
Itemset Hiding under Multiple Sensitive Support Thresholds

Ahmet Cumhur Öztürk and Belgin Ergenç Bostanoğlu
Department of Computer Engineering, Izmir Institute of Technology, 35447, Izmir, Turkey

Keywords: Privacy Preserving Association Rule Mining, Itemset Hiding, Multiple Sensitive Support Thresholds.

Abstract: Itemset mining is the challenging step of association rule mining that aims to extract patterns among items
from transactional databases. In the case of applying itemset mining on the shared data of organizations, each
party needs to hide its sensitive knowledge before extracting global knowledge for mutual benefit. Ensuring
the privacy of the sensitive itemsets is not the only challenge in the itemset hiding process, also the distortion
given to the non-sensitive knowledge and data should be kept at minimum. Most of the previous works related
to itemset hiding allow database owner to assign unique sensitive threshold for each sensitive itemset however
itemsets may have different count and utility. In this paper we propose a new heuristic based hiding algorithm
which 1) allows database owner to assign multiple sensitive threshold values for sensitive itemsets, 2) hides
all user defined sensitive itemsets, 3) uses heuristics that minimizes loss of information and distortion on the
shared database. In order to speed up hiding steps we represent the database as Pseudo Graph and perform
scan operations on this data structure rather than the actual database. Performance evaluation of our algorithm
Pseudo Graph Based Sanitization (PGBS) is conducted on 4 real databases. Distortion given to the non-
sensitive itemsets (information loss), distortion given to the shared data (distance) and execution time in
comparison to three similar algorithms is measured. Experimental results show that PGBS is competitive in
terms of execution time and distortion and achieves reasonable performance in terms of information loss
amongst the other algorithms.

1 INTRODUCTION

Association rule mining uncovers frequent sequence
of items (itemsets) to produce relationships
(association rules) among items in a given
transactional database (Agrawal et al., 1994; Bodon,
2003; Brijs et al., 1999; Han et al., 2000; Pei et al.,
2000; Zheng et al., 2001). The rapid growth in the use
of association rule mining and its challenging step of
itemset mining exposed privacy problems while
sharing data. Although in modern business, shared
data brings mutual benefits in terms of decision
making, itemset mining on the shared data may lead
to malicious usage of private information if the
database is shared without any precautions. Some
itemsets may contain private information or
knowledge; in other words the database owner might
be unwilling to show them. These itemsets are called
sensitive itemsets. Itemset hiding problem focuses on
preventing the disclosure of sensitive itemsets.

The process of converting a database to a new one
which does not comprise any sensitive itemset is
called the sanitization process (Atallah et al., 1999).

During this process, preserving the privacy while
preventing the loss of non-sensitive knowledge and
reducing the distortion on the database must be
considered at the same time. Due to combinatorial
nature of such a problem, there are various proposed
sanitization methodologies; heuristic based
approaches (Amiri, 2007; Keer and Singh, 2012;
Oliveira and Zaiane, 2003; Verykios et al., 2004; Wu
et al., 2007; Yildiz and Ergenc, 2012), border-based
approaches (Moustakides and Verykios, 2008;
Stavropoulos et al., 2016; Sun and Yu, 2004; Sun and
Yu, 2007), reconstruction based approaches (Boora et
al., 2009; Guo, 2007; Lin and Liu, 2007; Mohaisen
et al., 2010) and exact hiding approaches (Ayav and
Ergenc, 2015, Gkoulalas and Verykios, 2006;
Gkoulalas and Verykios, 2008; Gkoulalas and
Verykios, 2009; Menon et al., 2005). All these
algorithms hide sensitive itemsets by decreasing their
supports (number of occurrences of the itemset in the
database) below a sensitive support threshold
(defined by the user).

Most of the proposed algorithms allow user to
define single sensitive support threshold. However
single minimum itemset support threshold is not

ÃŰztÃijrk A. and ErgenÃğ BostanoÄ§lu B.
Itemset Hiding under Multiple Sensitive Support Thresholds.
DOI: 10.5220/0006501502220231
In Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (KMIS 2017), pages 222-231
ISBN: 978-989-758-273-8
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

adequate since it does not reflect the nature of
different itemsets. During the sanitization process if
supports of all itemsets are decreased below a given
unique sensitive threshold then some itemsets may
redundantly be protected while some may not be
protected. Itemset hiding approach should enable the
user to assign different sensitive thresholds for each
sensitive itemset (Verykios and Divanis, 2004).

In this study we focus on hiding sensitive itemsets
on a given transactional database by decreasing their
supports below user specified multiple sensitive
thresholds. Finding sensitive transactions
(transactions that contain sensitive itemsets),
counting supports of sensitive itemsets are essential
operations in sanitization process. In order to speed
up these operations we first represent the database as
Pseudo Graph since performing scan operations on
Pseudo Graph rather than the actual database or other
data structures like matrix or inverted index provides
significant improvement in terms of execution time.
Our sanitization algorithm; Pseudo Graph Based
Sanitization (PGBS) uses heuristics that minimize the
loss of non-sensitive knowledge and distortion done
on the database. PGBS does not create any artificial
itemsets (itemsets that does not exist in the original
database) during the sanitization process.

We carry on experiments to measure the
execution time and side effect performance of our
algorithm. In our experiments, we compare PGBS
with two recent heuristic based algorithms; Sliding
Window Algorithm (SWA) (Oliveira and Zaiane,
2003)and Template Table Based Sanitization (TTBS)
(Kuo et al., 2008). Execution time and side effect
(distortion and loss of non-sensitive knowledge)
performance of all algorithms are measured on 4 real
life databases with different characteristics in two
scenarios; 1) single support threshold, and 2) multiple
support thresholds. In both scenarios we measure the
performance of the algorithms by varying the number
of sensitive itemsets. Experimental results show that
PGBS is competitive in terms of execution time and
distortion while achieving reasonable performance in
terms of loss of non-sensitive knowledge amongst the
other algorithms especially on dense databases and
with multiple support thresholds. Superiority of
PGBS can better be observed on dense databases.

This paper is organized as follows; in section 2
basic definitions and metrics of frequent itemset
hiding is introduced and a motivating example which
is referred throughout the paper is given. In section 3
the proposed Pseudo Graph Based Saniti-zation
(PGBS) algorithm is given. Section 4 gives
performance evaluation of PGBS in comparison to
other 3 algorithms on 4 real databases. Section 5

presents detailed survey of the related work. Section
6 is dedicated for conclusion remarks.

2 PRELIMINARIES

In this section we define the preliminaries which
should be known in order to understand the problem
of itemset hiding. Preliminaries include the basic
definitions and metrics used in the itemset hiding
process. At the end of the section we give our moti-
vating example used throughout the paper.

2.1 Basic Definitions

Support and Frequent Itemset: Let I = {i1,…in} be
a set of items, a k-itemset X is a non-empty subset of
I with length k. A transaction is an ordered pair of
items denoted as <TID, X> where TID is the unique
identifier and X is the itemset. A transactional
database is a set of transactions and total number of
transactions in D is denoted as |D|. Support count of
an itemset X is denoted as scount(X) and it is the
number of transactions containing X, the support of
an itemset X is denoted as supp(X) and it is calculated
as scount(X) divided by |D|. An itemset X is frequent
if supp(X) ≥ σ, where σ is the user specified minimum
support threshold.

Sensitive Itemset and Sanitization: If FI is the set of
frequent itemsets in database D and SI (SI ⊂ FI) is
sensitive itemsets (the set of itemset to be hidden), the
sanitization operation transforms the given
transactional database D into D’ where none of the
itemsets in SI can extracted and the data and
knowledge loss from D is kept as minimum as
possible. One of the ways to hide sensitive itemsets
SI from database D is to decrease their supports till
the sensitive itemsets become infrequent. This
process of modifying the transactions to the point
where no sensitive itemset can be discovered is called
the sanitization process (Atallah et al., 1999).
Decreasing the support of sensitive itemsets can be
achieved by deleting items called victim items
(selected for deletion) from a sufficient amount of
transactions called victim transactions (selected for
modification). The support threshold used for hiding
a given sensitive itemset X is the sensitive support
threshold and it is denoted as sst(X).

Cover Degree: An item can be common in more than
one sensitive itemsets. If more than one sensitive
itemsets have a common item then deleting this item
may sanitize more than one sensitive itemset at once
(Pontikakis et al., 2004). Hiding sensitive itemsets at

once reduces the distortion on the modified database.
As an example; assume that XY and YZ are two
sensitive itemsets, removing the common item Y
from a transaction containing XYZ decreases the
support value of both XY and YZ by 1 at the same
time. The cover degree of an item is the number of
sensitive itemsets containing the item, e.g., cover
degree of item Y in this example is 2 since it is
contained by two of the given sensitive itemsets.

2.2 Sanitization Metrics

The main objective of the distortion based
sanitization is hiding all sensitive itemsets while
keeping the side effects at minimum level. Objective
is achieving zero hiding failure.
Hiding Failure (HF) is the metric that defines the
ratio of sensitive itemsets which can still be
discovered with mining techniques after the database
is sanitized. HF = |SI’| / |SI| where |SI| is the number
of sensitive itemsets in the original database D and
|SI’| is the number of sensitive itemsets in the
sanitized database D’.

Side effect in this context is the unintentional loss
of knowledge and data from the original database.
Basic side effects are distance and information loss.
Distance (Dist) is the metric that defines the number
of modifications made on the original database during
the sanitization process. Dist = (total number of items
in D) – (total number of items in D’) where D is the
original database and D’ is the sanitized database.
Information Loss (IL) is the metric showing the
number of non-sensitive frequent itemsets
unintentionally removed during the sanitization
process. IL = ((|FI| - |SI|) - (|FI'| - |SI’|)) / (|FI| - |SI|)
where |FI| is the number of frequent itemsets and |SI|
is the number of sensitive itemsets in the original
atabase D, |FI’| is the number of frequent itemsets in
D’ and |SI’| is the number of sensitive itemsets in the
sanitized database D’.

2.3 Motivating Example

In this paper we refer the transactional database given
in Table 1 as a motivating example. Suppose sensitive
itemsets are defined by the database owner as AD,
CD and BD with 15%,10% and 5% sensitive support
thresholds (sst) respectively. Degree column in Table
1 gives the number of sensitive itemsets contained by
a transaction, e.g., degree of transaction 6 is 2 since it
contains two sensitive itemsets AD and CD.

Table 1: Transactional database.

TID Transactions Degree
1 CF 0
2 ABCE 0
3 DE 0
4 ABCD 3
5 ADE 1
6 ACD 2

3 PGBS ALGORITHM

We propose Pseudo Graph Based Sanitization
(PGBS) algorithm that aims to i) convert given
database D into D’ where no sensitive itemsets
defined by the user initially can be extracted, in other
words Hiding Failure is zero, ii) keep maximum
number of non-sensitive itemsets present in D to
minimize information loss, iii) cause minimum
distortion on D to minimize distance. Conversion or
sanitization is done by reducing the support of
sensitive itemsets below user defined sensitive
thresholds by deleting items from sufficient amount
transactions till all sensitive itemsets in D become
infrequent. Two sub problems arise with this strategy;
first is determining the victim transactions to be
modified and the second is selecting the victim item
to be removed.

Block diagram given in Fig. 1 illustrates
sanitization process of PGBS algorithm with our
motivating example. Transactional Database D and
Sensitive Itemsets Table are main inputs of the PGBS.
Sensitive itemsets (SI) and their sensitive support
thresholds (SST) shown in Sensitive Itemsets Table
are assumed to be defined by the preferences or
privacy policies of the user.

There are 4 sub processes in PGBS; 1) Convert
Pseudo Graph converts the Transactional Database
into a Pseudo Graph (PG), 2) Create Sensitive Count
Table creates the Sensitive Count Table (SCT) that
holds the number of necessary
modifications/distortions for each sensitive itemset
given by the user, 3) Create Sanitization Table is the
main sanitization process that works on PG and
creates Sanitization Table that keeps the necessary
modifications to be applied on the original database,
4) Sanitize Database deletes each victim item in D
from its corresponding transaction in the Sanitization
Table and prepares sanitized database D’.

Figure 1: Block diagram of PGBS algorithm.

In the following sections we explain these
processes in detail.

3.1 Convert Pseudo Graph

We use Pseudo Graph (PG) data structure to represent
all transactions of the given database D. PG provides
an efficient way to identify and modify transactions
without accessing the actual database. A PG is a
directed graph which allows multiple edges and
loops. In this graph each item is represented as vertex
and vertices are connected to each other by edges
where edges are labelled with transaction ids, e.g. if
item X appears with item Y in transaction k then
vertex X is connected with vertex Y with a directed
edge from X to Y with label k. Reflexive edges are
required since the database might contain single
length transactions resulting in loops.

Insertion of transactions to the PG is a simple
process; first transactions in database D are sorted in
lattice order and then each transaction is inserted one
by one. For illustration Fig.2 (a), (b) and (c) shows
the PG after transactions {CF}, {ABCD}, and {DE}
in Table 1 are inserted into PG respectively and

Fig.2(d) shows the PG after the remaining
transactions in Table 1 are inserted into PG.

Counting the support count of a given item X is
performed by counting the total number of distinct

transaction ids on incoming and outgoing edges of
vertex X. Let XY be a 2-itemset and prefix(X) be the
transactions on outgoing edges of vertex X and
postfix(Y) be the transactions on incoming edges of
vertex Y. Support of XY is simply computed as
prefix(X) ∩ postfix(Y). Support of an k-itemset Z
where k>2 is calculated by prefix(item1) ∩
postfix(item2) ∩… ∩ postfix(itemk) where itemi is
the item at ith position in Z. As an example in Fig.2
d) transactions containing itemset {ACE} is equal to
({2,4,5,6} ∩ {2,4,6}) ∩ {2,3,5} = {2} so the support
of itemset {ACE} is 1.

The inverted index structure is similar to the PG.
The inverted index is used to store list of transaction

The inverted index is used to store list of
transaction ids containing each item As in PG
transactions of an itemset can be uncovered by
performing intersection operation between inverted
indexes of all items in the given itemset. The iteration
number for uncovering transactions ids of an itemset
using the inverted index is always greater than or
equal to the iteration number for uncovering
transactions ids of an itemset with using PG. PG data
structure considers whether an item is prefix or
postfix in a given itemset and tries to put least number
of transaction ids to the intersection operation.

(a) (b) (c) (d)

Figure 2: PG by adding transaction (a) CF (b) ABCE (c) DE (d) all.

3.2 Create Sensitive Count Table

Create Sensitive Count Table process takes sensitive
itemsets with their sensitive thresholds and pseudo
graph representation of the database as input and then
creates the Sensitive Count Table (SCT) as shown in
Figure 1. SCT has three fields; SID is the unique
identifier, SI is the sensitive itemset and NModify is the
minimum number of transactions that are needed to
be modified for hiding the given sensitive itemset.
NModify value of a sensitive itemset X is calculated by
the following equation:

NModify(X) = ہscount(X) - sst(X) * |D| + 1(1) ۂ

where scount(X) is the number of transactions
containing the itemset X, sst(X) is the sensitive
support threshold that is given by the user for the
itemset X, |D| is the total number of transactions in D.
Records in the Sanitization Table are sorted according
to NModify values of the sensitive itemsets in
descending order.

3.3 Create Sanitization Table

Create Sanitization Table procedure conceals
sensitive itemsets from PG and creates the
Sanitization Table by using the SCT, the steps of this
procedure is given below.
For all the rows of SCT do;

1. Select the victim item: Select the victim item
among items in sensitive itemsets stored in the
first record of SCT having the maximum cover
degree. If there is more than one victim item with
the same cover degree, select the item which has
the maximum support count. If there is still more
than one victim item with the same support count,
select the victim item randomly.

2. Unify sensitive itemsets: Unify all sensitive
itemsets in SCT that contain the victim item
selected in Step 1.

3. Select the sensitive transactions: Find enough
sensitive transactions containing unified sensitive
itemsets in PG (less than or equal NModify value in
the active row of SCT).

4. Delete item: Add victim item and sensitive
transactions id pairs to the Sanitization Table.
Update the PG by deleting victim item from
sensitive transactions. For each sensitive itemset
that is in the unified sensitive itemsets, reduce the
NModify values of their corresponding rows of
Sanitization Table by the number of sensitive
transactions uncovered. If NModify value of any
record in SCT becomes zero, then remove it from
the SCT and update the cover degree of

each item in remaining sensitive itemsets stored in
SCT.

5. Control: If active NModify value is still greater than
zero and none of the sensitive itemsets in SCT is
deleted, then remove the sensitive itemset that has
the least NModify value from the unified sensitive
itemsets and go back to Step 3, else go back to
Step 1.

3.4 Sanitize Database

This procedure updates the database D by using the
Sanitization Table. Each victim item is deleted from
corresponding transaction ids stored in Sanitization
Table and the resulting database brings out thee
sanitized database.

3.5 Illustrating Example

Suppose we have our motivating example given in
Section 2.3. Our proposed processes work as follows
to hide all sensitive itemsets.
1. Convert Pseudo Graph: The Convert Pseudo

Graph procedure converts the database into PG
form as shown in Fig.2 (d).

2. Create Sensitive Count Table: NModify value of
each sensitive itemset is calculated by using the
equation (1), and then added to the SCT. After
SCT is created it is sorted in descending order of
NModify value. The resulting SCT for this example
is shown in Figure 1.

3. Create Sanitization Table: The process Create
Sanitization Table first selects the victim item. In
this example there are three sensitive itemsets in
SCT: AD, CD and BD. The sensitive itemset AD
has the highest NModify value, so the victim item is
selected among items in AD. The item “D” (cover
degree = 3) is selected as victim item (Step 1).
Sensitive itemsets in SCT containing “D” are
unified. The unified sensitive itemset is ABCD
and according to Fig.2 (d) only the transaction {4}
contains ABCD (Step 2 - 3).

Item “D” is removed from 4th transaction in
PG, then the pair {D, 4} is added to the
Sanitization Table and NModify value of each
sensitive itemset in SCT is decreased by 1. NModify
value of the sensitive itemset BD becomes zero so
this row is removed from the SCT. Since the
NModify value of AD is still greater than zero and
one of the records is removed from the SCT, the
sensitive itemset BD is discarded from the
unification operation and the new unified
sensitive itemset becomes ACD (Step 4).

The NModify value of AD is 2 so the algorithm tries
to find out 2 sensitive transactions containing
ACD from the PG. For the itemset ACD,
supporting transactions is only {6}, so the victim
item “D” is deleted from this transaction and the
pair {D,6} is added to the Sanitization Table.
After the delete operation the NModify value of CD
becomes zero and AD becomes 1, so CD is
removed from the SCT. The only remaining
sensitive itemset left in SCT is AD, because both
item “A” and “D” has cover degree 1, the item
having the highest support count is selected as
victim item which is “A” (support count of “A” is
4 in PG). Then item “A” is removed from 5th

transaction in PG and the pair {A, 5} is added to
the Sanitization Table as shown in Figure 1.

4. Sanitize Database: For this example, the Sanitize
Database procedure deletes each item with
corresponding transactions stored in Sanitization
Table from the original database D given in Table
1. The resulting sanitized database D’ is shown in
Figure 1. As we see item “D” is deleted from
transactions 4 and 6, item “A” is deleted from
transaction 5.

4 PERFORMANCE EVALUATION

We compared our Pseudo Graph Based Sanitization
(PGBS) algorithm with Sliding Window Algorithm
(SWA) (Oliveira and Zaiane, 2003) and Template
Table Based Sanitization (TTBS) (Kuo et al., 2008)
using 4 real databases and these four databases are
sorted in lattice order before processing but we
neglect the sorting time in performance measures.
The main objective of all algorithms is to achieve zero
hiding failure in other words; they hide all sensitive
itemsets by reducing their support below their
sensitive support thresholds. We chose SWA and
TTBS algorithms for performance evaluation because
both focus on overlapping items in sensitive itemsets
and they enable assigning different sensitive
thresholds for each sensitive itemset. We measure
execution time, information loss and distance
performance of all algorithms. All the experiments
are conducted on a computer with Intel core i7-5500
2.4 GHZ processor and 8GB of RAM running on a
Windows 10 operating system. The execution times
include I/O and CPU time.

Table 2: Characteristics of experimental databases.

Database
Name

of
Transactions

Distinct
Items

Avg.
Trans.
Length

Density
(%)

Chess 3,196 75 37 49.4
Connect 67,557 129 43 33.4
Mushroom 8,124 119 23 19.4
Pumsb 49,047 2,113 75 3.6

4.1 Databases

We conduct our experiments using 4 real databases;
Mushroom, Chess, Connect and Pumsb. The
characteristics of these databases in terms of number
of transactions, number of distinct items, average
transaction length and density (density of a database
is the average transaction length divided by number
of distinct items) are given in Table 2. We indicate
the notion of sparse and dense for each database
because as pointed out in (Bayardo et al., 1999;
Gkoulalas and Divanis, 2010; Han et al., 2000; Pei et
al., 2000) frequent itemsets generated from dense
databases may result in generating long frequent
itemsets at various levels of support. Chess, Connect
and Mushroom databases are obtained from UCI
Repository (Blake and Merz, 1998). Pumbs database
contains census data from PUMS and can be obtained
from http://www.almaden.ibm.com/soft- ware/quest.

Table 3: Support ranges for databases.

 Chess Mushroom Connect Pumsb

Bin Support
Range

Support
Range

Support
Range

Support
Range

1 (0.6001,
0.6136]

(0.1100,
0.1218]

(0.85,
0.8575]

(0.85,
0.8575]

2 (0.6136,
0.6308]

(0.1218,
0.1388]

(0.8575,
0.8672]

(0.8575,
0.8672]

3 (0.6308,
0.6555]

(0.1388,
0.1540]

(0.8672,
0.8792]

(0.8672,
0.8792]

4 (0.6555,
0.6974]

(0.1540,
0.2053]

(0.8792,
0.8985]

(0.8792,
0.8985]

5 (0.6974,
0.9962]

(0.2053,
1]

(0.8985,
0.9987]

(0.8985,
0.9987]

4.2 Results with Multiple Sensitive
Support Thresholds

In this section we compare our PGBS algorithm with
SWA and TTBS algorithms using 4 real databases by
assigning multiple sensitive thresholds. PGBS, TTBS
and SWA algorithms allow user to define different
sensitive thresholds for each sensitive itemset
however RS algorithm does not. Because of this, we
do not use the RS algorithm for performance
evaluation. We partition the Chess, Connect,
Mushroom and Pumsb databases into 5 bins, and then

we randomly select 2 itemsets from each bin and
assign the minimum support threshold as the
minimum support given in the support range. Support
ranges of the bins for each database are shown in
Table 3.

The results of SWA, TTBS and PGBS are given
in Table 4 where time is CPU execution time in
seconds, information loss is in percentage and
distance is in percentage. We underline each best
performance result among 4 algorithms for execution
time, information loss and distance for better
readability.

Last row of the table shows the number of best
results achieved by the algorithm corresponding to
execution time, information loss and distance. If we
analyse the algorithms with their best result
summaries; we see that SWA [0, 11, 5], TTBS [3, 0,
4] and PGBS [9, 1, 6]. In other words, PGBS achieves
best execution time in 9 out of 12 cases, best
information loss in 1 out of 12 and best distance 6 out
of 12 cases. SWA achieves best information loss in
most of the cases with a very high cost of execution
time. PGBS is better than others in terms of execution

time and distance especially on dense databases like
Chess and Mushroom.

5 RELATED WORK

Privacy preserving association rule hiding problem
was first introduced in (Atallah et al., 1999).

The authors proposed heuristic algorithms and
gave the proof of NP-Hardness of optimal
sanitization. Since then, many approaches have been
proposed to preserve privacy for sensitive patterns or
sensitive association rules in database. Most common
categorizations of rule or itemset hiding approaches
can be done according to the nature of the base
algorithm and following classes appear; border based
approaches (Moustakides and Verykios, 2008; Sun
and Yu, 2004; Sun and Yu, 2007), exact approaches
(Ayav and Ergenç, 2015; Gkoulalas and Verykios,
2006; Gkoulalas and Verykios, 2008; Gkoulalas and
Verykios, 2009; Menon et al., 2005), reconstruction
based approaches (Bodon, 2003; Guo, 2007; Lin and
Liu, 2007; 26. Mohaisen et al., 2010) and heuristic

Table 4: Comparison with multiple support thresholds.

 SWA TTBS PGBS

D
at

ab
as

e

|S
I|

T
im

e
(s

ec
)

In
fo

rm
at

io
n

L
os

s
(%

)

D
is

ta
nc

e
(%

)

T
im

e
(s

ec
)

In
fo

rm
at

io
n

L
os

s(
%

)

D
is

ta
nc

e(
%

)

T
im

e
(s

ec
)

In
fo

rm
at

io
n

L
os

s
(%

)

D
is

ta
nc

e
(%

)

C
he

ss
 10 4.72 49.89 0.79 0.39 68.30 0.41 0.22 49.91 0.80

20 8.80 62.24 0.94 0.56 78.67 0.92 0.25 63.29 0.95

30 13.08 62.84 0.96 0.82 75.41 0.81 0.35 63.29 0.97

M
us

hr
oo

m
 10 26.79 45.29 3.34 0.88 72.67 6.92 0.37 49.87 3.34

20 47.50 45.32 3.34 1.72 86.97 10.84 0.50 49.99 3.35

30 66.17 49.52 3.42 2.28 88.28 11.59 0.55 54.32 3.42

C
on

ne
ct

 10 804.21 54.31 0.25 5.18 86.44 0.68 7.18 55.28 0.25

20 1935.28 63.40 0.33 10.44 84.93 0.68 17.55 65.03 0.3

30 2771.64 60.81 0.30 9.83 84.93 0.68 18.23 60.25 0.29

P
um

sb
 10 1362.31 49.32 0.23 7.72 94.96 0.72 6.45 77.63 0.42

20 2359.06 54.98 0.24 8.75 91.48 0.21 7.44 55.91 0.24

30 2899.27 57.76 0.26 14.44 91.24 0.73 9.86 58.51 0.25

of Best
Results

- 11 5 3 - 4 9 1 6

approaches (Amiri, 2007; Keer and Singh, 2012;
Oliveira and Zaiane, 2002; Yildiz and Ergenc,
2012; Oliveira and Zaiane, 2003; Verykios et al.,
2004; Wu et al.,2007).

Heuristic approaches rely on some heuristics
for database sanitization, they may produce side
effects such as loss of non-sensitive rules/itemsets
in the sanitized database and generation of
rules/itemsets that are not truly exists in the
original database and the distortion done on the
data. Despite their side effects majority of the
research is based on heuristic approaches
(Verykios and Divanis, 2004) because they are
efficient and have good response time. In Table 5,
we summarize and compare existing heuristic
based sanitization algorithms based on their
important characteristics.

First column of the table gives the name of the
algorithm; second column indicates the focus of
sanitization; some algorithms try to hide sensitive
“itemsets” whereas some of them hide sensitive

“rules”. Second column shows whether the
algorithm is designed for association rule
(“Rules”) or itemset (“Itemset”) hiding. The third
column shows whether the algorithm enables
assigning different sensitive thresholds to each
sensitive itemset or rule. Fourth column is
dedicated to show the capability of the algorithm
to hide single or multiple itemsets in a single run.

Column 5 of Table 5 gives information about
the approach of the algorithm in selecting the
victim transaction for sanitization; “Length”
indicates that the algorithm selects the transaction
according to its length amongst the candidate
sensitive transactions; “Degree” indicates that the
selection is done according to the existence of the
number of sensitive itemsets in the transaction,
“Greedy” indicates that the selection is done
according to trial and error.

Column 6 shows the victim item selection
criteria of the algorithm; “Cover” is the number
of presences of the item in different sensitive

Table 5: Summary of existing heuristic based algorithms.

Algorithm

Hiding
 M

ul
ti

pl
e

S
up

po
rt

T

hr
es

ho
ld

s

M
ul

ti
pl

e
R

ul
e

H
id

in
g

V
ic

ti
m

T

ra
ns

ac
ti

on

S
el

ec
ti

on

V
ic

ti
m

 I
te

m

S
el

ec
ti

on

Year

1 2 3 4 5 6 7

IGA (Oliveira and Zaiane, 2002) Itemsets ✔ Degree Cover

2002
Naïve (Oliveira and Zaiane, 2002) Rules Degree All

MaxFIA (Oliveira and Zaiane, 2002) Itemsets Degree Support

MinFIA (Oliveira and Zaiane, 2002) Itemsets Degree Support

SWA (Oliveira and Zaiane, 2003) Itemsets ✔ ✔ Length Support 2003

DSA (Oliveira et al., 2004) Itemsets --- ---

2004

Algorithm 2.b (Verykios et al.,2004) Itemsets Length Support

Algorithm 2.c (Verykios et al., 2004) Itemsets Length All

PDA (Pontikakis et al., 2004) Rules Weight Greedy

WDA (Pontikakis et al., 2004) Rules Weight All

Aggregate (Amiri, 2007) Itemsets ✔ Greedy All

2007
Disaggregate (Amiri, 2007) Itemsets ✔ Greedy Greedy

Hybrid (Amiri, 2007) Itemsets ✔ Greedy Greedy

MICF (Li et al., 2007) Itemsets ✔ Degree Cover

TTBS (Kuo et al., 2008) Itemsets ✔ ✔ Degree Cover
2008 FHSAR (Weng et al., 2008) Rules ✔ Weight Cover

SIF-IDF (Hong et al., 2013) Itemsets Weight Support 2013

RelevanceSorting (Cheng et al., 2016) Rules Weight Support
2016 HSARWI (Sakenian and Naderi, 2016) Rules ✔ Weight Weight

itemsets, “Support” shows the selection of the item is
done depending on its support,” Greedy” shows the
selection of the item is done in trial and error,” All”
shows the whole sensitive itemset in sensitive
transaction is deleted rather than deleting a victim.
Last column shows the year of the related research.

When we analyse the existing heuristic
sanitization algorithms we see that i) they use
different heuristics targeting to reduce the execution
time, distance, information loss while maintaining
minimum hiding failure, ii) there are few heuristic
based approaches that focus on sanitization under
multiple support thresholds.

6 CONCLUSIONS

In the case of applying itemset mining on the shared
data of organizations, each party needs to hide its
sensitive knowledge before extracting global
knowledge for mutual benefit. In this study we focus
on privacy preserving itemset hiding under multiple
support thresholds. Our algorithm (PGBS) utilizes
pseudo graph data structure that is used to store the
given transactional database to prevent multiple scans
of the given database and allow effective sanitization
process. We validate execution time and side effect
performances of our algorithm, Pseudo Graph Based
Sanitization (PGBS) in contrast to two recent
algorithms on 4 real databases varying number of
sensitive itemsets and sensitive thresholds.
Experimental results show that PGBS is competitive
in terms of execution time and distance especially on
dense datasets amongst the other algorithms. For
future work, we want to propose dynamic version of
our algorithm that is able to sanitize the updated
databases.

ACKNOWLEDGEMENTS

This work is partially supported by the Scientific and
Technological Research Council of Turkey
(TUBITAK) under ARDEB 3501 Project No:
114E779

REFERENCES

Agrawal, R., Srikant, R., 1994. Fast algorithms for mining
association rules in large databases. In: 20th
International Conference on Very Large Databases, pp.
487-499.

Amiri, A., 2007. Dare to share: Protecting sensitive
knowledge with data sanitization. Decision Support
Systems 43(1), pp. 181-191.

Atallah, M., Bertino, E., Elmagarmid, A., Ibrahim, M.,
Verykios, VS., 1999. Disclosure limitation of sensitive
rules. In: Workshop on Knowledge and Data
Engineering Exchange, pp. 45-52.

Ayav, T., Ergenç, B., 2015. Full Exact approach for itemset
hiding. International Journal of Data Warehousing and
Mining. 11(4).

Bayardo, R J., Agrawal, R., Gunopulos, D., 1999.
Constraint based rule mining on large, dense data sets.
Data Mining and Knowledge Discovery, vol. 4, pp. 217-
240.

Blake, CL., Merz, CJ., 1998. UCI Repository of Machine
Learning Databases. University of California, Irvine,
Dept. of Information and Computer Sciences.

Bodon, F., 2003. A fast APRIORI implementation.
Workshop Frequent Itemset Mining Implementations
(FIMI’03), vol. 90, pp. 56-65.

Boora, RK., Shukla, R., Misra, A., 2009. An improved
approach to high level privacy preserving itemset
mining. International Journal of Computer Science and
Information Security, 6(3), pp. 216-223.

Brijs, T., Swinnen, G., Vanhoof, K., Wets, G., 1999. Using
association rules for product assortment decisions: a
case study. In Knowledge Discovery and Data Mining,
pp. 254–260.

Cheng, P., Roddick, J.F., Chu, S.C..et al., 2016. Privacy
preservation through a greedy, distortion-based rule
hiding method. Applied Intelligence, pp. 44-295.

Gkoulalas-Divanis, A., Verykios, VS., 2006. An integer
programming approach for frequent itemset hiding.
ACM International Conference on Information and
Knowledge Management.

Gkoulalas-Divanis, A., Verykios, VS., 2008. A
parallelization framework for exact knowledge hiding
in transactional databases. IFIP International
Federation for Information Processing, vol. 278, pp.
349-363.

Gkoulalas-Divanis, A., Verykios, VS., 2009. Hiding
sensitive knowledge without side effects. Knowledge
and Information Systems, 20(3), pp. 263-299.

Gkoulalas-Divanis, A., Verykios VS., 2010. Association
rule hiding for data mining. Springer.

Guo, Y., 2007. Reconstruction-based association rule
hiding. SIGMOD Ph.D. Workshop on Innovative
Database Research.

Han J., Pei J., Yin, Y., 2000. Mining frequent patterns
without candidate generation. In ACM SIGMOD
International Conference on Management of Data, pp.
1-12.

Hong, T-P., Lin, C-W., Yang, K-T., Wang, S-L., 2013.
Using tf-idf to hide sensitive itemsets. Appl Intell,
38(4), pp. 502–510.

Keer, S., Singh, A., 2012. Hiding sensitive association rule
using clusters of sensitive association rule.
International Journal of Computer Science and
Network, 1(3).

Kuo, Y., Lin, PY., Dai, BR., 2008. Hiding frequent patterns
under multiple sensitive thresholds. Database and
Expert Systems Applications Lecture Notes in
Computer Science, 5181, pp. 5-18.

Lin, J., Liu, JYC., 2007. Privacy preserving itemset mining
through fake transactions. 22nd ACM Symposium on
Applied Computing, pp. 375-379.

Li, YC., Yeh, JS., Chang, CC., 2007. MICF: An effective
sanitization algorithm for hiding sensitive patterns on
data mining. Advanced Engineering Informatics, 21,
pp. 269–280.

Menon, S., Sarkar, S., Mukherjee, S., 2005. Maximizing
accuracy of shared databases when concealing sensitive
patterns. Information Systems Research 16(3), pp. 256-
270.

Mohaisen, A., Jho, N., Hong, D., Nyang, D., 2010. Privacy
preserving association rule mining revisited: Privacy
enchancement and resource effcieny. IEICE
Transactions on Information and Systems 93(2), pp.
315-325.

Moustakides, GV., Verykios, VS., 2008. A maxmin
approach for hiding frequent itemsets. Data and
Knowledge Engineering 65(1), pp. 75-89.

Oliveira, SRM., Zaiane, OR., 2002. Privacy preserving
frequent itemset mining. International Conference on
Data Mining, pp. 43-54.

Oliveira, SRM., Zaiane, OR., 2003. Algorithms for
balancing privacy and knowledge discovery in
association rule mining. Seventh International
Database Engineering & Applications Symposium, pp.
54-63.

Oliveira, SRM., Zaiane OR., Saygin, Y., 2004. Secure
association rule sharing. Advances in knowledge
discovery and data mining, 8th Pacific-Asia
Conference, pp. 74–85.

Pei, J., Han, J., Mao, R., 2000. CLOSET: An efficient
algorithm for mining frequent closed itemsets. ACM-
SIGMOD Int. Workshop Data Mining and Knowledge
Discovery, pp. 11–20.

Pontikakis, ED., Tsitsonis, AA., Verykios, VS., 2004. An
experimental study of distortion-based techniques for
association rule hiding. 18th Conference on Database
Security, pp. 325–339.

Sakenian Dehkordi, M., Naderi Dehkordi, M., 2016.
Introducing an algorithm for use to hide sensitive
association rules through perturbation technique.
Journal of AI and Data Mining.

Stavropoulos, E.C., Verykios, V.S., Kagklis, V., 2016. A
transversal hypergraph approach for the frequent
itemset hiding problem. Knowledge and Information
Systems, pp. 625-645.

Sun, X., Yu, PS., 2004. A border-based approach for hiding
sensitive frequent itemsets. 5th IEEE International
Conference on Data Mining, pp. 426-433.

Sun, X., Yu, PS., 2007. Hiding sensitive frequent itemsets
by a border-based approach. Computing Science and
Engineering 1(1), pp. 74-94.

Verykios, VS., Emagarmid, AK., Bertino, E., Saygin, Y.,
Dasseni, E., 2004. Association rule hiding. IEEE

Transactions on Knowledge and Data Engineering,
16(4), pp. 434-447.

Verykios, V.S., Divanis, A.G., 2004. A survey of
association rule hiding methods for privacy. Advances
in Knowledge Discovery and Data Mining: 8th Pacific-
Asia Conference.

Weng, C., Chen, S., Che Lo, H., 2008. A novel algorithm
for completely hiding sensitive association rules.
Eighth International Conference on Intelligent Systems
Design and Applications IEEE.

Wu, YH., Chiang, CM., Chen, A., 2007. Hiding sensitive
association rules with limited side effects. IEEE
Transactions on Knowledge and Data Engineering,
19(1), pp. 29-42.

Yildiz, B., Ergenc, B., 2012. Integrated approach for
privacy preserving itemset mining. Lecture Notes in
Electrical Engineering Volume 110, pp. 247-260.

Zheng, Z., Kohavi, R., Mason, L., 2001. Real world
performance of association rule algorithm. Proceedings
of 7th ACM-SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 401–406.

