
Program Understanding Models: An Historical Overview and a
Classification

Eric Harth and Philippe Dugerdil
Geneva School of Business Administration, HES-SO, Tambourine 17, 1227 Carouge, Switzerland

Keywords: Program Comprehension, Comprehension Models, Understanding Strategies.

Abstract: During the last three decades several hundred papers have been published on the broad topic of “program
comprehension”. The goal was always the same: to develop models and tools to help developers with program
understanding during program maintenance. However few authors targeted the more fundamental question:
“what is program understanding” or, other words, proposed a model of program understanding. Then we
reviewed the proposed program understanding models. We found the papers to be classifiable in three period
of time in accordance with the following three subtopics: the process, the tools and the goals. Interestingly,
studying the fundamental goal came after the tools. We conclude by highlighting that it is required to go back
to the fundamental question to have any chance to develop effective tools to help with program understanding
which is the most costly part of program maintenance.

1 INTRODUCTION

As more and more source-code is inherited from the
past, often still used in production environment, and
since a high turn-over is common in the software
development industry, program maintenance is often
done at a very high cost (Tilley, 1997). Trying to
understand programs written by others involves many
different skills, the knowledge of several domains, as
well as dedicated strategies and integrated processes
in order to analyse and discover the original
programmer’s intent. During the past few decades,
many studies have been undertaken to identify what
mental models were used when writing the programs
and how these models can be recovered by reading
the source code by studying the program document-
tation or by analysing the program’s behaviour.
In this paper we intend to summarize the most
common models identified by the research commu-
nity during the last three decades as well as the
strategies and techniques used while understanding
legacy programs. The referenced research works will
be classified into different time periods since we
realized that their authors targeted different aspects of
program understanding over time. The contributions
of this paper is first to propose a synthesis of more
than 30 years of research in this field. Second, it is the
identification of three periods of time among which
the research works can be classified. Last, it is to
summarize the perspectives under which “program

understanding” has historically been studied and to
identify the remaining questions to be solved. Finally,
the referenced models we present in this work are
formatted using a common graphical modelling
syntax allowing to compare the models with each
other’s.

2 DOCUMENT STRUCTURE

In section 3 we present the five most common
understanding strategies identified during the last
three decades. Section 4 provides an explanation of
the three main periods we observed with respect to
the topic addressed by the researchers in program
understanding. The following sections 5, 6 and 7
present some of the emblematic work in each of the
periods. Section 8 contains a discussion of the
perspectives under which “program understanding”
has been studied over the years and the remaining
questions to be answered. Section 9 concludes the
paper.

3 UNDERSTANDING
STRATEGIES

As proposed by Exton (Exton, 2002) comprehension
strategies may roughly be categorized into five

402
Harth, E. and Dugerdil, P.
Program Understanding Models: An Historical Overview and a Classification.
DOI: 10.5220/0006465504020413
In Proceedings of the 12th International Conference on Software Technologies (ICSOFT 2017), pages 402-413
ISBN: 978-989-758-262-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

generic approaches addressing different needs and
involving different representation techniques. All
strategies are derived from the “Constructivism
Learning Theory” which states that learner is the
central part of the learning process, not the studied
material (Hein, 1991). This theory also suggests that
the learning process, considered a heuristic procedure
acquired through individual experiences, cannot be
standardized since each individual learns differently
at a different pace. Yet, the author noted that some
recurring understanding strategies were commonly
involved in all these disparate learning processes,
especially within the software domain.

3.1 Bottom-up Strategy

This is the simplest approach used when a developer
is not familiar with the analysed software. This
strategy starts by reading the source code statement
by statement, grouping information together
(chunking) to form more abstract information.
Grouping again and recursively these chunks into
more abstract chunks gives, at the end, an abstract
overview of what the software does in very generic
terms. This strategy is qualified as “bottom-up” since
the abstraction process start from low-level items (the
source-code) up to a global description of what the
software does and why it is written so.

3.2 Top-down Strategy

When a developer has already some prior knowledge
of a specific domain, he can make high-level
assumption about the program, even without reading
a single line of code. Starting from the GUI, the
program’s name or the documentation, he can
generate hypotheses about the program’s purpose and
validate or refine them by reading some code
fragments. With a recursive descent he will make
hypotheses on more specific features, down to
concrete source code items. This strategy is qualified
as “top-down” since the strategy starts from very
generic assumptions down to more specific ones,
until code fragments are matched.

3.3 Hybrid Strategy

This approach – originally named knowledge-based
strategy by Exton (Exton, 2002) – borrows ideas from
bottom-up and top-down strategies and mixes them
according to contextual and opportunistic needs. If
the developers are already familiar with some of the
business concepts manipulated in the code, they will
select a top-down strategies. But sometimes they will

encounter unfamiliar code structures requiring
bottom-up strategies. This opportunistic strategy is
called hybrid since it merges the two previous
strategies into a single one.

3.4 As-Needed vs Systematic Strategy

When the analysed software is large, developers
usually do not try to understand the whole system.
Rather, they will limit the time spent on a single
maintenance session by focusing their efforts to a few
part of the code only (as needed strategy). Alternati-
vely, if time is not limited, or if the intent is to
understand all the software details (for migration
purpose for instance), the developers will study the
code thoroughly so as to systematically discover the
purpose and meaning of all the code artefacts. These
dual strategies may also be applied to specific part of
the software like the components. Indeed, a buggy
component may be systematically analysed, whereas
the application may only be partially scanned to get
the contextual use of the component.

3.5 Integrated Strategy

The integrated strategy considers that the
understanding process involve several levels of
abstraction simultaneously and opportunistically. For
example, each comprehension task may launch sub-
processes with the same or another strategy among
those identified above. This approach is called an
integrated strategy since the tasks and models are
jointly participating in a more complex analysis
process.

4 UNDERSTANDING MODELS

During the last three decades, the research
community proposed several models of the mental
processes associated with code understanding. At the
same time, the software development and
methodologies have deeply evolved as well as the
programming languages and environments. In this
study we propose to review the most prominent
understanding models referred to by the program
understanding community since the 70s. In our
research, we have identified three major periods
whose models targeted different scopes and purposes,
generally driven by evolution of the technology:

 The Classical Period (before 2000). In this period
the software understanding problem was mainly
questioned by psychologists interested in software

Program Understanding Models: An Historical Overview and a Classification

403

creation and learning. All the major strategies
have been identified during this period;

 The Optimistic Period (between 2000 and 2010).
In this period, the researchers became interested
in the software understanding process, with the
intent to provide tools and techniques to enhance,
if possible automate, software development and
maintenance;

 The Pragmatic Period, (after 2010). In this
period the researchers seemed to return to the
genuine program understanding problem with
reduced ambitions on the theoretical side. They
focus on techniques to ease program maintenance.

5 CLASSICAL PERIOD

This period covers all studies conducted roughly
before the year 2000. The five most common
strategies involved in software comprehension
(Section 3) have been proposed during this very
period. Indeed, research was focused on the study of
the human behaviour and the associated knowledge
models since only limited tools, mainly text editors
and debuggers, existed at that time.

5.1 Brooks

Brooks (Brooks, 1983) defines the program
comprehension process as the reconstruction of the
mappings between the problem domain, possibly
through several intermediate levels, and the
programming domain (Figure 2). The author argues
that this mapping is built iteratively through (1)
assumptions made about the program purpose and (2)
beacons found in source code or documentation.
More precisely, he suggests that the programmer first
builds expectations about the program purpose and
the corresponding implementation details. From there
he identifies which knowledge elements should be
included in the mental model to match these
expectations. Before inclusion, these hypotheses are
validated, refined or rejected against facts found in
code or against constraints already present in the
current program’s model. In other words, the author
suggests that the understanding process starts by
creating an initial coarse guess about the generic
program’s purpose through a simple inference made
on its name (a beacon). This assumption is then
validated against other beacons found in code and
accepted, rejected or refined, if relevant. When more
beacons are discovered, new intermediate concepts
and sub-assumptions are made and the mental model
is modified accordingly. The process goes deeper and

deeper until the lowest abstraction level is reached, in
particular the most technical and code oriented
concepts.

Figure 2: Brooks model, adapted from (Brooks, 1983).

The understanding process is completed when all
the beacons found have been matched against multi-
level hypotheses, thus explaining the source code
through high level description and justification. Since
the hypothesis generation process requires a large
knowledge base and a wide experience in beacons
recognition, this theory suggests that only expert
programmers are likely to generate relevant
hypotheses and validate them against the proper
beacons. In accordance with Exton’s classification (§
3), this model is considered a top-down strategy since
high-level hypothesis are generated down to more
specific ones, until reaching beacons and
implementation structures.

5.2 Soloway and Ehrlich

Soloway and Erhlich (Soloway, 1984) propose to use
text comprehension theories to explain how
developers understand existing programs from a
linguistic point of view. Based on the these theories,
they suggest that the programmers use “plan
knowledge” and “rules of discourse” (i.e.
programming convention) to extract semantic
information while analysing source code (Figure 3).

Figure 3: Soloway and Ehrlich model, adapted from
(Soloway, 1984).

Plan knowledge, or programming plans, are generic
pattern of statements dedicated to reach some specific
goal (solve some specific problem). Each plan is
labelled with the expected goal. For example, the

ICSOFT 2017 - 12th International Conference on Software Technologies

404

search-loop-plan would be associated with the
recurrent statements used by programmers to find an
item within an array or a collection. So, it will be
stored in memory as a strategical plan associated to
the search-loop label. Thereby, while reading source
code, programmers use predefined programming
convention and programming plans to shape a
compact, goal oriented, program representation in
their memory without including too much
information details. The authors also found that the
plan identification may not use all the statements
associated to the plan, but only a part of them called
the critical lines. This leads the understanding process
to be much faster and efficient. Furthermore, through
experiments with novice and expert programmers, the
authors also showed that unplan-like programs break
programmer expectations and are more difficult to
understand for novices. This is true even if the
program respects programming conventions. This
might explain why the expert programmers are more
efficient at identifying functionalities and code
purpose, even without reading thoroughly the source
code. They can better predict which plans are
implemented in the code and what the original
programmer intend was. In accordance with Exton’s
classification (§ 3), this model is considered a top-
down strategy, since programming convention and
programming plans are pre-defined knowledge that
programmers use to recognize code structures.

5.3 Letovsky

Based on experiments conducted with four
professional programmers and two novices, Letovsky
(Letovsky, 1987) observes that the understanding
process can be viewed as an investigation process
where the subjects are making small inquiries about
the studied program (Figure 4). He suggests that the
developers, while analysing code, shape questions
about specific fragments of code, make plausible
assumptions about them (called conjectures) and
evaluate their validity through evidences found in
source code. As each conjecture is validated, the
programmer’s mental model is stepwisely built in
memory: new elements are added or removed and
relationships between objects are updated. For the
author, the mental model of the program is not a
uniform network of objects, but rather a layered
structure split into three kinds of information:
 The specification layer, defining the detailed

goals and purposes carried out by the program;
 The implementation layer, representing the code

structure and statements in subject’s memory;
 A set of connections, called annotations, linking

the specification items to the implementation
items. These links “explain” the program’s
purposes in term of its implementation.

Figure 4: Letovsky model, adapted from (Letovsky, 1987).

The understanding process, viewed as an inquiry
process, is called by the author the “assimilation
process” (Figure 4). The programmers formulate
questions (what, why, how and whether) about the
code fragments and make small conjectures about
plausible answers. Each question then raises bottom-
up or top-down inquiries, and highlights some
relationships among concrete and abstract
components of the mental model. Then, through
annotations, the programmers update their mental
model accordingly. When the mental model is
incomplete, before the analysed program is entirely
understood, the links from goals to implementations
may be tangled. Indeed, some goals may be linked to
more than one implementation items and some
implementation item be associated to multiple goals.
Hence the author suggests that the developer, viewed
as an opportunistic processor, will use a dual strategy
to partially solve conflicting interpretations and
delegate full understanding in later stage, when the
mental model will have been built more thoroughly.
The author acknowledges that many different kinds
of knowledge sources are required when doing
inquiries and generating plausible assumptions about
the code purpose. These are applied in different
conditions for different goals: plausibility prediction,
hypothesis generation, plan identification, endorse-
ment rules, symbolic simulation and so forth, in order
to finally link specifications goals to concrete
program implementation. In accordance with Exton’s
classification (§ 3), this model is considered a hybrid
strategy, since a mix of top-down and bottom-up
approaches are involved through inquiries.

5.4 Pennington

Also based upon text comprehension theories,
Pennington (Pennington, 1987) suggests that the
developers use more than one single mental model to

Program Understanding Models: An Historical Overview and a Classification

405

represent knowledge extracted from source code
(Figure 5). The key hypothesis is that at least two
models are involved in the comprehension process.
The first one is dedicated to the textual program
representation, the program model, representing the
textbase features of the program.

Figure 5: Pennington model, adapted from (Pennington,
1987).

The second one, the situation model, represents what
the programmer intended to implement, i.e. the
functional features in terms of domain model. The
author observes that the programmers, using
statements, sequences, data transformation and states,
build the program model before the situation model
and once done, the latter is shaped by applying proper
programming plans justifying the text based structures.
Furthermore, the author also suggests that, while these
models are being built, specific events, dedicated to
crosslinking the elements from both models, are
generated. These events, called connection-events,
help the developers assign contextual (situation model-
based) meaning to code logic represented in the
program model. These type of events are triggered
sporadically, while the program model is currently
being shaped. Surprisingly though, these events seem
only to be triggered during code simulation or plan
identifica-tion strategies. Experiments clearly showed
that if connection-events are missing, or triggered too
frequently, the understanding process is deeply
disturbed and becomes much less efficient. At the end
of an understanding session, the most efficient deve-
lopers are able to describe program features and functi-
onalities through a balanced set of items distributed
among both models. In accordance with Exton’s
classification (§ 3), this model is considered a bottom-
up strategy, since the situation model is built once the
textbase model has been identified from source-code.

5.5 Mayrhauser and Vans

Mayrhauser and Vans (Mayrhauser, 1995) propose to
merge the Pennington model (§ 5.4) implementing a
bottom-up strategy, with the Soloway and Ehrlich
model (§ 5.2) implementing a top-down strategy, to

form an integrated model using multiple-strategies
(Figure 6).

Figure 6: Mayrhauser and Vans model, adapted from
(Mayrhauser, 1995).

The resulting model presents three different
perspectives or aspects on the same program:
 The text representation through microstructures

(abstract syntax tree) and macrostructures
(procedural relationship) forming the Program
model;

 The functional features based on the domain
model (Situation model);

 The multileveled plan hierarchy structure (Plan
model).

Each part of the model is associated with a specific
process. These processes jointly build the whole
mental representations in memory. At any time one
process can be suspended and another one may take
over to address more specific aspects of the
understanding process. Each model has different roles
and uses specific information related to the program
representation:
 The program model (text-based representation of

the code) is build when unfamiliar code is
encountered or when a programmer needs to
identify precisely what the program is concretely
doing;

 The plan model is build when beacons are
identified in the code suggesting that a specific
function is implemented. This model is goal
oriented in the sense that it assigns goals and
purpose to the program model elements through
meaningful crosslinks between both models;

 The situation model is the most abstract
representation of the program. It describes the
purpose of the code in functional terms. This
knowledge is acquired bottom-up, starting from
the program model, or top-down starting from the
plan model.

The complete model presented by the authors is the
most complex among all models proposed before
2000 and sums up all the strategies into a single and
consistent model.

ICSOFT 2017 - 12th International Conference on Software Technologies

406

In accordance with Exton’s classification (§ 3), this
model is considered an integrated strategy, since it
involves, at the same time, several understanding
approaches.

6 OPTIMISIC PERIOD

This period covers the first decade of the 2000s,
object oriented programming became widely used in
industry. As this new paradigm changed radically the
way software was designed, the research community
got more interested in discovering new tools and
techniques to help with program understanding and
maintenance.

6.1 Rajlich and Wilde

Rajlich and Wilde (Rajlich, 2002) suggests that
program comprehension be viewed as a learning
process. Their approach is presented through the
constructivism theories of learning. Based upon the
Piaget’s work (Piaget, 1954, Wadsworth, 1996), the
authors propose that the assimilation and
accommodation theory be applied to the program
understanding problem. Indeed, when reading a
program, the author argues that developers learn new
facts using the Piaget’s absorption strategy:
 Assimilation: when a new fact fits to the pre-

existing knowledge in memory, it is simply added
to this knowledge without modifying existing
structure;

 Adaptation: (called accommodation by Piaget)
when a new fact does not fit the pre-existing
knowledge in memory, the learner must
reorganize his existing knowledge to make it
compatible with the new fact.

The authors suggest that the programming knowledge
be expressed through the explicit representation of
concepts structured as a hierarchical tree (the
“conceptual map” presented on the right part of
Figure 7). This structure is incrementally built while
reading the source code. In this approach, “The
Concept Assignment Problem” coined by
(Biggerstaff, 1993), i.e. the identification of domain
concepts referenced in the code, is a strong
prerequisite to code understanding. Then, the authors
propose to use the “Software Reconnaissance”
techniques, identified by Wilde and Scully (Wilde,
1995), to build a representation of concepts from the
code. By analysing runtime traces generated with/
without specific features, the programmers can
identify the code involved while activating a specific
feature. Therefore, with concepts identification and

features reconnaissance, the programmers
incrementally build a conceptual map through
assimilation and adaptation strategies describing the
original program’s purpose.

Figure 7: Rajlich and Wilde model, adapted from Rajlich,
2002).

Interestingly, this model uses both a dynamic
approach based on the runtime analysis of the
execution trace and a static analysis approach with
assimilation and accommodation strategies. In
accordance with Exton’s classification (§ 3), this
model is considered a hybrid strategy, since the
feature reconnaissance involves a top-down strategy
starting from the features and the assimilation-
accommodation phase which is a bottom-up strategy.

6.2 Kelson

Kelson (Kelson, 2004) proposes a generic meta-
model named EOP (for Event, Operation, Property)
to represent all the information gathered during
software understanding sessions: the static and the
dynamic behaviour of the programs under
investigation (Figure 8).

Figure 8: Kelsen meta-model, adapted from (Kelson, 2004).

More specifically, the EOP meta-model is composed
of three kinds of elements:

 Operations: these represent the actions taken by
the system to modify the system’s state. They are
abstractions of the methods, functions and
procedures;

 Events: represent the occurrences of data items
that activate the operations;

 Properties: represent the data items used/
produced by the operations.

Program Understanding Models: An Historical Overview and a Classification

407

To model a specific software’s behaviour, the
developer needs to instantiate the EOP meta-model to
produce a new model, which conforms to UML
diagrams, called the EOP-model. The latter describes
the dynamic aspects of a specific program in terms of
events, operations and properties. Depending on the
needed granularity level, the model may also contain
several levels of abstraction represented as different
layers, with relationships between these layers.
In accordance with Exton’s classification (§ 3), this
model is considered a bottom-up strategy, since all
items (operations, events, properties) are first
identified manually in the source-code then later
abstracted in the EOP-Model.

6.3 Murray and Lethbridge

Based on the design patterns, first introduced by the
Gang of Four (Gamma, 1994), Murray and
Lethbridge (Murray, 2005) propose to reuse a similar
approach in the context of the mental activities
involved in software comprehension. First, they
defined a cognitive pattern as a “structured textual
description of a solution to a recurring cognitive
problem in a specific context”. Like a software design
pattern which captures an effective technique for
solving a design problem, a cognitive pattern captures
a mental operation used by practitioners when trying
to understand a program. Generalizing this idea, the
authors propose a set of seven high-level cognitive
patterns to organize all the mental activities
performed during software analysis and
investigations (Figure 9). They call it the micro-
theory of understanding.

Figure 9: Micro-theory of understanding, adapted from
(Murray, 2005).

The arrows in the figure represent the relation
“required activity for”. The high-level cognitive
patterns are themselves composed of more
specialized sub-patterns dedicated to specific tasks
and purposes. Here are the seven cognitive patterns as

identified by the authors:
 Big Picture: identifies, at a high level of

abstraction, the main purpose of the software;
 Imagery: builds a visual representation, through

diagrams and symbols, expressing static and
dynamic aspects of the software;

 Baseline Landmark: identifies the invariants,
acquired by experience, allowing the engineers to
recognize software components and structures
through code navigation;

 Necessary Detail: assesses the relevance of a
selected strategy (required depth vs inappropriate
depth, temporal quality, boundaries and
information representation);

 Temporal Details: manages the mental models
over the time through multiple views and the
dynamic aspect of understanding;

 Navigation: provides several strategies to analyse
code and to build representations.;

 Culture: acquires knowledge about software
habits, preferred architecture, the constraint and
components naming or the documentation
techniques.

The authors believe their Pattern Language
(Alexander, 1977) to provide a handbook of practices
and processes which represents common solutions to
recurrent problems encountered during understanding
sessions. However, the process of software
understanding using these patterns is not precisely
formalized. Therefore, we cannot assess it using the
Exton’s classification (§ 3).

6.4 Rilling et al.

To formalize the comprehension tasks and the
resources involved while understanding software,
Rilling et al. (Rilling, 2006) propose a very high level
model of the understanding process (Figure 10).

Figure 10: Rilling et al. comprehensive model, adapted
from (Rilling, 2006).

The bottom-up process represents the abstraction of
high-level information from code. The top-down
process consist in mapping this abstract information
to concrete code fragments using some understanding
tools. The whole process is driven by reasoning rules

ICSOFT 2017 - 12th International Conference on Software Technologies

408

on the information already gathered (current state or
prior knowledge). However, these rules are not
explicit in their paper. Through an ontological model,
the authors propose a unique and standard
representation of all the tasks and resources used by
the developer (Figure 11). Since the model is
expressed in OWL-DL (Ontology Web Language
Description Logics) it can be queried by the user or
by some automated tools. Moreover, the authors
describe some scenarios where the elements of this
ontology are leveraged during the understanding
sessions. This is formalized using a story-metaphor
represented as a UML sequence diagram that
describes the manipulation of the tasks, artefacts and
tools carry out by the developer. This is called the
story-manager, which is also represented in the
ontological model (Figure 11).

Figure 11: Rilling et al. ontological model, adapted from
(Rilling, 2006).

In accordance with Exton’s classification (§ 3) this
approach is obviously a hybrid strategy.

6.5 Ko Et Al.

Based on a study conducted by Murphy et al.
(Murphy, 2005) about the use of some integrated
development environment (IDE) when seeking the
features of a software, Ko et al. (Ko, 2006) investigate
the strategies and practices used by the developers to
carry out the maintenance tasks. Applying the
Information Foraging Theory (Pirolli, 2009), the
authors propose a new understanding model based on
the strategies performed to maximize the retrieval of
valuable information per unit of effort while reading
source code (Figure 12).

Figure 12: Ko et al. model, adapted from (Ko, 2006).

Similar to an animal’s primitive behaviour to retrieve
food, the authors suggest that engineers are
“foraging” information contained in code and adapt
their strategy to minimize the effort spent while
retrieving relevant information. Hence they identified
a generic search-relate-collect task that processes a
graph representing the source-code and its document-
tation. In this graph, the nodes represent simple pieces
of information and the edges the relationship between
them (i.e. call, uses, declares, defines, etc.). The
generic tasks can be described as follows:
 Search: the developer starts by identifying a

relevant node in the graph;
 Relate: the developer uses clues and document-

ation to identify all relevant relationship to
dependent nodes. For each one, he recursively
applies the search and relate tasks again;

 Collect: as the search and relate tasks unfolds, the
developer gathers the nodes that are necessary for
completing the understanding task.

If, at any point in time, the developer believes that the
nodes that have been collected are sufficient for the
task, the developer quits the process. In the end, the
authors suggest that all the collected nodes and their
relationships represent the actual mental model
persisted within the developer’s mind. Fundamen-
tally, this theory proposes a low-level generic
understanding process, driven by clues found in the
code or the documentation. The authors claim their
approach to be compatible with all the classical
understanding process presented in section 3. For
instance, the hypothesis-based strategy (§ 5.1) and the
inquiry-oriented strategy (§ 5.3) correspond to the
seeking phase in Ko et al model. Therefore, in
accordance with Exton’s classification (§ 3) this
approach supports them all.

7 PRAGMATIC PERIOD

This period essentially covers research made after
2010, where researchers returned to the core question:
what is really code comprehension? Indeed, all the
previous works dealt more with the understanding
process (how comprehension is reached) than with
the comprehension itself. Then, several researchers
investigated new measurement techniques, but these
works did not lead to new comprehension models.
Here are some examples of these works:
comprehension measurements (Heitlager, 2007),
comprehension simulation (Johnson, 2015), brain
activity experiments (Sigmund, 2012 and 2014), and
eye-tracking observation (Yusuf, 2007). However
other researcher focused on the comprehension itself.

Program Understanding Models: An Historical Overview and a Classification

409

7.1 Belmonte et al.

Belmonte et al. (Belmonte 2014) noted that the kind
of information represented in the code is distinct from
the information about the purpose or the goal of the
program. The high level information describing the
program’s goal or purpose takes its origin in the
business domain while the source-code represent only
low-level operations. Hence the source code alone is
unable to convey the purpose of the program.

Figure 13: Belmonte et al. model, adapted from (Belmonte
2014).

The authors propose to build an intermediate
information layer, the “mapping layer”, to link the
high-level business functions to the source code
methods (Figure 13). Hence, they define the
understanding process as the process of
reconstructing this intermediate layer. Their model is
therefore made of three distinct layers:
 Top Layer: describes the program’s purpose or

functionalities through a sequence of business-
oriented information manipulations.

 Bottom Layer: low level implementation layer
representing the source code methods ;

 Middle Layer: mapping layer from the purpose
of the program to its implementation. This is
considered the “understanding layer”.

Figure 14: Belmonte et al. example (Belmonte, 2014).

Business-oriented information (top-layer) is repre-
sented as a pair of concepts: an action-concept and a
domain–concept. This pair represent a single atomic

information manipulation task and allows all business
workflow to be represented as a sequence of manipu-
lations. Then, the authors propose an original tool to
show the potential mappings based on two heuristics:
one to retrieve the action-concepts from the code
statements and another to identify domain-concepts
in the code using a generic pattern matcher on
program identifiers. The result is quite elegant, as
both business-view and implementation view are
display simultaneously (Figure 14). In accordance
with Exton’s classification (§ 3), this model is
considered a top-down strategy, since high level
concepts taken from the first layer are used to search
the source-code for possible mappings.

7.2 Benomar et al.

Benomar et al. (Benomar, 2015) noted that research
on software comprehension was generally split in two
distinct areas: program design understanding and
program evolution understanding. Hence they
propose a unified model encompassing the time-
dimension to address both areas: the dynamic aspects
of software execution and the evolution over time of
the software (Figure 15). In this unified model, the
“sequence” is considered the main element for
software comprehension. It represents a period of
time, with a start time, an end time, and a set of
events. An event is an action that occurs periodically
in time. It has a time stamp, is triggered by a subject,
and has an impact on some objects. Subjects and
objects constitute the two entity types involved in the
comprehension process. Entities are characterized by
properties that are modified by changes introduced
over time by the events. This approach allows
describing the changes that occur during the
execution of the program (during the runtime) as well
as the changes to the software itself during its
evolution (maintenance).

Figure 15: Benomar et al. model, adapted from (Benomar,
2015).

Furthermore, the authors suggest that phases could be
identified with respect to the software changes,
leading to a partition of the sequence of events into

ICSOFT 2017 - 12th International Conference on Software Technologies

410

several sub-sequences. Each phase (sub-sequence of
events) must satisfy two specific properties, an
internal cohesion property and an external coupling
property. Phases are then the main abstraction
mechanism through which to understand the software
and its evolution, since the authors propose to map
high level business events to each of the phases. In
addition, the authors also noted that software
understanding was drastically impacted by the
identification of the collaborations between the
entities over time. To illustrate this point, they
propose a way to aggregate the entities invocation to
later visualize them through a “heat map metaphor”.
Hence when comparing different maps produced by
different execution scenarios, we can clearly observe
which classes are really involved in the discriminant
feature. Since this model focuses on the low-level
description of a running program, it cannot be
classified in Exton’s classification (§ 3).

7.3 Nosal and et al.

Nosal et al. (Nosal, 2015) observed through
controlled experiments that the whole understanding
process is hypothesis-based and consists in matching
elements found in source-code (solution domain) to
the software requirements (problem domain). The
authors claim that the understander’s current
knowledge and prior experiences about the problem
and the solution domains is the base on which
mapping hypotheses are constructed to recover the
mental model used by the original developers. Hence,
they proposed to extend the Belmonte et al. model (§
7.1), with a four-layer model to represent the
knowledge involved in the comprehension process
(Figure 16):
 The first layer expresses some generic and

abstract knowledge about the purpose of the
software to understand;

 The second layer is a decomposition of the first
layer into atomic features and business concepts;

 The third layer represents beacons and plans that
suggest how such features may be implemented;

 The fourth layer consist in a simplified
representation of the source code.

The beacons are recognizable static features in code
(naming convention, patterns, programming style),
while plans are specific algorithms or processes
(sorting, parsing, etc.) implemented in code. In the
proposed framework, the core comprehension
problem is to map beacons/plans to features/concepts
in order to link low-level concepts from the solution
domain to high-level concepts from the problem
domain. Through speak-aloud session, they observed

that all engineers started first by playing with the
application to catch the general idea and main
purpose of the application before delving into the
code. These sessions confirmed several assumptions:
 The mapping between the layers is constructed

iteratively;
 Software understanding is hypothesis-based;
 If the code is unfamiliar, the hypotheses are based

on the interpretation of the identifiers in the
program (bottom-up strategy);

 If the code is familiar, a top-down strategy is
applied. But the actual technique depends on the
engineer’s past experience

 If an unexpected identifier is encountered this
triggers a systematic analysis code details,
otherwise the as-needed strategy is generally
preferred.

Figure 16: Nosal and Poruban model, adapted from (Nosal,
2015).

The model proposed by the authors is quite simple
and practical. It also seems compatible with most of
the software understanding process previously
identified by researchers. In accordance with Exton’s
classification (§ 3), this model allows all strategies to
be potentially useable.

8 DISCUSSION

This research work is based on the papers addressing
only understanding models. From the 155 papers we
analysed which referenced such models, we noted
that 37% were published before 2000, 43% between
2000 and 2010, and only 20% after 2010. This clearly
indicates that the interest in modelling understanding
reached a peak at the beginning of the 2000s. Besides,
it also shows that most studies related to software
understanding models closely followed the evolution
of the techniques and tools in software design. Before
the year 2000, most of the tools used by practitioners
were text-oriented (text editors, text debuggers and
text interfaces). However, in the first decade of 2000,
much richer and interactive environments (IDE),
graphical debuggers and visual editors were adopted.
From the mid 90’s, the OO paradigm, pioneered by

Program Understanding Models: An Historical Overview and a Classification

411

Simula 67 (Hills, 1972) and Smalltalk 80 (Goldberg,
1983), finally reached the mainstream development
market through the C++ (Stroustrup, 1997) and Java
(Gosling, 1996) languages ecosystems. These
technological trends had obviously a strong influence
on the research works on software understanding
processes. We found that most of the models addressed
the techniques and strategies used by the developers
when analysing software. In other words, they focus
more on the process of understanding: what the
developers do to understand a program. But very few
papers addressed the more fundamental question:
“what does it really mean to understand a program”?
This distinction was already made by Storey (Storey,
2005) several years ago. Some people may claim that
“everyone knows what understanding mean”. But we
do not share this statement. We believe that the actual
task of “understanding” a piece of code has not been
studied enough to let engineers design useful tools. An
informal proof of this is the well documented finding
that most of the tools intended to “help with program
understanding” are generally underutilized by
developers (Lanza, 2003) (LaToza, 2006) (Pacionne,
2004) (Roehm, 2012). In our survey we observed the
following facts. During the classical period the authors
proposed internal models (i.e. in the mind) of the
knowledge required for a developer to understand
code, and the process to build them. During the
optimistic period that followed, the authors addressed
the understanding process from which they propose
tools to offer alternative representations of source
code. The latter were based on some visual metaphor
and aimed at helping developers to navigate the code.
During the last decade, the research community
became less active on the topic of code understanding
models. This may be due to the slow progress made
toward the fundamental goal. However, a few
researchers started back from the key question: what is
really understanding code? The answer they proposed
is based on the idea of mapping representations of the
business concepts to the code through different levels
of abstraction. But such a mapping is not
straightforward. Belmonte et al. (Belmonte, 2014)
proposed a three layers’ model while the one of Nosal
et al. (Nosal, 2015) rested on four layers. Yet, the latter
can be considered as complementary to all the
understanding process models that have been proposed
during the classical period.

9 CONCLUSION

This paper presents a review of the last 30 years of
publications on the topic of program understanding

models. We proposed a classification of the works in
three periods, since we found the papers to address
three different perspectives on the topic along time:
the process, the tools and the goal. The general
conclusion is that the fundamental question “what is
code understanding” was only recently addressed by
the research community. This is surprising since tools
have been developed without a clear view on what
“understanding code” means. Another finding is that
the number of papers on the topic decreased radically
during the last decade. We suppose this to be due to
the lack of progress toward the fundamental question.
For example, the papers in the early 2000s focused on
the development of program understandings tools.
But these tools are showed to be largely underutilized
by the developers. We suggest that the fundamental
question must still be thoroughly investigated before
going any further in the implementation of tools. In
fact, our team is now working on this very question
since we believe the code understanding problem (i.e.
its cost) to be ever more acute today.

REFERENCES

Alexander, C., 1977. A Pattern Language, Towns, Buildings,
Construction, New York, Oxford University Press.

Belmonte C., Dugerdil, A., Agrawal, A., 2014, A Three-
Layer Model of Source Code Comprehension,
Proceedings of the 7th India Software Engineering
Conference, Article no. 10.

Benomar, O., Sahraoui, H. Poulin, P., 2015. A unified
framework for the comprehension of software’s time
dimension, 37th International Conference on Software
Engineering vol. 2, pp. 603-606.

Biegel, B., Baltes, S., Poulin, P., Scarpellini , I., Diehl, S.,
2015. CodeBasket: Making Developers’Mental Model
Visible and Explorable, IEEE/ACM 2nd IWCSD 2015.

Biggerstaff, T.J., Mitbander, D.G., 1993, The Concept
Assignment Problem in Program Understanding, ICSE
'93 Proceedings of the 15th International conference on
Software Engineering, pp 482-498.

Brooks, R., 1983, Towards a theory of the comprehension of
computer programs, International Journal of Man-
Machine Studies, vol. 18, no. 5, pp. 543-554.

Exton, C., 2002, Constructivism and Program Comprehen-
sion Strategies, IWPC'02 Proceedings of the 10th Inter-
national Workshop on Program Comprehension, p. 281.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1994,
Design Patterns, Elements of Reusable Object-Oriented
Software, Addison-Wesley Professional Computing
Series.

Goldberg, A., Robson, D., 1983, Smalltalk 80, the language
and its implementation, Addison-Wesley Publishing
Company, Xerox Palo Alto Research Center.

Gosling, J., Joy, B., Steele, G., 1996, The Java Language
Specification, Addison-Wesley Publishing Company.

Hein, G. E., 1991, Constructivist Learning Theory, CECA

ICSOFT 2017 - 12th International Conference on Software Technologies

412

Conference, Jerusalem Israel, 15-22 Oct 1991.
Heitlager, I., Kuipers, T., Visser, J., 2007, A Practical Model

for Measuring Maintainability, QUATIC’07, 6th
International Conference on Quality of Information and
Communications Technology, pp. 30-39.

Hills, R., 1972, Simula 67, an introduction, Robin Hills Ltd,
Presto Print, Reading.

Johnson, P., Ekstedt, M., 2015, Exploring Theory of
Cognition for General Theory of Software Engineering,
4th SEMAT Workshop on a General Theory of Software
Engineering.

Kelson, P., 2004, A Simple Static Model for Understanding
the Dynamic Behavior of Programs, 12th IEEE
International Workshop on Program Comprehension
(IWPC’04).

Ko, A.J., Myers, B.A., Coblenz, M.J., 2006, An Exploratory
Study of How Developers Seek, Relate, and Collect
Relevant Information during Software Maintenance
Tasks, IEEE Transactions on Software Engineering, vol.
32, no. 12.

Lanza, M., Ducasse, S., 2003, Polymetric Views – A light-
weight Visual Approach to Reverse Engineering, IEEE
Transactions on Software Engineering, Vol. 29, p. 9.

LaToza, T.D., Venolia, G., DeLine, R., 2006, Maintaining
Mental Models: A Study of Developer Work Habits,
ICSE’06, Shanghai, China.

Letovsky, S., 1987, Cognitive process in program
comprehension, Journal of Systems and Software, vol. 7,
no. 4, pp. 325-339.

Mayrhauser, von A., Vans, A.-M., 1995, Program Compre-
hension During Software Maintenance and Evolution,
IEEE Journal Computer, vol. 28, no. 8, pp. 44-55.

Muchalintamolee, V., 2012, Measuring Granularity of Web
Services with Semantic Annotation, AIJSTPME, vol. 5,
no. 3, pp. 41-48.

Murphy, G.C., Kersten, M., Robillard, M.P., Cubranic, D.,
2005, The Emergent Structure of Development Tasks,
ECOOP’05 Proceedings of the 19th European
conference on OOP, pp 33-48.

Murray, A., Lethbridge, T.C., 2005, Presenting Micro-
Theories of Program Comprehension in Pattern Form,
ECOOP’05 Program Comprehension, IWPC 2005, 13th
International Workshop on Program Comprehension.

Nosal, M., Poruban, J., 2015, Program Comprehension with
Four-layered Mental Model, 13th International
Conference on Engineering of Modern Electric Systems.

Pacione, M.J., Roper, M. Wood, M., 2004, A Novel Software
Visualisation Model to Support Software
Comprehension, 11th Working Conference on Reverse
Engineering 2004.

Pennington, N., 1987, Empirical studies of programmers:
second workshop, Ablex Publishing Corp. Norwood, NJ,
pp. 100-113.

Pennington, N., 1987, Stimulus structures and mental
representations in expert comprehension of computer
programs, Cognitive Psychology, vol. 19, no. 3, pp. 295-
341.

Piaget, J., 1996, Piaget's theory of cognitive and affective
development: Foundations of constructivism, 5th reedit.
Wadsworth, Barry J., White Plains, NY, England.

Piaget, J., 1954, The construction of reality in the child:
Foundations of constructivism, Basic Books, New York.

Pirolli, P., 2009, An Elementary Social Information Foraging
Model, CHI 2009, Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
pp. 605-614.

Rajlich V., 2002, Program Comprehension as a Learning
Process, IEEE International Conference on Cognitive
Informatics, p. 369.

Rajlich V., Wilde, N., 2002, The Role of Concepts in
Program Comprehension, 10th International Workshop
on Program Comprehension 2002, pp. 271 - 278.

Rilling, J., Mudur, S., Charland, P., Witte, R., Meng, W.J.,
Zhang, Y., 2006, A Context-Driven Software
Comprehension Process Model, IEEE International
Workshop on Software Evolvability, pp. 50-55.

Roehm, T., Tiarks, R., Koschke, R., Maalej, W., 2012, How
Do Professionnal Developers Comprehend Software?,
ICSE 2012, Zürich, Switzerland, 2012.

Shneiderman, B. Mayer, R., 1979, Syntactic/semantic
interactions in programmer behavior: A model and
experimental results, Journal of Computer and
Information Science, vol. 8, pp. 219.

Sigmund, J., 2012, Framework for Measuring Program
Comprehension, PHD Dissertation, Otto-von-Guericke-
Universität Magdeburg.

Sigmund, J., Kastner, C., Apel, S., Parnin, C., Bethmann, A.,
Leich, T., Saake, G., Brechmann, A., 2014,
Understanding Understanding Source Code with
Functional Magnetic Resonance Imaging, ICSE’14,
Hyderabad, India.

Smith, D., Thomas, B., Tilley, S., 2001, Documentation for
Software Engineers: What is Needed to Aid System
Understanding, SIGDOC 2001, Santa Fe, New Mexico,
USA.

Soloway, E., Ehrlich, K., 1984, Empirical Studies of
Programming Knowledge, IEEE Transactions on
Software Engineering, vol. 10, no. 5, pp. 595-609.

Storey, M.A., 2005, Theories methods and tools in program
comprehension: past present and future, IWPC 2005, pp.
181-191.

Stroustrup, B., 1997, The C++ Programming Language,
ATandT Labs, Addison-Wesley.

Tilley, S.R., Smith, D.B., 1996, Coming Attractions in
Program Understanding, Software Engineering
Institute, Carnegie Mellon University.

Wadsworth, B.J., 1996, Piaget's theory of cognitive and
affective development: Foundations of constructivism,
5th ed. xi, 1996.

Walenstein, A., 2002, Theory-based Analysis of Cognitive
Support in Software Comprehension Tools, IWPC’02
IEEE.

Warintarawj, P., Laurent, A., Huchard, M., Lafourcade, M.
Pompidor, P., 2013, Software understanding: automatic
classification of software identifiers, Intelligent Data
Analysis, IOS Press, vol 19, no 4, pp. 761-778.

Wilde, N., Scully, M.C., 1995, Software reconnaissance:
mapping program features to code, Journal of Software
Maintenance, vol. 7, no. 1.

Yusuf, S., Kagdi, H., Maletic, J. 2007, Assessing the
Comprehension of UML Class Diagrams via Eye
Tracking, 15th IEEE International Conference on
Program Comprehension.

Program Understanding Models: An Historical Overview and a Classification

413

