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Abstract: This study deals with the investigation of three immiscible fluids in a microchannel consisting of two parallel 

plates. These fluids were composed of two electric conducting fluids and one electric nonconducting fluid. 

The concept of pumping a nonconducting fluid using interfacial viscous shear stress was applied accounting 

for the effect of the electroosmosis and pressure gradient. The electric potential and the flow parameters were 

found resolving the Poisson-Boltzmann equation and the modified Navier-Stokes equations for a hydraulic 

steady fully-developed laminar flow of an incompressible fluid. The results achieved revealed the influence 

of the wall and interfacial zeta potentials, the pressure difference, and the dynamic fluid viscosity ratio on the 

flow characteristics of the three immiscible fluids. The developed approach was compared with a model of 

two immiscible flows to highlight the relevance of this work. 

1 INTRODUCTION 

Microfluidic transport is widely used in the fields of 

micropumps, micropower generation, chemical 

processes, biomechanical processes and heat transfer, 

where surface effects dominate the flow behavior 

within microdevices (Dituba Ngoma G. et al., 2005). 

The precise knowledge of the immiscible fluids flow 

behavior in microchannels is essential to develop 

high-performance microfluidic devices to pump a 

nonconducting fluid by means of conducting fluids. 

This can be achieved taking relevant fluid parameters 

and microchannel configurations into consideration 

in the planning, design and optimization phases. Most 

previous investigations of pressure gradient and 

electroosmotic flow in microchannels were 

performed using a single conducting fluid with the 

zeta potentials at the microchannel walls (Dhinakaran 

S. et al., 2010; Vainshtein P. et al., 2002; and Brask 

A. et al., 2005). There, the effects of surface potential, 

electric field, ionic concentration and channel size on 

the velocity distribution and the effect of friction on 

flow characteristics. Furthermore, Yong et al., 2011 

numerically analyzed the immiscible kerosene-water 

two-phase flows in microchannels connected by a T-

junction using lattice Boltzmann method. In addition, 

Dituba Ngoma G. et al., 2005; and Gao Y. et al., 2005, 

conducted a study on two immiscible fluids 

consisting of a conducting fluid and a nonconducting 

fluid in a microchannel. The electric field and the 

pressure gradient were applied.  Moreover, an 

analytical model of mixed electroosmotic/pressure 

driven three immiscible fluids in a rectangular 

microchannel was developed by Li H. et al., 2009. 

They analyzed the effects of viscosity ratio, 

electroosmosis and pressure gradient on velocity 

profile and flow rate. Thorough analysis of previous 

works clearly demonstrated that the research results 

obtained are specific to the microchannel 

configuration depending on considered key 

parameters of fluids and microchannels.  Therefore, 

in this work, to enhance the fluid flow of 

nonconducting fluids and performances of the flow in 

microchannels, an investigation was conducted 

considering the fluid flow of the three immiscible 

fluids in a two parallel plates to deeply analyze the 

impacts of the zeta potential, the pressure difference 

and the dynamic viscosity on the flow characteristics 

of the three fluids.  
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2 MATHEMATICAL 

FORMULATION 

The model of three immiscible fluids in two parallel 

plates considered in this study is shown in Fig. 1. The 

two plates separated by a distance h. The 

microchannel is filled of two electric conducting 

fluids, the fluid 1 and the fluid 3, and one non-

conducting fluid, the fluid 2. These fluids have 

different dynamic viscosities which are specified by 

µ1, µ2, and µ3, respectively. The interface positions 

are specified using the heights h1 and h2. The forces 

acting on the conducting fluids include the pressure 

force and the electric body force generated by the 

double layer electric field. For the non-conducting 

fluid, only the pressure force acts on this.  

 

Figure 1: Model of three immiscible fluids. 

To develop the governing equations for the liquid 

flow of the three immiscible fluids in a microchannel 

accounting for the electroosmosis, the following 

assumptions were made: (i) A steady state, one-

dimensional and laminar flow was assumed; (ii) no-

slip boundary conditions were assumed; (iii) a planar 

interface between the immiscible fluids was assumed; 

(iv) the fluid shear stress and the flow velocity were 

the same at the fluid interface; (v) the fluids were 

assumed to be incompressible; and (vi) the gravity 

effect was negligible. 

2.1 Electric Potential Field 

According to the electrokinetic (Dituba Ngoma G. et 

al., 2005; and Li H. et al., 2009), the equation of the 

electric potential of ions, , in y direction for the 

conducting fluids is given as:  
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where  is the dielectric constant of the solution, 0 

the permittivity of vacuum, and  e the net  charge 

density. 

The net charge density can be written assuming a 

symmetric electrolyte as:  
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where e, kb, n, T and z0  are the elementary charge,  

Boltzmann constant, bulk concentration of ions,     

absolute temperature and valence of ions, 

respectively. 

Combining the Eqs. 1 and 2, and using the Debye-

Hückel approximation, Eq. 3 is found: 
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The net charge density Eq. 2 can be rewritten as:  
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Introducing the Debye-Hückel parameter in Eq. 4, the 

last can be expressed by:           
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0e

.                         (5) 

 

To solve Eq. 3, the following boundary conditions for 

the conducting fluids are used: 
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1 for the bottom wall, 

2 for the interface of the fluids 

1 and 2,  

3  for the interface of the 

fluids 2 and 3,  

4 for the upper wall. 
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Using the dimensionless parameters and variables, 

Eq. 3 can be formulated as: 
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between the plates, it equal to h3. 

The boundary conditions of Eq. (7) in dimensionless 

form can be written as for the conducting fluid “fluid 
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For the conducting fluid “fluid 3”. They are expressed 

by: 
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In addition, the net charge density in dimensionless 

form is given by: 
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When considering the expression of * , Eq. 10 

becomes: 
**
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The solutions of Eqs. 7 and 11 can be written as:  
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where A and B are determined accounting for the 

boundary conditions. In general case, these boundary 

conditions can be expressed as follows:   
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Substituting Eq. 13 for * in Eq. 12, Eq. 14 is found 
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From Eq. 14, A and B are determined:  
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Furthermore, for the conducting fluids “fluid 1” 

and “fluid 2”, A and B are calculated using Eq. 16: 
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2.2 Hydrodynamic Field 

The modified Navier-Stokes equations for the fluids 

1, 2, and 3 can be expressed by: 
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where 
dx

dp
Px   assuming that the pressure gradient 

in x direction is constant. E and Ee are the electric 

field and the electric body force, respectively. 

Eq. 17 represents three second-order differential 

equations. Thus, six boundary conditions are required 

in order to solve them. The no-slip boundary 

conditions can be written as based on Fig.1: 
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Moreover, the boundary conditions for the same 

velocity at the interfaces of the fluids 1 and 2, and the 

fluids 2 and 3 can be formulated as follows: 
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In addition, the boundary conditions for the 

interfacial shear stresses are described as: 
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Solving Eq. 17 accounting for the boundary 

conditions, the dimensionless velocities are 

determined: 
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Smoluchowski electroosmotic velocities for the 

conducting fluids “fluid 1” and “fluid 3”, 

respectively. They are given by: 
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The dimensionless boundary conditions can be 

formulated as: 
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where 
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Accounting for the boundary conditions Eq. 23, the 

system of six equations in matrix form are found in 

order to determine the constants a1 ,a2 ,a3 ,a4 ,b1 and 

b2: 

6x1       6x1                    6x6              

,

G

G

G

G

G

G

b

b

a

a

a

a

 

0      -    0         0    0

 0     -    0     0     0    1

1-   h-   1   h     0    0

1-   h-   0    0      1  h

0       0     1    1      0    0

0       0     0    0     1     0

6

5

4

3

2

1

2

1

4

3

2

1

*
2

*
2

*
1

*
1





















































































 

 

 

 

 

(24) 
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2.3 Dimensionless Flow Rates 

The flow rate between the parallel plates is 

determined by integrating the flow velocity 

distribution over the cross-sectional area. For the 

fluids 1, 2, and 3, the dimensionless flow rates are 

expressed respectively by: 
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3 NUMERICAL RESULTS AND 

DISCUSSION 

Numerical simulations were done using the 

MATLAB software to investigate and analyze the 

effects of the wall and interfacial zeta potentials, the 

pressure difference, the interface position, the 

dynamic viscosity ratio on flow characteristics of the 

three immiscible fluids in a microchannel between 

two plates. The main reference data for all simulation 

runs in this study are given as: 0 = 8.854 x 10-12 C/(m 

V),   = 80, n∞ = 6.022 x 1020 1 m³, z0  = 1 , E =15000 V/m , 

T = 298 K, kb = 1.381 x 10-23 J/K, 1 = 0.001 Pa s,  = 1  , 

 = 1, L = 0.02 m, and u0 =1 m/s. 

3.1 Impact of the Zeta Potential 

To analyze the impact of the zeta potential on the 

electric potential for the conducting fluids “fluid 1” 

and “fluid 3”, all parameters were kept constant 

except the wall, and interfacial zeta potentials. Fig. 2 

shows the dimensionless electric potential as a 

function of the dimensionless height of the fluid with 

the dimensionless wall and the interfacial zeta 

potentials as parameters. There, it can be seen that the 

effect of the zeta potential is very pronounced on the 

microchannel bottom and upper walls, and the 

interface positions of the three fluids. The electric 

potential is zero for the nonconducting “fluid 2”. 

Investigation of Three Immiscible Fluids in a Microchannel Accounting for the Pressure Gradient and the Electroosmotic Flow

431



 

 

 

 

Figure 2: Dimensionless electric potential versus 

dimensionless height. 

3.2 Impact of the Pressure Difference 

To investigate the impact that the pressure difference 

in a microchannel has on the flow velocity, the 

dynamic viscosity ratios, the wall zeta potentials, the 

interfacial zeta potentials, the interface positions; the 

pressure differences were varied using the 

dimensionless values. Fig. 3 shows the dimensionless 

flow velocity distribution in the microchannel cross-

section. From this figure, it can be observed that the 

dimensionless flow velocities for the three 

immiscible fluids increase when the dimensionless 

pressure difference between the microchannel inlet 

and outlet increases. This well explain the pumping 

of the nonconducting fluid “fluid 2” by means of two 

conducting fluids “fluid 1” and “fluid 3”. 

 

Figure 3: Dimensionless flow velocity versus 

dimensionless height. 

Moreover, Fig. 4 represents the dimensionless 

interfacial flow velocity for the three fluids as a 

function of the dimensionless pressure difference, 

where it can be seen that the dimensionless interfacial 

flow velocity increases with the dimensionless 

pressure difference.  

 

Figure 4: Dimensionless interfacial flow velocity versus 

dimensionless pressure difference. 

3.3 Impact of the Dynamic Viscosity 
Ratio 

To examine the effect of the dynamic viscosity ratio 

“” between the fluids 1 and 2 on the interfacial flow 

velocity, and the flow velocity; all parameters were 

kept constant, except the dynamic viscosity ratio “”. 

Fig. 5 shows the distribution of the dimensionless 

flow velocity for the three fluids as a function of the 

dimensionless height of the fluid with the dynamic 

velocity ratio ““ as parameter. From this figure, it 

can be seen that the dimensionless flow velocities for 

the three fluids decrease when the dynamic viscosity 

ratio “ “ increases.  This can be explained by the fact 

that the resistance to fluid flow increases when the 

dynamic viscosity of a fluid increases. 

 

Figure 5: Dimensionless flow rate versus dimensionless 

height. 

3.4 Model Comparison 

The developed model of the three immiscible fluids 

in microchannel consisting of two parallel plates was 

compared with the model of two immiscible fluids in 

two parallel plates (Dituba Ngoma G. et al., 2005). 

The results obtained shows that the maximum 

dimensionless velocity was achieved for the model of 

three fluids as depicted in Fig. 6. That highlights the 

relevance to consider the concept of two conducting 

fluids to drive a conducting fluid. 
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a) Model of two immiscible fluids 

 

b) Model of three immiscible fluids 

Figure 6: Model comparison. 

4 CONCLUSION 

In this work, a model of the flow of three immiscible 

fluids in a microchannel formed by two parallel plates 

was investigated. The concept of pumping an electric 

nonconducting fluid using two electric conducting 

fluids was applied. The combined effect of the 

pressure gradient and electroosmosis was accounted 

for to identify the flow parameters that improve the 

flow of the nonconducting fluid. Based on the 

modified Navier-Stokes and the Poisson-Boltzmann 

equations, numerical simulations were accomplished. 

The results obtained demonstrate that, among other 

things, the dynamic viscosity ratios, the zeta 

potentials and the pressure difference affects the flow 

behavior in a microchannel in a strong yet different 

manner. A comparison between the developed 

approach of three fluids and a model of two fluids was 

done to show the relevance of this study.  
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