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Abstract: Sulfur oxides are some of the major existing pollutants that directly affect the atmosphere. In combination 
with particles and air humidity, produce the most detrimental effects attributed to air pollution. The treatment 
of gas streams containing sulfur dioxide and its subsequent recovery is, therefore, a matter of great importance 
for the elimination of the environmental burden of their emission into the atmosphere. In this research, a fuzzy 
model of a flue-gas desulfurization plant is developed with the aim of dealing with two optimizations 
problems. The first one, is centered in finding the amount of liquid that should be injected into the plant in 
order to optimize the SO2 absorption process. The second one, is the development of a tool to help to size the 
absorption tower (find the right dimension), given the optimum amount of liquid derived from the previous 
goal. The results obtained, although preliminary, are reliable and useful for chemical engineering plant design.  

1 INTRODUCTION 

The sources of emission of flue gas pollutants are 
varied, they come mainly from industrial processes of 
the petrochemical industry, energy industry as 
thermal plants, or in industries with its own system of 
generation of energy by means of boilers or gas 
turbines. Other sources of minority emissions come 
from the use of fossil fuels in transport or heating 
boilers in residential buildings. 

Sulfur oxides are some of the major existing 
pollutants that directly affect the atmosphere. These 
include sulfur dioxide and sulfur trioxide. 

Sulfur dioxide (SO2) is a colorless gas with a 
strong, irritating and toxic odor that is usually 
contained in small traces of fossil fuels. The main 
source of SO2 generation comes from the burning of 
fossil fuels and it is estimated that large industrial 
complexes account for approximately 90% of SO2 
emissions. Other sources of anthropological SO2 may 
be metallurgical industrial processes, paper industry 
and the production of sulfuric acid. 

Considering the physicochemical properties of 
SO2 and the volume in which it is generated, residual 

SO2 is considered as one of the most important threats 
to the environment. 

Sulfur oxides in combination with particles and 
air humidity produce the most detrimental effects 
attributed to air pollution. It affects, among others, 
visibility (atmospheric haze), materials (metal 
corrosion, tissue deterioration, etc.) and health 
(respiratory system irritation and chronic respiratory 
problems), vegetation (necrosis in plants).  It also 
produces the acid rain, which can be caused by dry 
deposition (gas and particle settling from the 
atmosphere) and wet deposition (acid rain, fog and 
snow), causing a phenomenon of acidification of 
natural sources of water and leaching of soil nutrients. 

It is also important to note that sulfur oxides, 
together with other pollutants such as nitrogen oxides 
and particulates, cause transboundary air pollution, 
and their emission into the atmosphere is a matter of 
global concern. 

The treatment of gas streams containing sulfur 
dioxide and its subsequent recovery is, therefore, a 
matter of great importance for the sustainable 
management of resources and the elimination of the 
environmental   burden   of   their   emission  into    the 



atmosphere. 
At present Flue-Gas Desulfurization (FGD) is 

commonly used in industrial processes to control SO2 
emissions. Within these processes we can find 
numerous techniques including wet (aqueous 
solution) and dry (limestones) scrubbers, adsorption 
systems (active carbon) and catalytic or regeneration 
systems. 

Catalytic systems allow the valorisation of SO2, 
obtaining by-products (such as sulfuric acid or 
elemental sulphur) which can be exploited as a raw 
material. These technologies are based on a first stage 
where SO2 is transferred from air current to an 
aqueous solution. 

In these research, a wet scrubber included in an 
elemental sulphur recovery process is presented, from 
which data have been generated to model its behavior. 

The modeling is performed using the 
methodology of the Fuzzy Inductive Reasoning (FIR) 
with a double objective. On the one hand, study the 
amount of liquid that must be injected into the plant 
in order to optimize the SO2 absorption process. On 
the other hand, it is tried to size the absorption tower, 
looking for the best Empty Bed Residence Time 
(EBRT) given the amount of optimum liquid found in 
the previous objective. 

Section 2 presents the flue-gas desulfurization 
plant designed and developed. The FIR methodology 
chosen for this study is introduced in Section 3. 
Section 4 presents the experimentation and the results 
obtained for the two objectives proposed. Finally, a 
discussion and the conclusions are presented. 

2 THE FLUE-GAS 
DESULFURIZATION (FGD) 
PLANT  

The FGD plant is based on wet absorption carried out 
on a spray column. The scrubber consisted of a 6 cm 
diameter and 30 cm height column, and an 11 cm 
diameter and 20 cm height liquid reservoir.  

Fresh liquid phase was continuously fed (without 
recirculation) assuring a constant composition. 
Conductivity and pH were monitored in the liquid 
effluent. The concentration of SO2 in the air streams 
was monitored using a selective electrochemical 
sensor. The FGD plant designed and developed is 
presented in Figure 1. 

The FGD plant was operated as a spray column 
since this type of scrubber presents several 
advantages. This type of column is the simplest and 
most robust because it does not contain a packing 

material to favours mass transfer. Therefore, this 
system is the low loss of pressure produced with 
respect to other available absorption systems. 

The transfer of SO2 from gas phase to liquid phase 
is the key factor in this process, limiting the removal 
efficiency (RE). For this reason, mass transfer 
between both phases is favoured in spray columns by 
increasing the interface area and thereby the mass 
transfer rate (Green and Perry, 2008). With this 
purpose liquid is dispersed into the polluted gas as 
small droplets (as shown in Figure 2).  

In the spray column presented herein, liquid phase 
was continuously injected into the column, using a 
spray-nozzle, as 50 μm droplets. At the same time, the 
SO2 rich-gases were fed counter-currently to improve 
the SO2 transfer mechanisms (Sinnot, 2012). 

 

 

Figure 1: FGD plant picture. 

Considering SO2 solubility in aqueous solutions, 
water was selected as absorbent solution due to its 
high availability and low cost (Kohl and Nielse, 
1997). The absorption of SO2 into water occurs 
following these equations: 
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By these reactions, SO2 was simply removed from 
the polluted air stream, forming an acidic solution 
residue of the absorption. 



 

Figure 2: Spray column scheme. 

3 THE FUZZY INDUCTIVE 
REASONING (FIR) 
METHODOLOGY 

 

Figure 3: Schematic representation of the Fuzzy Inductive 
Reasoning (FIR) methodology. 

The conceptualization of the Fuzzy Inductive 
Reasoning (FIR) methodology arises from the 
General Systems Theory (GSPS) proposed by Klir 
(1969). This modeling and qualitative simulation 
methodology is based on systems behavior rather than 
on structural knowledge. It is able to obtain good 
qualitative relations between the variables that 
compose the system and to infer the future behavior 
of that system. It also has the ability to describe 
systems that cannot easily be described by classical 
mathematics (e.g. differential equations), i.e. systems 
for which the underlying physical laws are not well 
understood. FIR structure is schematically presented 
in Figure 3.  

FIR consists of four main processes, namely: 
fuzzification, qualitative model identification, fuzzy 
forecast and defuzzification. The fuzzification 
process converts quantitative data stemming from the 
system into fuzzy data, which consist of a triplet 
containing the class, the membership and side values 
(Nebot et al., 2012; 2010). The qualitative model 

identification process is responsible for finding causal 
and temporal relations between variables and 
therefore for obtaining the best model that represents 
the system. 

A FIR model is composed of a mask (model 
structure) and a pattern rule base (behaviour matrix). 
An example of both is presented in Figure 4. 

The qualitative model identification process 
evaluates which mask has the highest prediction 
power by means of an entropy reduction measure, 
called the quality (Q) of the mask. The mask with the 
maximum Q value is the optimal one. Once the best 
mask has been identified, it can be applied to the 
qualitative data obtained from the system resulting in 
a particular fuzzy pattern rule base, also called 
behavior matrix in FIR nomenclature (see Figure 4).  

 

Figure 4: FIR qualitative model identification process 
(described below). 

Once the FIR model is available, the prediction can 
take place using the FIR inference engine, called 
fuzzy forecast process, which is a specialization of the 
k-nearest neighbor rule commonly used in the pattern 
recognition field. In this research a k = 5 is chosen. 
Finally, defuzzification is the inverse process of 
fuzzification. It allows converting the qualitative 
predicted output into quantitative values that can then 
be used as inputs to an external quantitative model. 
For a deeper insight into FIR methodology the reader 
is referred to (Nebot et al., 2012; 2010). 

3.1 The Concept of Mask in FIR: 
Feature Selection Process 

In FIR, a mask candidate matrix is the ensemble of all 
possible masks. The mask candidate matrix contains 
elements of value -1, where the mask has a potential 
m-input (mask input), a value +1 where the mask has 
its m-output (mask output), and a 0 value to denote 
forbidden connections. Each negative element in the 
mask denotes a possible causal relation with the 
output. A good mask candidate matrix to determine a 



predictive model for a system with four input and one 
output variables is shown in Figure 5. 

 

x 
t 

u1 u2 u3 u4 y1 

t - 2t -1 -1 -1 -1 -1 

t - t -1 -1 -1 -1 -1 

t -1 -1 -1 -1 +1 

Figure 5: Example of mask candidate matrix. t-t means a 
time stamp in the past and t-2t two time stamps in the past. 

Starting from the candidate matrix the qualitative 
model identification process searches through all 
legal masks of complexity two, i.e. all masks with a 
single m-input and finds the best one; it then proceeds 
by searching through all legal masks of complexity 
three, i.e. all masks with two m-inputs and finds the 
best of those; and it continues in the same manner 
until the maximum complexity has been reached. 
This strategy corresponds to an exhaustive search of 
exponential complexity. 

Each of the possible masks is compared to the 
others with respect to its forecasting power, which is 
maximal when the associate entropy measure is 
minimal. The Shannon entropy measure is used to 
determine the uncertainty associated with forecasting 
a particular output state given any legal input state. 
The Shannon entropy relative to one input state is 
calculated using the Equation presented in (1). 

 

 (1)

where p(o|i) is the conditional probability of a certain 
m-output state o to occur, given that the m-input state 
i has already occurred. It denotes the quotient of the 
observed frequency of a particular state divided by 
the highest possible frequency of that state. The 
overall entropy of the mask is then computed as the 
weighted sum of the entropy over all input states 
(Equation 2). 
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where p(i) is the probability of that input state to 
occur. The highest possible entropy Hmax is obtained 
when all probabilities are equal, and zero entropy 
corresponds to totally deterministic relationships. A 
normalized overall entropy reduction Hr is defined as 
described in Equation 3. 
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Hr is a real-valued number in the range between 0.0 

and 1.0, where high values indicate an improved 
forecasting power. 

From a statistical point of view, every state should 
be observed at least five times (Law and Kelton, 
1991). Therefore, an observation ratio, Or, is 
introduced as an additional contributor to the overall 
quality measure: 
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where: nleg is the number of legal m-input states, n1x 

is the number of m-input states observed only once, 
n2x is the number of m-inputs states observed twice, 
and so on. The overall quality of a mask, Q, is then 
defined as the product of its uncertainty reduction 
measure, Hr, and its observation ratio, Or: 

rr OHQ    (5)

An example of a mask is presented in Figure 6. 
 

x 
t 

u1 u2 u3 u4 y1 

t - 2t -1 0 0 -2 0 
t - t 0 0 0 0 -3 

t 0 -4 0 0 +1 

Figure 6: Example of mask (model structure). 

As mentioned before, each negative element in the 
mask is called an m-input (mask input). It denotes a 
causal and temporal relation with the output, i.e. it 
influences the output up to a certain degree. The 
enumeration of the m-inputs is immaterial and has no 
relevance. Let us now address the second issue related 
to the model identification process of FIR 
methodology. How is the pattern rule base obtained 
from the mask? This process is illustrated in Figure 4. 
The mask can be used to ‘flatten’ dynamic 
relationships into pseudo-static relationships. The left 
side of Figure 4 shows an excerpt of the qualitative 
data matrix that stores the class values. The dashed 
box symbolizes the mask that is shifted downwards 
along the class value matrix. The round shaded 
‘holes’ in the mask denote the positions of the m-
inputs, whereas the square shaded ‘hole’ indicates the 
position of the m-output.  The class values are read 
out from the class value matrix through the ‘holes’ of 
the mask, and are placed next to each other in the 
behaviour matrix that is shown on the centre of Figure 
4. Here, each row represents one position of the mask 
along the class value matrix.  It is lined up with the 
bottom row of the mask.  Each row of the behaviour 
matrix represents one pseudo-static qualitative state 
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or qualitative rule (also called fuzzy pattern rule) 
(Nebot et al., 2012; 2010).  

4 EXPERIMENTS AND RESULTS 

As mentioned previously, in this research it was 
studied the use of the FIR methodology to model the 
FGD plant. From the model obtained, two important 
aspects of the proper plant where optimized. The 
main goals addressed in this work are twofold:  
 

 To find the amount of liquid that should be 
injected into the plant in order to optimize the SO2 
absorption process. 
 

 To develop a tool to help to find the right 
dimension of the absorption tower, by obtaining 
the best EBRT given the optimum amount of 
liquid derived from the previous goal.   
 

This section, addresses the modelling of both 
goals and presents the results obtained.   

4.1 Experimental Data Set 

The set of data available for this study has been 
obtained from the FGD plant presented in section 2. 
The first 9 parameters described in Table I correspond 
to the input parameters of the plant, whereas the 
output parameter is in the last row of the table, i.e. the 
amount of SO2 obtained after the desulfurization 
process.  

A set of 269 experiments have been performed 
changing the values of some of the input parameters 
described in Table I, such are QL, QG, SO2I and pH. 

Table I: Parameters of the plant. 

QL Liquid injected into the plant
QG Gas injected into the plant
pHI Initial pH
SO2I Initial SO2 (SO2 at the 

beginning of the cleaning 
process)

SO4
2 Sulfate 

TLIQUID Liquid temperature 
TGAS Gas temperature 
EBRT Empty Bed Residence Time 

(meaning volume of biofilter 
divided by the incoming 
airflow)

L/G Relation between the input 
liquid and the gas 

SO2F Final SO2 (SO2 at the end of the 
desulfurization process) 

4.2 FIR Model of the FGD Plant 

The next step is to find a FIR model that describes as 
much accurately as possible the behavior of the plant 
extracting the knowledge from the data set available. 

Notice, that each data instance represents a 
specific plant condition measurement and its 
corresponding final SO2 obtained when the 
desulfurization process is finished. Therefore, each 
instance is time independent from each other. That 
means that the FIR mask candidate matrix has, in this 
research, only one row, since no temporal relations 
should be studied between the variables involved.  

All variables in this research (described in Table 
I), have been discretized into three classes, using 
different discretization algorithms, i.e. EFP (equal 
frequency partition), EWI (equal with interval), etc., 
depending on the specific characteristics of the data.  

It should be mentioned here, that variables SO4
2 

and TGAS contain missing values in almost all their 
measurements, therefore, they have been removed 
from the modeling.   

The qualitative identification process of the FIR 
methodology has been used to obtain the mask 
(model structure) and the pattern rule base (set of 
rules containing system’s behavior). The mask 
obtained with the highest quality is presented in 
Figure 7. 

As can be seen from the mask shown in Figure 7, 
FIR encountered that the most relevant variables 
involved in the prediction of the final SO2 are the 
liquid injected into the plant (QL), the initial SO2 

(SO2I) and the empty bed residence time (EBRT).  
 

x 
t 

QL QG pHI SO2I TLIQUID EBRT L/G SO2F 

t -1 0 0  -2 0 -3 0 +1 

Figure 7: Optimal mask encountered for the FGD plant. 

With this three input variables it is possible to predict 
quite accurately the main behaviour of the plant.  

This FIR model has been validated by predicting 
a subset of the available data, not used in the training 
process, getting a Mean Square Error (MSE) measure 
in percentage of 10.4%, that is an acceptable result.  

Once a validated FIR model is available, the next 
step is to try to optimize two important aspects of the 
FGD plant: 1) the amount of liquid that should be 
injected into the plant in order to optimize the SO2 
absorption process; 2) the right dimension (size) of 
the absorption tower, by obtaining the best EBRT 
given the optimum amount of liquid derived from the 
previous goal.  

 



4.3 Amount of Liquid Injected into the 
Plant 

The objective in this experiment is to look for the 
amount of liquid that must be injected into the FGD 
plant in order to optimize the process of absorption of 
the sulphur dioxide (SO2).  

With this goal in mind, the FIR model of the FGD 
plant, described in the previous section, is used as 
shown in Figure 8, to predict SO2F. In this 
experiment, the EBRT value is set to 0.8 seconds and 
for different initial values of SO2 (SO2I), the optimum 
amount of liquid is found, i.e. the amount of liquid to 
be injected into the plant, which gives less sulphur 
dioxide at the exit. 

As can be seen in Figure 8, the recode process of 
FIR methodology is applied to each of the three 
relevant variables encountered by the mask, i.e. QL,   
SO2I and EBRT. The input variables, already 
converted from quantitative to qualitative values, are 
the inputs of the FIR prediction process, which uses 
the mask of Figure 7 and the pattern rule base 
extracted out of it, to perform the prediction.  Finally, 
the predicted SO2F value is converted again to a 
quantitative value by means of the regeneration 
process of FIR. 

The simulation results obtained for this 
experiment, given an SO2I value of 4000 ppmv, are 
shown in Figure 9. The upper plot of Figure 9 presents 
the final SO2, given an initial SO2 of 4000 ppmv. The 
lower plot shows the increment applied to the QL 
variable during simulation, that ranges from 14 l/h to 
26 l/h. 

As can be seen from this simulation, the lowest 
SO2F value is obtained when the amount of liquid 
injected into the plant is of almost 19 l/h.  

Figure 10 shows the mesh obtained when several 
simulations are performed using different initial 
values of SO2.  

 

Figure 9: SO2F prediction results obtained given an SO2I 
value of 4000 ppmv, an EBRT of 0.8 seconds and different 
QL values. 

In Figure 10, it can be seen that for SO2I values less 
than 5000 ppmv, a minimum QL value of around 18 
l/h is obtained in each curve. For higher SO2I values, 
the model found predicts that the amount of SO2 that 
is absorbed does not depend on the liquid injected into 
the plant. 

4.4 Right Dimension of the Absorption 
Tower 

The goal of this experiment is to develop a tool to help 
to find the right dimension (size) of the absorption 
tower, by obtaining the best empty bed residence time 
(EBRT) given the optimum amount of liquid derived 
from the previous goal, i.e. 18 l/h. 
 

 

 

Figure 8: Simulation experiment of the amount of liquid injected into the plant using SIMULINK. EBRT, QL and SO2I input 
variables are discretized by means of the recode function and the FIR prediction module is used to obtain the predicted values 
that are then regenerated by using the regeneration function of FIR. 
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Figure 10: Simulation results of the SO2F for different 
values of SO2I (from 3400 to 5500ppmv) and QL (from 14 
to 16 l/h). 

With this new goal in mind, the FIR model of the 
FGD plant, described in the previous section, is used 
as shown in Figure 11, to predict SO2F.  

In this experiment, the QL value is set to 18 l/h 
(optimal value obtained in the previous experiment), 
and for different initial values of SO2 (SO2I), the 
optimum value of EBRT is found, i.e. the dimension 
of the absorption tower, which gives less sulphur 
dioxide at the exit. The same comments of Figure 8 
apply to Figure 11. 

Two examples of the simulation results obtained 
for this experiment are shown in Figures 12 and 13. 

In Figure 12 the SO2F prediction results obtained 
by the FIR model for an initial SO2 of 2000 ppmv, a 
QL of 18 l/h, and changing the EBRT values from 0 
to 100 seconds, are presented.  

Figure 13 shows the SO2F prediction results in the 
same conditions except that now the SO2I is set to 
4000 ppmv.  
 

 

Figure 12: SO2F prediction results obtained given an SO2I 
value of 2000 ppmv, a QL of 18 l/h and different values of 
EBRT. 

For an initial SO2I value of 2000 ppmv the optimal 
EBRT value is 2.48 seconds, whereas for a value of 
4000 ppmv, the optimal EBRT is increased until a 
value of 3.84 second. Notice that EBRT represents 
the time that the gas is inside the column. 
Figure 14 shows the mesh obtained when several 
simulations are performed using different values of 
SO2I. 
 
 
 
 
 
 
 
 
 
 

 

Figure 11: Simulation experiment of the right dimension of the absorption tower using SIMULINK.  

S
O

2F



 
Figure 13: SO2F prediction results obtained given an SO2I 
value of 4000 ppmv, a QL of 18 l/h and different values of 
EBRT. 

 

Figure 14: Simulation results of the SO2F for different 
values of SO2I (from 1000 to 11000 ppmv) and EBRT (from 
2 to 10 seconds). 

In almost all the simulations represented in this mesh 
the EBRT local minima is encountered in the range 
[2, 4]. From this figure, it is clear that higher time 
exposure of the gas into the plant does not imply a 
reduction of the SO2F.  

5 DISCUSSION AND 
CONCLUSSION 

In this research a first step towards the modelling of a 
FGD plant by means of the fuzzy inductive reasoning 
(FIR) methodology is performed. A FIR model is 

obtained starting from a set of 269 experiments 
performed in a real FGD plant that uses a spray 
column. The set of registered experiments have been 
performed changing the values of some of the input 
parameters, such as QL, QG, SO2I and pH. 

It is quite clear that 269 experiments is not enough 
data to obtain a whole accurate and reliable FGD 
plant model. However, in this work it has been 
demonstrated that FIR model is able to capture the 
knowledge of part of the space defined by the input 
parameters in an efficient way and use it to optimize 
several aspects of the FGD plant.  

In this work two optimizations goals have been 
achieved. The first one, is centered in finding the 
amount of liquid that should be injected into the plant 
in order to optimize the SO2 absorption process. The 
second one, is the development of a tool to help to 
find the right dimension of the absorption tower, by 
obtaining the best EBRT given the optimum amount 
of liquid derived from the previous goal.  

The results obtained are useful for chemical 
engineering plant design and future developments 
involving more data experiments will be performed. 
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