
Clustering-based Approach for Anomaly Detection in XACML Policies

Maryem Ait El Hadj1, Meryeme Ayache1, Yahya Benkaouz2, Ahmed Khoumsi3

and Mohammed Erradi1

1NDSR Group, ENSIAS, Mohammed V University in Rabat, Morocco
2Conception and Systems Laboratory, FSR, Mohammed V University in Rabat, Morocco

3Dept. Electrical & Comp. Eng., University of Sherbrooke, Sherbrooke, Canada

Keywords: ABAC, XACML Policies, Clustering, Similarity Computation, Anomaly Detection.

Abstract: The development of distributed applications arises multiple security issues such as access control. Attribute-
Based Access Control has been proposed as a generic access control model, which provides more flexibility
and promotes information and security sharing. eXtensible Access Control Markup Language (XACML) is
the most convenient way to express ABAC policies. However, in distributed environments, XACML policies
become more complex and hard to manage. In fact, an XACML policy in distributed applications may be
aggregated from multiple parties and can be managed by more than one administrator. Therefore, it may
contain several anomalies such as conflicts and redundancies, which may affect the performance of the policy
execution. In this paper, we propose an anomaly detection method based on the decomposition of a policy into
clusters before searching anomalies within each cluster. Our evaluation results demonstrate the efficiency of
the suggested approach.

1 INTRODUCTION

Attribute-Based Access Control model (ABAC)
(Yuan and Tong, 2005) has been suggested as a
generic access control model. ABAC considers a set
of attributes, based on which access decisions should
be taken. The attributes are any information that can
be assigned to a subject (i.e. the user or the process
that takes action on a resource), a resource (i.e. the
entity that is acted upon by a subject) and an envi-
ronment (i.e. the operational and technical context in
which the information access occurs).

eXtensible Access Control Markup Language
(XACML) (Anderson et al., 2003) is the most conve-
nient way to express ABAC model. In fact, XACML
defines an XML schema that supports the ABAC
model. Each XACML policy contains a set of rules,
each rule being composed of attributes and a decision
effect (deny/permit), that decides over a given request
to access a given resource. XACML policy represen-
tation is more expressive and fine-grained. However,
in large collaborative platforms, processing and ana-
lyzing XACML policies might be very hard and com-
plicated. This is due to the massive amount of infor-
mation that should be considered as attributes. There-

fore, XACML policies may contain several anoma-
lies, such as redundancies and conflicting rules, which
may affect the performance of the policy execution.
Detecting automatically such anomalies in large sets
of complex policies is primordial.

In this paper, we propose an approach to detect
anomalies within an XACML policy. Inspired by
(Benkaouz et al., 2016), the suggested approach is
based on decomposing the policy into clusters before
searching anomalies within each cluster. More pre-
cisely, given an XACML policy, we proceed as fol-
lows: (1) extract the rules of the XACML policy, (2)
compute a similarity score for each pair of rules, (3)
regroup similar rules into clusters. Finally, (4) de-
tect anomalies within each cluster. In this paper, we
consider three main categories of anomalies, redun-
dancy, conflict of modality and conflict of fraction
permission. The evaluation results demonstrate the
efficiency of the suggested approach.

The rest of the paper is organized as follows: Sec-
tion 2 present related work. In section 3 we present
how rules are expressed and the similarity measure
adopted. The clustering algorithm is presented in sec-
tion 4. Section 5 describes the policy anomaly detec-
tion method. Section 6 reports experimental results.

548
Hadj, M., Ayache, M., Benkaouz, Y., Khoumsi, A. and Erradi, M.
Clustering-based Approach for Anomaly Detection in XACML Policies.
DOI: 10.5220/0006471205480553
In Proceedings of the 14th International Joint Conference on e-Business and Telecommunications (ICETE 2017) - Volume 4: SECRYPT, pages 548-553
ISBN: 978-989-758-259-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Finally, the conclusion and expected future work are
drawn in section 7.

2 RELATED WORK

Regarding anomalies classification, Khoumsi et al.
(Khoumsi et al., 2016) categorize the anomalies into
two categories: aconflicting anomalyand anoncon-
flicting anomaly. On the other hand, Jonathan et al.
(Moffett and Sloman, 1994) have classified the poli-
cies conflicts into four different categories: conflict of
modality (permit/deny), conflict between imperative
and authority policy (obliged/deny), conflict of prior-
ities occurs when the resources are limited to meet
the demands upon them, and conflict of duties when a
subject has two tasks and maintains them simultane-
ously.

In the context of XACML, Mourad et al. (Mourad
et al., 2015) use UML to offer model-driven specifi-
cation of XACML policies in order to detect conflict-
ing and redundant rules. Hu et al (Hu et al., 2013)
consider representing XACML policies as decision
trees to detect conflicts and redundancies. Another
representation of XACML policies was proposed by
Stepien et al. (Stepien and Felty, 2016). They repre-
sent XACML policies using Prolog’s built-in power-
ful indexing system.

Contrary to the works discussed above, our work
takes into account a large set of attributes. It proposes
an anomaly detection method performed in each clus-
ter of rules, instead of the whole policy set, which
implies less processing time. An advantage of our
anomaly detection method is that it is performed be-
fore even enforcing the policy in the system, which
offers the ability to correct the anomalies and gain a
significant improvement in policy decision time.

3 RULES EXPRESSION AND
SIMILARITY COMPUTATION

3.1 Rules Expression

In an XACML policy, each rule has three categories of
attributes (subject, resource and environment). Each
of the 3 categories is indicated byx = s, r or e. A
rule is specified by an action decision to be taken if
the attributes satisfy a given condition (or profile).
The action decision is noted in the formXact, where
X is Permit or Deny to indicate that the actionact
is permitted or denied, respectively.Permitread and
Denywrite are two examples of action decisions.

The profile of a rule is specified by assigning a
set of values to all attributes. We use the expres-
sion attr name∈ attr valuesto assign a set of val-
uesattr valuesto an attribute identified byattr name.
The assignments corresponding to the same category
are separated by a comma ”,”, while a semicolon ”;”
means the passing to the next category. The seman-
tics of the rule is that its action decision is taken if
for each assignmentattr name∈ attr values, the at-
tributeattr nametakes one of the values belonging to
attr values. The formal expression of a rule profile is
therefore as follows:

Xact(attr name1 ∈ attr values1, ...;attr namei =
attr valuesi, ...)

Example : Permitread (position ∈ {doc}, spe-
cialist ∈{generalist} , team∈ {oncology}, experi-
ence∈ {+10} , grade∈ {Registrar} , department
∈ {oncology}; type ∈ {PR/CAT} , formatType∈
{AST} , degreeOfConfidentiality∈ {Secret} ; Orga-
nization∈ {EMS} , time∈ {8-12}).

The attributes of theSub jectcategory are: posi-
tion, specialist, team, experience, grade, department.
The attributes of theResourcecategory are: type, for-
matType, degreeOfConfidentiality. The attributes of
theEnvironmentcategory are: Organization, time.

3.2 Similarity Computation

The rule similarity measure is a functionSrule that as-
signs a similarity scoreSrule(r i , r j) to any two given
rules r i and r j . Such a score reflects the degree of
similarity betweenr i andr j , with respect to their sub-
ject, resource and environment attributes values.

The formal definition of the similarity score
Srule(r i , r j) is given in Equation 1, which is the sum
of the three similarity scoresSs(r i , r j), Sr(r i , r j) and
Se(r i , r j) related to the three attribute categories (sub-
ject, resource and environment), which are weighted
by valuesWs, Wr andWe respectively.Ws, Wr andWe
can be chosen to reflect the relative importance to be
given to the similarity computation. The weight val-
ues must satisfy the constraint:Ws+Wr +We = 1.

Srule(r i , r j) =WsSs(r i , r j)+WrSr(r i , r j)+WeSe(r i , r j)
(1)

The assignment of weights relies on user needs
(i.e., the weight values can be specified depending on
a specific application). For example, if a user would
like to compute the similarity score ofSub jectat-
tributes regardless ofResourceandEnvironmentat-
tributes, he can setWs to 1, andWr andWs to 0. In
this paper, the same value13 is assigned to the three
weights by default.

Before continuing, we need to define the follow-
ing notation:

Clustering-based Approach for Anomaly Detection in XACML Policies

549

- ATTx(r i) is the set of attribute names of category
x in rule r i .

- Satt(r i , r j) is a score reflecting the similarity ofr i
andr j based uniquely onatt which is a common
attribute ofr i andr j .

- Watt(r i , r j) is a nonnegative value that reflects the
relative importance of an attributeatt among all
the common attributes ofr i and r j of the same
category asatt. The sum of all these weights is
equal to 1, i.e.,∑att∈AT Tx(r i)∩ATTx(r j)Watt = 1 for
each categoryx.

- Vatt(r i) is the set of values assigned to the attribute
att in the ruler i .

- | X | denotes the number of elements belonging to
a setX.

Each similarity scoreSx(r i , r j) (for x= s, r, e) of
Eq. 1 is computed based on Eq. 2. This latter consists
in summing the scoresSatt(r i , r j) for every attribute
att of categoryx that is common tor i andr j . Besides,
everySatt(r i , r j) is weighted byWatt(r i , r j).

Sx(r i , r j) = ∑
att∈ATTx(r i)∩ATTx(r j)

Watt(r i , r j)Satt(r i , r j)

(2)
Equation 3 shows how each similaritySatt(r i , r j)

is computed is computed. This equation consists in
estimating the number of elements that are common
to Vatt(r i) andVatt(r j) relatively to the total number
of elements inVatt(r i)∪Vatt(r j).

Satt(r i , r j) =
|Vatt(r i)∩Vatt(r j) |
|Vatt(r i)∪Vatt(r j) |

(3)

Example:
r1: Permitread (Group ∈ IBM, Designation

∈ {Professor, PostDoc, TechStaff}; File-Type ∈
{Source, Documentation, Executable}; Time∈ [8:00,
18:00]).

r2 : Permitread (Group ∈ IBM, Designation∈
{Student, TechStaff}; File-Type ∈ {Source, Docu-
mentation}; Time∈ [12:00, 16:00]).

For the Sub ject category, we have two
attributes, Group (g) and Designation (d).
For r1, Vg(r1) = {IBM} and Vd(r1) =
{Pro f essor,PostDoc,TechSta f f}. While for r2,
Vg(r2) = {IBM} andVd(r2) = {Student,TechSta f f}.

For the Resourcecategory, we have the at-
tribute File-Type (f t). Where for r1 Vf t(r1) =
{Source,Documentation,Executable} and for r2,
Vf t(r2) = {Source,Documentation}.

For the Environmentcategory, we have the at-
tribute Time (t). For r1, Vt(r1) = [8:00, 18:00]. And
for r2, Vt(r2) = [12:00, 16:00].

The similarity betweenr1 andr2 is computed us-
ing Eqs (1, 2, 3) as follows:

Use of Eq. (1). Assuming thatWs=Wr =We=
1
3:

Srule(r1, r2) =
1
3Ss(r1, r2)+

1
3Sr(r1, r2)+

1
3Se(r1, r2)

Use of Eq. (2). Each of the aboveSs(r1, r2),
Sr(r1, r2) and Se(r1, r2) is computed as follows, as-
suming thatWg(r1, r2) =Wd(r1, r2) =

1
2, Wf t(r1, r2) =

Wt(r1, r2) = 1:

- Ss(r1, r2) =
1
2 Sg(r1, r2)+

1
2 Sd(r1, r2)

- Sr(r1, r2) = Sf t(r1, r2)

- Se(r1, r2) = St(r1, r2)

Use of Eq. (3). Each of the aboveSg(r1, r2),
Sd(r1, r2), Sf t(r1, r2) andSt(r1, r2) is computed as fol-
lows:

- Sg(r1, r2) =
|Vg(r i)∩Vg(r j)|
|Vg(r i)∪Vg(r j)| =

|{IBM}|
|{IBM}| = 1

- Sd(r1, r2) =
|Vd(r i)∩Vd(r j)|
|Vd(r i)∪Vd(r j)| =

|{TechSta f f}|
|{Pro f essor,PostDoc,TechSta f f,Student}| =

1
4

- Sf t(r1, r2) =
|Vf t (r i)∩Vf t (r j)|
|Vf t (r i)∪Vf t (r j)| =

|{Source,Documentation}|
|{Source,Documentation,Executable}| =

2
3

- St(r1, r2) =
|Vt (r i)∩Vt (r j)|
|Vt (r i)∪Vt (r j)| =

|[12:00,16:00]|
|[8:00,18:00]| =

4
10

By combining all these equations, we obtain:

- Ss(r1, r2) =
1
2 Sg(r1, r2)+

1
2 Sd(r1, r2) =

1
2 +

1
2 ×

1
4 = 0.62

- Sr(r1, r2) = Sf t(r1, r2) =
2
3

- Se(r1, r2) = St(r1, r2) =
4
10

- Srule(r1, r2) = 1
3Ss(r1, r2) + 1

3Sr(r1, r2) +
1
3Se(r1, r2) =

1
3 ×0.62+ 1

3 × 2
3 +

1
3 × 4

10 = 0.56

4 POLICY CLUSTERING

Given a setS of objects, clusteringS consisting in
regrouping the objects ofS into several subsets of
S : C1,C2, ..., where eachCi contains objects that are
similar, based on a given similarity metric. There ex-
ist many clustering algorithms, such as the K-nearest
neigbors (KNN) algorithm (Bhatia et al., 2010). We
propose a clustering algorithm that regroups the rules
of the policy into clusters, based on the similarity
score presented in Section 3. Let us say that two rules
are similar if their similarity score is greater than a
given threshold. Based on previous works (Lin et al.,
2013; Guo, 2014), the considered threshold is 0.8.
Our clustering method has been developed so that for

SECRYPT 2017 - 14th International Conference on Security and Cryptography

550

every obtained clusterC, every rule inC is similar to
at least another rule ofC. That is: for every ruler i in
a clusterC, there exists another ruler j in C such that
Srule(r i , r j)≥ threshold.

The inputs of our clustering algorithm are:

- a policyP which is a set of rules

- a list S1, S2, ... , where eachSk is the set of simi-
larity scores depending on the rulerk.

The algorithm proceeds iteratively as follows:
For k = 1,2, ... : by analyzingSk, we construct a

new cluster consisting ofrk and all the other rules that
are similar tork.

Then, when allSk are treated (by the above loop),
we remove every cluster that is included or equal to
another cluster.

Note that the clusters resulting from our algorithm
satisfy the following two properties:

- Each cluster contains at least one rule;

- Every rule is contained in one or more clusters.

Example: We consider a 4-rule policy whose simi-
larity scores are shown in Table 1. The setsSk are
therefore:

- S1 = {Srule(r1, r2),Srule(r1, r3),Srule(r1, r4)}
- S2 = {Srule(r1, r2),Srule(r2, r3),Srule(r2, r4)}
- S3 = {Srule(r1, r3),Srule(r2, r3),Srule(r3, r4)}
- S4 = {Srule(r1, r4),Srule(r2, r4),Srule(r3, r4)}

Iteration 1: We obtain the clusterC1 = {r1, r3},
becauseSrule(r1, r3) is the only score inS1 which is≥
0.8. Iteration 2: We obtain the clusterC2 = {r2, r4},
becauseSrule(r2, r4) is the only score inS2 which is≥
0.8. Iteration 3: We obtain the clusterC3 = {r1, r3},
becauseSrule(r1, r3) is the only score inS3 which is≥
0.8. Iteration 4: We obtain the clusterC4 = {r2, r4},
becauseSrule(r2, r4) is the only score inS4 which is
≥ 0.8. Then, the clustersC3 andC4 are removed, be-
cause they are identical to the clustersC1 andC2, re-
spectively. The constructed clusters are :C1 = {r1, r3}
andC2 = {r2, r4}.

Table 1: Example of computed similarity scores for 4 rules.

Pairs of rules similarity score
(r1, r2) 0.041
(r1, r3) 0.811
(r1, r4) 0.111
(r2, r3) 0.166
(r2, r4) 0.866
(r3, r4) 0.5

5 ANOMALY DETECTION

Let an access request denotes a subject that tries to
have a specific access to a resource under certain con-
ditions (Bonatti et al., 2002; De Capitani Di Vimercati
et al., 2007). Formally, an access requestR is speci-
fied by an action (e.g., read, write ...) and a value
for each attributeatt; such value is denotedvatt(R).
We say thatR matches a ruler i (we may also say:r i
matchesR), if for every attributeatt of r i , we have
vatt(R) ∈Vatt(r i). An anomaly in a policyP is defined
as the existence of access request matching several
rules ofP.

Statistically, the probability of anomalies between
rules increases with the similarity between rules. In
Section 4, the threshold of 0.8 has been used to de-
compose a policy into clusters, because it is estimated
that most anomalies are between rules whose similar-
ity score is≥ 0.8 (Bhatia et al., 2010). For this rea-
son, we propose to detect anomalies within the same
cluster. We propose to classify anomalies in two cat-
egories as presented in (Khoumsi et al., 2016):

- An Anomaly without Conflict: occurs when
there exists an access request that matches two (or
more) rules that have the same action decision (i.e.
Xact, whereX is Permit or Deny to indicate that
the actionact is permitted or denied).

- An Anomaly with Conflict: occurs when there
exists an access request that matches two (or
more) rules that have different action decisions.
We consider :conflict of modalitiesandconflict of
fraction permissions. The first type occurs when
two rules matched by the same access request
have contradictory action decisions. The second
type occurs when two rules matched by the same
access request have ambiguous action decisions
(e.g., Permitread and Permitread,write represent a
conflict of fraction permissions).

Regarding anomalies detection, we consider the
following notions:

- r i is included inr j (notedr i ⊆ r j), if they have the
same attributes, and for every of their attributes
att, we have:Vatt(r i)⊆Vatt(r j).

- r i is said compatible withr j (notedr i ∩ r j 6= /0),
if they have the same attributes, and for every of
their attributesatt, we have:Vatt(r i)∩Vatt(r j) 6= /0.

Note that ifr i andr j are identical (which implies
Srule(r i , r j) = 1), then they are compatible and each
one is included in the other one.

Clustering-based Approach for Anomaly Detection in XACML Policies

551

5.1 Detecting Redundancy Anomaly

Consider two rulesr i and r j in a clusterC. We say
thatr i is redundant tor j , if removingr i fromC (while
keepingr j in C) does not change the global effect of
the rules ofC. Redundancies may affect the perfor-
mance of a policy as well as slow down the system,
because verifying if an access request respects a pol-
icy depends on the size (i.e. the number of rules) of
the policy. For this reason, we consider redundancy
as anomaly.

Proposition 1. Consider a cluster Ck and two of its
rules ri and rj whose action decisions are Xa and Yb,
respectively. ri is redundant to rj iff :

1. ri is included in rj , and
2. Xa =Yb.

Example: Consider the following rulesr1 andr2:

- r1: Permitread (Position ∈ {Doctor, Nurse};
File Type∈ {Source, Documentation}; time ∈
[8:00, 18:00])

- r2: Permitread (Position∈ {Nurse}; File Type∈
{Documentation}; time∈ [8:00, 18:00])

Sincer2 is included inr1 and the two rules have
the same action decision (Permitread), then r2 is re-
dundant tor1.

5.2 Detecting Anomalies with Conflict

Consider a policyP, two rulesr i andr j are conflicting
if they can match the same profile and have different
access decisions.

Proposition 2. Given a cluster Ck and two of its rules
r i and rj whose action decisions are Xa and Yb , re-
spectively. ri and rj are conflicting iff :

1. ri and rj are compatible, and
2. Xa 6=Yb .

In this paper, we consider two types of anoma-
lies with conflict:conflict of fraction permissionsand
conflict of modalities.

5.2.1 Conflict of Fraction Permissions

We have a conflict of fraction permissions when in
Point 2 of Proposition 2, we havea 6= b andX =Y, i.e.
the two rules permit or deny different actions. Con-
sider the following example:

- r1: Permitread (Position ∈ {Doctor, Nurse};
File Type∈ {Source, Documentation}; time ∈
[8:00, 18:00])

- r2: Permitread/write (Position ∈ {Nurse};
File Type∈ {Documentation}; time ∈ [10:00,
18:00])

There is a conflict of fraction permissions between
r1 andr2, becauser1 andr2 are compatible and permit
different actions (read for r1, andread/write for r2).

5.2.2 Conflict of Modalities

We have a conflict of modalities when in Point 2 of
Proposition 2, we havea= b andX 6=Y, i.e. an action
is permitted by a rule and forbidden by the other rule.
Consider the following example:

- r1: Denyread (Position ∈ {Doctor, Nurse};
File Type∈ {Source, Documentation}; time ∈
[8:00, 18:00])

- r2: Permitread (Position∈ {Nurse}; File Type∈
{Documentation}; time∈ [10:00, 16:00])

There is a conflict of modality betweenr1 andr2,
becauser1 andr2 are compatible while actionread is
permitted byr2 and forbidden byr1.

6 EVALUATION RESULTS

In order to evaluate the efficiency and effectiveness
of the suggested approach, we consider synthetic
datasets. The synthetic dataset is composed of the
combination of eight subject attributes, four resource
attributes and two environment attributes. The at-
tribute values are inspired from real world (i.e., med-
ical environment).

We have implemented our approach in Java and
the experiments were performed on an Intel Core i5
CPU 2.7 GHz with 8 GB RAM. Figure 1 shows the
running time needed to process the XACML policy
entirely and output the results. The running time in-
creases with the number of policy rules in a quadratic
way. This is due to the number of the combina-
tions being computed for policy rules during the four
steps, especially in the similarity computation where
we consider brute force technique to compute the sim-
ilarity scores. Regarding ABAC-PC algorithm com-
plexity, the computational time is inO(n2) wheren is
the number of rules.

Figure 1: Running time.

SECRYPT 2017 - 14th International Conference on Security and Cryptography

552

Figure 2 shows the number of anomalies detected
regarding each type (i.e. redundancy anomaly, con-
flict of fraction permissions and conflict of modal-
ities). The number of anomalies increases with the
policy size. The obtained results can be explained by
the fact that with the increase of the police size, the
probability of having anomalies increases.

Figure 2: The number of detected anomalies.

Figure 3 shows the time gained from using clus-
tering step as a function of policy size. To compute
this metric, we run our approach without clustering.
This means that the detection step is run once on the
whole set of rules. Then, we compute the difference
in running time between the two versions of our ap-
proach (i.e., with/without clustering). As shown in
this figure, the time gained increases with the number
of policy rules.

Figure 3: Time gained from clustering step.

7 CONCLUSIONS

An XACML policy for distributed applications might
be aggregated from multiple stakeholders and could
be managed by several administrators. Therefore, it
may contain several anomalies, which may lead to
high implementation complexity. In this direction,
we have proposed an approach which is based on
decomposing the policy into clusters before search-
ing anomalies within each cluster. The evaluation re-
sults demonstrate the efficiency of the proposed ap-
proach to detect different types of anomalies. Direc-

tions for future work include the detection of other
type of anomalies, such as inconsistency and similar-
ity anomalies between two aggregated policies. As
well as the resolution of the detected anomalies.

REFERENCES

Anderson, A., Nadalin, A., Parducci, B., Engovatov, D.,
Lockhart, H., Kudo, M., Humenn, P., Godik, S., An-
derson, S., Crocker, S., et al. (2003). extensible access
control markup language (xacml) version 1.0.OASIS.

Benkaouz, Y., Erradi, M., and Freisleben, B. (2016). Work
in progress: K-nearest neighbors techniques for abac
policies clustering. InProceedings of the 2016 ACM
International Workshop on Attribute Based Access
Control, pages 72–75. ACM.

Bhatia, N. et al. (2010). Survey of nearest neighbor tech-
niques.arXiv preprint arXiv:1007.0085.

Bonatti, P., De Capitani di Vimercati, S., and Samarati, P.
(2002). An algebra for composing access control poli-
cies. ACM Transactions on Information and System
Security (TISSEC), 5(1):1–35.

De Capitani Di Vimercati, S., Foresti, S., Samarati, P., and
Jajodia, S. (2007). Access control policies and lan-
guages.International Journal of Computational Sci-
ence and Engineering, 3(2):94–102.

Guo, S. (2014). Analysis and evaluation of similarity met-
rics in collaborative filtering recommender system.
Master’s thesis, lapland university of applied sciences.

Hu, H., Ahn, G.-J., and Kulkarni, K. (2013). Discovery and
resolution of anomalies in web access control policies.
Dependable and Secure Computing, IEEE Transac-
tions on, 10(6):341–354.

Khoumsi, A., Erradi, M., and Krombi, W. (2016). A formal
basis for the design and analysis of firewall security
policies. Journal of King Saud University-Computer
and Information Sciences.

Lin, D., Rao, P., Ferrini, R., Bertino, E., and Lobo, J.
(2013). A similarity measure for comparing xacml
policies. IEEE Transactions on Knowledge and Data
Engineering, 25(9):1946–1959.

Moffett, J. D. and Sloman, M. S. (1994). Policy conflict
analysis in distributed system management.Journal of
Organizational Computing and Electronic Commerce,
4(1):1–22.

Mourad, A., Tout, H., Talhi, C., Otrok, H., and Yahyaoui,
H. (2015). From model-driven specification to design-
level set-based analysis of xacml policies.Computers
& Electrical Engineering.

Stepien, B. and Felty, A. (2016). Using expert systems
to statically detect” dynamic” conflicts in xacml. In
Availability, Reliability and Security (ARES), 2016
11th International Conference on, pages 127–136.
IEEE.

Yuan, E. and Tong, J. (2005). Attributed based access con-
trol (abac) for web services. InIEEE International
Conference on Web Services (ICWS’05), page 569.

Clustering-based Approach for Anomaly Detection in XACML Policies

553

