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Abstract: Local and regional temperature response to the global temperature rising is a matter of relevance in terms of
climate change impacts assessment. However, in developing countries, the estimation of this response has
been hampered, mainly, due to the lack of regional climate models and of higher computational power. This
work analyzes the high-resolution warming signal over Mexico as function of the global mean temperature
using Adaptive Neuro-Fuzzy Inference Systems. The geographical array of Fuzzy Inference Systems are pre-
sented as warming patterns that were used to project the temperature trend, in the 21st century, under the four
Representative Concentration Pathways. We based on the assumptions that the global temperature increase
is the dominant influence on future climate and that the local response is determined by the local geographic
conditions. The resulting scenarios shows that the northwestern and south central regions present the highest
warming values, likewise, all maps display a region where the projected warming remains uncertain. The
proposed methodology is presented as an alternative pattern scaling technique whose results pretend to serve
as an analysis tool of potential impacts of regional warming over Mexico, and lead to the generation and
improvement of adaptation and mitigation strategies.

1 INTRODUCTION

The Global Circulation Models (GCMs) and Earth
System Models (ESMs) are proper representations of
the internal climate dynamics. Despite of their con-
tribution to the better understanding of the climate
system, models have reached the point in which even
by adding more computational power, the uncertainty
of the results continue to be high simply because of
the system’s natural variability ((Baumberger et al.,
2017); (Knutti and Sedláček, 2013); (Flato et al.,
2013)). For instance, (Deser et al., 2012) used 40
initial conditions to run the Community Climate Sys-
tem Model version 3, which projections were an ex-
ample of the large influence of natural variability on
the actual climate, whereas the global temperature in-
creased for all the projections, the local temperature
greatly differed among them, in fact, there were some
places that even got cooler than the climatology.

The treatment of this variability requires tools able
to work with complex and uncertain processes but, at
the same time, sufficiently capable to communicate its

results in an easy and efficient way. It is for this rea-
son that the use of Fuzzy Logic is gaining ground in
the climate change research field as it lets to analyze
these complex processes and climate system variabil-
ity from a different perspective since it works with
no strict boundary values. In addition, Fuzzy Logic
works with linguistic variables that allows to generate
closer results to common language, from which the
understanding and communication of climate change
effects becomes more intuitive.

The high spread of the results coming from the
GCMS has presented a major challenge to the im-
plementation of action plans and decision making.
This has compelled the improvement of the frame-
work with which the topic has been approached and
studied (Hallegatte, 2009; Heal and Millner, 2014;
Runting et al., 2017), highlighting the importance of
local scale research. For this reason, the geospatial
distribution, also known as warming patterns, of the
warming signal turns out to be a useful parameter for
providing an indicative potential temperature for dif-
ferent world regions (Collins et al., 2013). These tem-



perature patterns have been calculated by averaging,
in every grid cell (usually 1◦ × 1◦ latitude-longitude
resolution), the projected mean temperature given by
the GCMs with the global temperature, using the Cou-
pled Model Intercomparison Project Phase 5 (CMIP5;
(Taylor et al., 2012)) under the four Representative
Concentration Pathways (RCPs; (van Vuuren et al.,
2011)). The spatial resolution is coarse since it is
given by the GCMs themselves and the temporal hori-
zons are at the end of the 21st and 22nd century
(Collins et al., 2013).

The role of warming patterns in vulnerable regions
is fundamental to assess the regional implications of
different degrees of warming (James et al., 2017), par-
ticularly over developing countries. Mexico, which
due to its geographic and climatic characteristics, as
well as its economic and social conditions, is a coun-
try that expects to be highly vulnerable to climate
change effects. Therefore, projections at regional and
local scale represent key pieces for the implementa-
tion of action plans at state and municipal levels.

The aim of this paper is to present high-resolution
(0.5◦×0.5◦ latitude-longitude) warming patterns over
Mexico, of the climate scenarios given by the four
RCPs, constructed through Adaptive Neuro-Fuzzy In-
ference Systems (ANFIS; (Jang, 1993)), as well as
proposing an alternative method to the actual pat-
tern scaling techniques. Consequently, these results
may reinforce the assessment of the potential impacts
of regional warming over Mexico and thus lead to
the improvement and creation of local mitigation and
adaptation strategies.

The following section depicts the methodology
with which the warming patterns were constructed
by inferring the local warming response to the global
temperature increments observed in the 20th century
and the beginning of the 21st century, it also outlines
the procedure for the patterns validation. Section 3
portrays the projected temperature trends using the
fuzzy patterns given the RCP2.6, RCP4.5, RCP6 and
RCP8.5 scenarios. And finally, section 4 elaborates
on the conclusions and the future work.

2 METHODS

We projected the local temperature changes over
Mexico through the global mean temperature
changes, during the observed period from 1901 to
2015, by inferring the local response to the global
temperature increments. Basing on the assumption
that the local response is mainly influenced by the
local geographic conditions (e.g. latitude, longi-
tude, height, orography, etc.), we assumed that the

response during the 20th century and the beginning
of the 21st century will be the same for the rest of
the 21st century, since the geographic conditions will
remain the same. The reason we used temperature
changes and not the temperature itself was because,
at evaluating the ANFIS with the RCP temperature
scenarios, some values will be out of the temperature
range with which the ANFIS was trained.

The global data used were the annual mean tem-
perature anomalies of the CRUTEM4 (Osborn and
Jones, 2014) and the HADCRUT4 (Morice et al.,
2012) datasets. The first consists in anomalies over
land and the latter in anomalies over land and ocean.
For the local data, we used the CRU TS3.24 (Harris
et al., 2014) database, composed by monthly absolute
temperature values gridded at a 0.5◦ × 0.5◦ latitude-
longitude resolution, which was converted to temper-
ature anomalies with respect to the 1961-1990 period.

First, we applied the algorithm proposed by (Rato
et al., 2008) to filter the warming signal from the
two global time series and the gridded dataset. Be-
cause some of the calculated trends still displayed os-
cillations and, because we wanted to work with the
simplest trend curves, these were smoothed adjusting
them to a quadratic polynomial.

Then, we computed 10 year temperature differ-
ences, in both global and local data, of thirteen dif-
ferent periods between 1901 and 2015. This time step
election was made based on that the differences com-
puted every 10 years during the observed period were
expected to be similar in magnitude to the differences
computed over the trends of the RCP temperature sce-
narios using a time step of 5 years.

Finally, using the Matlab’s Fuzzy Logic Tool-
box, we constructed one ANFIS per each grid cell of
the CRU TS3.24 dataset. The created Fuzzy Infer-
ence Systems (FIS) consist in Sugeno type systems
(Sugeno, 1985) that use the grid partition method for
the fuzzy rules induction. We defined three triangu-
lar membership functions for each input and a linear
function for each output. To train the FIS, we used
three epochs and a hybrid optimization method, i.e.,
an integration of backpropagation and least squares
method.

In every FIS, the domain of the input (global
temperature change) is divided in three fuzzy sets
that represent the linguistic categories defined as low,
medium and high, so that every value in the domain
has its membership degree to the fuzzy sets, ranging
from zero (no membership) to one (full membership)
(Zadeh, 1965).

Then, the adjusted IF-THEN rules (Zadeh, 1975;
Takagi and Sugeno, 1985) relate the membership de-
gree µ of the input parameters to a linear function.



Figure 1: Absolute error between the observed temperature
trends and the ones projected with the fuzzy warming pat-
terns, of year 2015, using the global time series of the a)
CRU-Global, b) GISTEMP and c) GHCN v3.0.0 datasets.

Since the domain is divided in three fuzzy sets, there
are three IF-THEN rules and three linear functions.
The local temperature change trend is computed by
a weighted mean of the IF-THEN rules’ results, in
which the weight is given by the membership degree
that characterize the rule (eq. 1).

dTlocal =
3

∑
i=1

(ai(dTglobal)+ ci)µi

3
(1)

Where ai and ci are the scalars adjusted by the
ANFIS and, altogether eq. 1, determine the scale fac-
tor. The linear relation between the local temperature
change and the global change allows to analyze this
relationship through a simple model, even though, it
have a limited capacity to represent the real complex-

ity of the climate parameters interaction since the cli-
mate is not a linear system. However, this is counter-
acted by the fuzzy inference process, as it infers the
interactions between parameters which can be linear
or not. In this way, the FIS of every grid cell rep-
resents the local climate response to the global tem-
perature increments, which is determined by the local
geographic conditions.

In order to validate the set of FIS, optimized
through the ANFIS, we projected the local change
trends using the temperature fuzzy patterns of the ob-
served period 1901-2015. The historic global temper-
ature time series used were the CRU TS3.24 (here-
after called CRU-Global, to avoid confusion with the
spatially disaggregated values of CRU TS3.24 used
to train the ANFIS) and the global means of the com-
bined land-surface air and sea-surface water tempera-
ture anomalies of the GISTEMP ((GISTEMP Team.,
2017); (Hansen et al., 2010)) and the GHCN v3.3.0
(Mitchell and Jones, 2005) datasets. The trend of the
three time series was filtered and, by repeating the
same procedure mentioned above, we projected the
local temperature trends. For this, the initial year of
the projections was 1905, from which the results of
the 10 year local temperature changes were added up
until the final temperature trend, at year 2015, was ob-
tained. The validation metrics used were the absolute
error and the linear correlation coefficient, along with
Taylor diagrams (Taylor, 2001), with which we ana-
lyzed the performance of the projections at all time
steps.

The cumulative absolute error between the ob-
served (CRU TS3.24 dataset) and the projected tem-
perature trends, after projecting more than 100 years,
is around 0.05◦C for most of the country using the
CRU-Global (fig. 1a), GISTEMP (fig. 1b) and GHCN
(fig. 1c) global means. In the three experiments, the
absolute error is higher over the northeastern and the
south central regions. With the CRU-Global the error
values are around 0.1◦C and 0.15◦C while, with the
GISTEMP and the GHCN, the error stays predomi-
nantly around 0.1◦C and 0.25◦C.

The correlation coefficient of the observed and
projected temperature trends (fig. 2a) and of the ob-
served and projected temperature change trends (fig.
2b) present high values, staying always above 0.85
and 0.98 respectively. Meanwhile, the Taylor diagram
(fig. 2c) shows the performance of the last projection,
the temperature trend of year 2015, with the three
datasets. All the datasets present a correlation coef-
ficient above 0.99 and a RMSD less than 0.1. The
performance of the projections of all the time steps
(fig. 5, sec. Appendix) also present a correlation co-
efficient above 0.9 and a RMSD less than a 0.1.



Figure 2: Validation of the fuzzy patterns using the global
temperature time series of the CRU-Global, GISTEMP and
GHCN v3.3.0 datasets where a) shows the correlation co-
efficient of the observed and projected temperature trends,
b) the correlation coefficient of the observed and projected
temperature change trends and c) the Taylor diagram of the
last temperature trend projection (year 2015).

3 RESULTS

With the global temperature scenarios, derived from
the GCMs runs corresponding to the CMIP5, we pro-
jected the future temperature trend over Mexico using
the fuzzy patterns. This means that for RCP2.6 we got
32 projections; for RCP4.5, 42; for RCP6, 25 and for
RCP8.5, 39. In total, we got 138 trend projections.

We adjusted the projections time step to obtain the
local temperature trend changes every 5, 3, 3 and 2
years for the RCPs 2.6, 4.5, 6 and 8.5 respectively, and
not every 5 years as it was already established (sec.
2). This adjustment was done because the changes
in global temperature computed with these time steps

Figure 3: Temperature trend projections in Mexico over one
grid cell given the GCMs runs corresponding to the CMIP5,
for the RCP2.6 (blue), the RCP4.5 (clear blue), the RCP6
(orange) and the RCP8.5 (red) scenarios. The shaded areas
represent the distribution of the individual models and the
dashed lines represent the mean of the GCMs runs.

were equivalent to the changes computed every 10
years during the last century, the same time step used
to train the FIS.

Taking a random grid cell as example, the pro-
jected temperature trends (fig. 3) result to be quite
well defined, given each RCP, as they stay confined
inside the same curve envelopes. The distribution of
the individual models (shaded areas) can be seen as
the uncertainty, i. e., as the range of possible values
a grid cell can take under each RCP scenario. Also,
it can be seen that this range becomes more spread
along with every projection.

Likewise, the warming spatial distribution (fig. 4)
shows that the projected scenarios are clearly differ-
entiated between each other. They were computed by
averaging all the models runs of every RCP. Since for
each one we used a different time step, the year of
the last projection was also different in every one of
them, this is, for RCP2.6 the last projection was at
year 2095, for RCP4.5 and RCP6 it was at 2096, and
for RCP8.5 it was at 2097.

In all the scenarios, the largest temperature incre-
ments are localized in the northwestern region as well
as over the south central region. Under RCP2.6 (fig.
4a) the temperature increments are between 2◦C and
4◦C over the northeast and between 0◦C and 2◦C over
the south, with maximum values of 5◦C. The warming
patterns in RCP4.5 (fig. 4b) and in RCP6 (fig. 4c) are
between 4◦C and 8◦C in the northwest and between
2◦C and 4◦C over the south, being slightly higher in
the RCP6 scenario. In both, the maximum warming is
about 8◦C. RCP8.5 (fig. 4d) is the scenario where it is
observed a warming between 6◦C and 10◦C over al-
most the whole country, being the maximum warming
of 12◦C.

Contrary to the rest of the country, the northeast-



Figure 4: Warming signal over Mexico of the last pro-
jected year for a) RCP2.6 (2095), b) RCP4.5 (2096), c)
RCP6 (2096) and d) RCP8.5 (2097) using the fuzzy warm-
ing patterns. Cross hatched areas represent regions where
the warming trend is not significant due to the high climatic
variability.

ern region shows negative temperature trends. How-
ever, this region corresponds to the grid cells where,
according with the method in (Collins et al., 2013),
the internal variability has a strong influence (cross-
hatched areas) so that the projected trends are not sig-
nificant and the local warming remains uncertain.

4 CONCLUSIONS

Climate change has been cataloged as one of the most
important challenges threatening humankind, the an-
ticipated knowledge about its probable impacts will
let to the implementation of proper measures to face
them. Particularly, the knowledge of the local warm-
ing and its impacts is crucial for developing countries
like Mexico, where the climate change effects will en-
hance their priority problems.

One of the main methods used to estimate regional
climate signals associated with global mean tempera-
ture increases is the pattern scaling, which assumes
a linear relationship between the global temperature
and local change. However, even though some pro-
cesses can be understood through the assumption of a
linear relation, the climate is such a complex system
that many other climate processes can not, which pro-
vides little validity to models and conclusions based
on a linear behavior (Stocker et al., 2001). Here is
where Fuzzy Logic importance lies, since it can deals,
through a different approach, with the complexity and
the uncertainty of the climate system processes, being

thus, a powerful tool in the absence of high computa-
tional capacity.

The methodology, with which we constructed the
warming patterns presented here, lets the visualiza-
tion of the local evolution of the temperature change
over Mexico at different time scales under the four
RCPs. Basically, once having the GCM runs, it is rel-
atively simple to generate any future scenario. Also,
it is necessary to remark that the produced results are
temperature trends, as it is only projected the warm-
ing signal, thereby, it can not produce the maximum
and minimum values that the climate variability could
generate. Another issue that can be seen as a limita-
tion is that the linear relationship, between the local
and global temperature, implies that the temperature
changes will be independent of the emission pathways
and, consequently, of the type of forcing.

Therefore, for being the first attempt of its kind
in Mexico, future efforts will focus in the enhance-
ment of this methodology. Furthermore, the purport
is to compare these results with the official scenarios
that the Mexican government uses in its national com-
munication on climate change, generated by (Cavazos
et al., 2013), as well as to develop maps directed to
identify the years in which specific warming levels
are going to be reached and outstripped.

With this in mind, we expect that this temperature
patterns may support the assessment of potential lo-
cal impacts and serve as a basis for policy makers to
develop adaptation and mitigation strategies.
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APPENDIX

The temperature from 1905 to 2015, projected ev-
ery 10 year with the fuzzy warming patterns, shows
a high performance at every time step (fig. 5). In
all the Taylor diagrams it can be seen that the corre-
lation coefficient keeps near or above 0.9. Also, the
RMSD is maintained under 0.1 and the standard de-
viations are always near around the ones of the refer-
ences. The dataset which shows the best performance
is the GHCN v3.0.0 as the correlation coefficient is
always above 0.95, the RMSD keeps always under



Figure 5: Taylor diagrams displaying the performance of the temperature projections from 1905 to 2015, projected every 10
years, for the validations of the fuzzy warming patterns using the CRU-Global, GISTEMP and GHCN v3.3.0 datasets.

0.1 and the standard deviations are the nearest ones
to the references, except in the last projection, where
its standard deviation differ more than the other two
datasets.


