
categorizations of rule or itemset hiding approaches 
can be done according to the nature of the base 
algorithm and following classes appear; border based 
approaches (Moustakides and Verykios, 2008; Sun 
and Yu, 2004; Sun and Yu, 2007), exact approaches 
(Ayav and Ergenç, 2015; Gkoulalas and Verykios, 
2006; Gkoulalas and Verykios, 2008; Gkoulalas and 
Verykios, 2009; Menon et al., 2005), reconstruction 
based approaches (Bodon, 2003; Guo, 2007; Lin and 
Liu,  2007;  26.  Mohaisen  et al.,  2010)  and  heuristic 

Table 4: Comparison with multiple support thresholds. 
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C
he

ss
 10 4.72 49.89 0.79 0.39 68.30 0.41 0.22 49.91 0.80 

20 8.80 62.24 0.94 0.56 78.67 0.92 0.25 63.29 0.95 

30 13.08 62.84 0.96 0.82 75.41 0.81 0.35 63.29 0.97 

M
us

hr
oo

m
 10 26.79 45.29 3.34 0.88 72.67 6.92 0.37 49.87 3.34 

20 47.50 45.32 3.34 1.72 86.97 10.84 0.50 49.99 3.35 

30 66.17 49.52 3.42 2.28 88.28 11.59 0.55 54.32 3.42 

C
on

ne
ct

 10 804.21 54.31 0.25 5.18 86.44 0.68 7.18 55.28 0.25 

20 1935.28 63.40 0.33 10.44 84.93 0.68 17.55 65.03 0.3 

30 2771.64 60.81 0.30 9.83 84.93 0.68 18.23 60.25 0.29 

P
um

sb
 10 1362.31 49.32 0.23 7.72 94.96 0.72 6.45 77.63 0.42 

20 2359.06 54.98 0.24 8.75 91.48 0.21 7.44 55.91 0.24 

30 2899.27 57.76 0.26 14.44 91.24 0.73 9.86 58.51 0.25 

 
# of Best 
Results 

- 11 5 3 - 4 9 1 6 

 



approaches (Amiri, 2007; Keer and Singh, 2012; 
Oliveira and Zaiane, 2002; Yildiz and Ergenc, 
2012; Oliveira and Zaiane, 2003; Verykios et al., 
2004; Wu et al.,2007).  

Heuristic approaches rely on some heuristics 
for database sanitization, they may produce side 
effects such as loss of non-sensitive rules/itemsets 
in the sanitized database and generation of 
rules/itemsets that are not truly exists in the 
original database and the distortion done on the 
data. Despite their side effects majority of the 
research is based on heuristic approaches 
(Verykios and Divanis, 2004) because they are 
efficient and have good response time. In Table 5, 
we summarize and compare existing heuristic 
based sanitization algorithms based on their 
important characteristics.  

First column of the table gives the name of the 
algorithm; second column indicates the focus of 
sanitization; some algorithms try to hide sensitive 
“itemsets” whereas some of them hide sensitive 

“rules”. Second column shows whether the 
algorithm is designed for association rule 
(“Rules”) or itemset (“Itemset”) hiding. The third 
column shows whether the algorithm enables 
assigning different sensitive thresholds to each 
sensitive itemset or rule. Fourth column is 
dedicated to show the capability of the algorithm 
to hide single or multiple itemsets in a single run.   

Column 5 of Table 5 gives information about 
the approach of the algorithm in selecting the 
victim transaction for sanitization; “Length” 
indicates that the algorithm selects the transaction 
according to its length amongst the candidate 
sensitive transactions; “Degree” indicates that the 
selection is done according to the existence of the 
number of sensitive itemsets in the transaction, 
“Greedy” indicates that the selection is done 
according to trial and error.  

Column 6 shows the victim item selection 
criteria of the algorithm; “Cover” is the number 
of   presences  of  the   item  in   different   sensitive 

Table 5: Summary of existing heuristic based algorithms. 
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Year 

1 2 3 4 5 6 7 

IGA (Oliveira and Zaiane, 2002) Itemsets  ✔ Degree Cover  
 

2002 
Naïve (Oliveira and Zaiane, 2002) Rules   Degree All 

MaxFIA (Oliveira and Zaiane, 2002) Itemsets   Degree Support 

MinFIA (Oliveira and Zaiane, 2002) Itemsets   Degree Support 

SWA (Oliveira and Zaiane, 2003) Itemsets ✔ ✔ Length Support 2003 

DSA (Oliveira et al., 2004) Itemsets   --- ---  
 

2004 
 
 

Algorithm 2.b (Verykios et al.,2004) Itemsets   Length Support 

Algorithm 2.c (Verykios et al., 2004) Itemsets   Length All 

PDA  (Pontikakis et al., 2004) Rules   Weight Greedy 

WDA  (Pontikakis et al., 2004) Rules   Weight All 

Aggregate (Amiri, 2007) Itemsets  ✔ Greedy All  
 

2007 
Disaggregate (Amiri, 2007) Itemsets  ✔ Greedy Greedy 

Hybrid (Amiri, 2007) Itemsets  ✔ Greedy Greedy 

MICF (Li et al., 2007) Itemsets  ✔ Degree Cover 

TTBS (Kuo et al., 2008) Itemsets ✔ ✔ Degree Cover  
2008 FHSAR  (Weng et al., 2008) Rules  ✔ Weight Cover 

SIF-IDF (Hong et al., 2013) Itemsets   Weight Support 2013 

RelevanceSorting  (Cheng et al., 2016) Rules   Weight Support  
2016 HSARWI (Sakenian and Naderi, 2016) Rules  ✔ Weight Weight 

 



itemsets, “Support” shows the selection of the item is 
done depending on its support,” Greedy” shows the 
selection of the item is done in trial and error,” All” 
shows the whole sensitive itemset in sensitive 
transaction is deleted rather than deleting a victim. 
Last column shows the year of the related research.  

When we analyse the existing heuristic 
sanitization algorithms we see that i) they use 
different heuristics targeting to reduce the execution 
time, distance, information loss while maintaining 
minimum hiding failure, ii) there are few heuristic 
based approaches that focus on sanitization under 
multiple support thresholds.  

6 CONCLUSIONS 

In the case of applying itemset mining on the shared 
data of organizations, each party needs to hide its 
sensitive knowledge before extracting global 
knowledge for mutual benefit. In this study we focus 
on privacy preserving itemset hiding under multiple 
support thresholds.  Our algorithm (PGBS) utilizes 
pseudo graph data structure that is used to store the 
given transactional database to prevent multiple scans 
of the given database and allow effective sanitization 
process. We validate execution time and side effect 
performances of our algorithm, Pseudo Graph Based 
Sanitization (PGBS) in contrast to two recent 
algorithms on 4 real databases varying number of 
sensitive itemsets and sensitive thresholds. 
Experimental results show that PGBS is competitive 
in terms of execution time and distance especially on 
dense datasets amongst the other algorithms. For 
future work, we want to propose dynamic version of 
our algorithm that is able to sanitize the updated 
databases.  
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