
Inference-based Detection of Architectural Violations in MVC2

Shinpei Hayashi, Fumiki Minami and Motoshi Saeki
Department of Computer Science, Tokyo Institute of Technology, Ookayama 2–12–1, Meguro-ku, 152–8552, Tokyo, Japan

Keywords: Architecture Pattern, Code Smell, Program Dependence Graph.

Abstract: Utilizing software architecture patterns is important for reducing maintenance costs. However, maintaining
code according to the constraints defined by the architecture patterns is time-consuming work. As described
herein, we propose a technique to detect code fragments that are incompliant to the architecture as fine-
grained architectural violations. For this technique, the dependence graph among code fragments extracted
from the source code and the inference rules according to the architecture are the inputs. A set of candidate
components to which a code fragment can be affiliated is attached to each node of the graph and is updated
step-by-step. The inference rules express the components’ responsibilities and dependency constraints. They
remove candidate components of each node that do not satisfy the constraints from the current estimated state
of the surrounding code fragment. If the current result does not include the current component, then it is
detected as a violation. By defining inference rules for MVC2 architecture and applying the technique to web
applications using Play Framework, we obtained accurate detection results.

1 INTRODUCTION

Software architecture patterns (hereinafter,architec-
ture patterns), which define the underlying structure
of software systems, have been proposed (Buschmann
et al., 1996). An architecture pattern comprises multi-
ple components. By defining the responsibilities and
dependency constraints for each component, an archi-
tecture pattern gives non-functional quality character-
istics such as modifiability and reusability to the ar-
chitecture followed by the pattern. Adoption of an
architecture according to an architecture pattern is im-
portant for reducing maintenance costs.

To realize characteristics obtained using an archi-
tecture pattern, it is necessary for developers to write
code for each component according to their responsi-
bilities and dependency constraints. Their violations
might degrade the characteristics and benefits of the
architecture pattern. However, in practice, the code
often violates the component responsibilities and de-
pendency constraints of components. Actually, writ-
ing and maintaining code in a proper manner is often
burdensome for developers. In particular, developers
tend to write inappropriate code because they assign
priority to a release as early as possible because of
deadline restrictions. In such a case, to gain benefit
from the following architecture pattern at the mainte-
nance stage, refactoring (Fowler, 1999) is necessary
to mitigate these smelly codes.

Architecture-adapted refactoring techniques
based on dependency constraints between com-
ponents have been proposed already (Hickey and
Ó Cinnéide, 2015). However, refactoring techniques
based only on dependency constraints might engender
another smelly code related to their responsibilities.
Refactoring according to architecture patterns de-
mands consideration of both the responsibilities and
dependency constraints of components.

In this paper, we aim to support refactoring activ-
ities for architecture adaptation with consideration of
both the responsibilities and dependency constraints
of components in a fine-grained manner. We propose
a technique to detect code fragments incompliant to
the architecture as fine-grained architecture smells.
In the technique, the dependence graph among code
fragments extracted from source code and the infer-
ence rules according to the architecture are the inputs.
The candidates of components to which a code frag-
ment can be affiliated are attached to each node of
the graph and are updated step-by-step. The inference
rules express the components’ responsibilities and de-
pendency constraints, and the rules remove candi-
dates of each node that do not satisfy the constraints
using the current estimated state of the surrounding
code fragment. If the current result does not include
the current component, then it is detected as a vio-
lation. In this paper, Model-View-Controller (MVC)
Architecture for Web Application (MVC2) (Turner

394
Hayashi, S., Minami, F. and Saeki, M.
Inference-based Detection of Architectural Violations in MVC2.
DOI: 10.5220/0006465103940401
In Proceedings of the 12th International Conference on Software Technologies (ICSOFT 2017), pages 394-401
ISBN: 978-989-758-262-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



Model

Controller

View DB

1. User input

2. Request 

change

3. Retrieve 

data

4. Request view

5. View

Figure 1: MVC2 architecture.

and Bedell, 2002) and the Play Framework1 v1 are
used as the architecture pattern and its implementa-
tion framework, respectively. By defining rules for
the MVC2 and applying the technique to web applica-
tions using the Play Framework, we obtained accurate
detection results.

The remainder of this paper is organized as de-
scribed below. Section 2 explains architecture pat-
terns and their problems in refactoring using an ex-
ample. Section 3 discusses related work. Sections 4
and 5 present our proposed technique and its imple-
mentation. Section 6 evaluates the technique. Lastly,
Section 7 concludes this paper.

2 BACKGROUND

2.1 Architecture Patterns

Architecture patterns(Buschmann et al., 1996) de-
fine the underlying structures (architecture) of soft-
ware systems. An architecture consists of encapsu-
lated functional units calledcomponents. The related
architecture pattern guarantees various non-functional
characteristics by assigning responsibilities and de-
pendency constraints to the respective components.

MVC2 (Turner and Bedell, 2002) is an architec-
ture pattern, which is an extended version of the MVC
pattern suitable for web applications.

The structure of MVC2 is portrayed in Figure 1.
In MVC2, Model is responsible for domain logics in-
cluding database operations,View is for presentation
logics, andController is for these controls according
to the user inputs. In the processing flow in MVC2
is the following. First, theController component re-
ceives user input.Controller requests data changes to
theModelcomponent if necessary, andModelupdates
the data in the database. Then,Controller requests the
data required for display fromModel, andModel re-
trieves the corresponding data from the database and
passes them toController. Finally, Controller passes
the data to theViewcomponent and requests that they
be displayed.

Dividing the respective responsibilities makes it
easy to replace each component. For example, it is

1https://www.playframework.com/

possible to change the appearance of an application
by replacingView and to execute automated tests by
replacingController. Another benefit is that develop-
ers can specifically examine particular concerns.

MVC2 also defines the relation of accessibility be-
tween components. For example,Model cannot re-
fer to View. This restriction can be regarded as a de-
pendency constraint on components, which provides
benefits in maintaining the application. For example,
preparingModelnot depending onViewpresents the
advantage that changes of the application appearance
do not propagate to the domain logics.

2.2 Problems in Adapting Architecture
Patterns

An architecture pattern guarantees various non-
functional quality characteristics to the following ar-
chitecture. This is useful for reducing maintenance
costs. However, these characteristics are guaranteed
only when the code of each component correctly fol-
lows the responsibilities and dependency constraints
of the component; they are lost when the code vio-
lates the structure defined by the pattern. We catego-
rized the violations in an architecture pattern into the
following two types.

• Violation of the responsibilities of components.
It occurs when the role of a code fragment in a
component embodies the responsibilities of an-
other component, e.g., a presentation logic, which
should be described inView, is written inModel
or Controller.

• Violation of the dependency constraints of com-
ponents. It occurs if an unauthorized dependency
exists between code fragments, e.g., a code frag-
ment inModelrefers to a field or method inView
or Controller.

Violations of these two types stand on different
viewpoints. Therefore, a refactoring to resolve vi-
olations of one type might cause those of the other
type. A mechanism is required for finding refactoring
opportunities that correctly resolve violations of both
types.

An example of violations in MVC2 is presented in
Figure 2(a). This example includes an action method
described asController for completing a task in a task
management application developed using Play frame-
work. After specifying a task object based on the in-
put from the user, this method updates the comple-
tion status of the task, updates the completion date,
and saves the task among its code fragments, shown
as underlined. These update and save are insepara-
ble series of a procedure related to a database update,

Inference-based Detection of Architectural Violations in MVC2

395



public static void completeTask() {

long id = Long.parseLong(params.get("id"));

Task task = Task.findById(id);

task.status = Task.COMPLETED;

task.completedDate = new Date();

task.save();

render();

} in Controller

Model

not
matched

public static void completeTask() {

long id = Long.parseLong(params.get("id"));

Task task = Task.findById(id);

task.complete();

render();

} in Controller

public void complete() {

status = Task.COMPLETED;

completedDate = new Date();

save();

}
in Model

(a) Code snippet including a violation.

(b) Refactored version.

Figure 2: Example of violation in architectural constraint.

and they can be regarded as domain logics for which
Modelshould own their responsibility. However, be-
cause this method belongs toController, a gap sepa-
rates the role and responsibility of the method, repre-
senting a violation of the responsibility.

This violation can be mitigated by refactoring to
the structure shown in Figure 2(b). The corresponding
code fragments are extracted as an individual method
completeby Extract Method. It is moved toModel
by Move Method so that it no longer has a mismatch
in its responsibility. To realize such refactoring, it is
necessary to identify code fragments violating the ar-
chitectural constraints.

3 RELATED WORK

Budi et al. proposed a violation detection technique
for multilayer architecture using machine learning
and the accessibility relation between layers (Budi
et al., 2011). In this technique, classes are classi-
fied into layers using machine learning from the ba-
sic information of classes. Violations are detected
by comparing the accessibility relation of classes
and those between layers. In addition, Hickey
and Ó Cinnéide proposed a search-based refactor-
ing technique of multilayer architecture (Hickey and
Ó Cinnéide, 2015). This technique uses metrics mea-
suring access violations between layers as an evalu-
ation function and refactorings as transitions in the
search space, and finds appropriate states. Although
these techniques use dependency constraints, they de-
pend on the original code and training data related to
responsibilities. Such techniques differ from ours in
that they do not directly address the architectural re-
sponsibilities.

ArchFix (Terra et al., 2015) detects architectural
violations and recommend refactoring operations to
repair the detected violations. Macia et al. proposed
a technique to detect code anomalies using architec-
turral concern-based metrics (Macia et al., 2012; Ma-

cia et al., 2013). Although these techniques utilize
dependencies to detect violations or anomalies, they
do not utilize statement-level dependencies to infer
the roles of code fragments and detect violations on
them. Such an approach is effective when refactoring
controller methods including statements of different
roles mixedly.

A sequence of refactoring operations is needed af-
ter detecting a violation. Tsantalis and Chatzigeor-
giou proposed a technique to improve maintainabil-
ity by Move Method refactoring and implemented it
as JDeodorant (Tsantalis and Chatzigeorgiou, 2009).
JDeodorant confirms the improvement of maintain-
ability by Move Method by measuring coupling and
cohesion metrics. In addition, Sales et al. demon-
strated the possibility of automated refactoring with
Move Method with higher accuracy using the simi-
larity of dependency sets (Sales et al., 2013). Trifu
and Reupke discussed relationship between a design
flaw and the number of directly observable indica-
tors (Trifu and Reupke, 2007). They defined specifi-
cations of design flaws including context and indica-
tors, and a diagnosis strategy using indicators and cor-
rection strategies written in a natural language. They
also presented a tool to identify design flaws. Their
indicators for design flaw identification are defined as
a combination of design metrics and structural infor-
mation. ClassCompass (Coelho and Murphy, 2007)
is an automated software design critique system, and
it has a feature to suggest design correction based on
rules written in a natural language. These techniques
differ from the proposed technique in that they do not
consider architectural constraints.

4 PROPOSED TECHNIQUE

4.1 Overview

For taking both responsibilities and dependency con-
straints of components into account in detecting archi-
tectural violations, the proposed technique uses a role
inference. In this paper, a (possible)role of a code
fragment is a set of components to which the code
fragment can belong. The role inference infers the
components to which each code fragment can belong
usinginference rulesbased on the responsibilities and
dependency constraints of components.

An overview of the proposed technique is pre-
sented in Figure 3. Its inputs are the source code, do-
main knowledge for initializing the role of code frag-
ments, and an inference rule database. The technique
first analyzes the given source code and builds a pro-
gram dependence graph by extracting code fragments

ICSOFT 2017 - 12th International Conference on Software Technologies

396



Table 1: Dependencies among code fragments.

Relations Depender Dependee Definition
Def-Use Statement Statement Defining and referring a variable
Access Statement Field Reading and writing a field
Invocation Statement Method Invoking a method
Inclusion Statement Method Inclusion of a code fragment

Source
code

Violations

Inference rules

Domain knowledge

Role inference

Dependence graph

C

V M

Refactoring

1. Build

dependence

graph

2. Initialize

roles

3. Apply inference

rules

4. Detect

violations

Figure 3: Overview of the proposed technique.

and relations among them (Step 1, Section 4.2). Next,
it initializes the role of each code fragment based on
the domain knowledge (Step 2, Section 4.3). Then,
the role inference is performed to narrow down the
possibility of components using inference rules (Step
3, Section 4.4). This process identifies code frag-
ments that can belong to certain components. After
the role of each code fragment is determined, vio-
lations are detected by comparing the inferred role
with the current belonging component (Step 4, Sec-
tion 4.5). For a code fragment, a violation is detected
if the current component of the fragment is not in-
cluded in the role of the fragment. We regard such
violations as fine-grained architectural smells. Can-
didate refactoring operations to solve these smells are
Extract Method, Move Method (Fowler, 1999), etc.
Currently, the proposed technique does not include
the derivation of refactoring operations.

The proposed technique requires the preparation
of domain knowledge and inference rules. We can
prepare them in advance if we use a framework. Once
experts of a specific framework build domain knowl-
edge and inference rules, non-expert framework users
can reuse them.

4.2 Building Dependence Graph

In the technique, a dependence graph is built by ex-
tracting code fragments from the source code and
their mutual relations. We use sentence-level code
fragments, which are appropriate for extracting re-
lations. Also, for taking the method invocation into
consideration, method invocations in sentences are
handled as individual fragments. In addition, fields
and methods are acquired as nodes.

Controller Model

params.get(”id”)Long.parseLongLong id = ...

Task.findById(id)Task task = ...

task.status = Task.COMPLETED

task.completedDate = ... new Date()

task.save()

render()

COMPLETED

completedDate

status

Def-Use Access

{Model, View, Controller}

{Model, View, Controller}Vi t

Figure 4: Dependence graph and role inference in the ex-
ample in Figure 2(a).

Table 1 shows the relations to be extracted. When
referring to the variablev defined in a certain code
fragment in another code fragment, aDef-Usedepen-
dence onv is assumed between the two fragments.
When reading or writing a certain field in a certain
code fragment, anAccessdependency from the code
fragment to the field is assumed. When invoking a
certain method in a certain code fragment, anInvoca-
tion relation from the fragment to the method is as-
sumed. AnInclusiondependency is defined between
a code fragment and a method when the fragment is
included in the method.

Figure 4 portrays a dependence graph built from
the code shown in Figure 2(a). We can find that code
fragments corresponding to each sentence or method
invocation are extracted as nodes. In addition, de-
pendencies between nodes are defined; for example,
for the node “Task task = · · · ” which defines the
variabletask, several nodes including “task.status =
Task.COMPLETED” and “task.completeDate =· · · ”
are defined as using the variable (Def-Use).

4.3 Initializing Roles

Each node in the dependence graph has its particular
role. In the example of Figure 4,Model, View, and
Controllerare the target components. Fundamentally,
we assign all possibilities to each node, i.e., the role
of all nodes is initialized as a set of all components.
However, we narrow the role of some nodes based on
the domain knowledge.

In the example presented in Figure 4, all the pos-
sibilities {Model,View,Controller} are allotted to the
white nodes. In contrast, the roles of gray nodes are

Inference-based Detection of Architectural Violations in MVC2

397



Table 2: Modifiability relation in theModification rule.

From\To Model View Controller
Model

√
View

√
Controller

√ √

specified uniquely by the domain knowledge. For
example, in Play Framework v1, invocations of the
methodrender()are well-known to be located in con-
trollers. Therefore, a role of{Controller} is allotted
to the associated node. In addition, because the fields
statusandcompletedDatein the classes inModelbe-
have as models, their roles are initialized as{Model}.
In this way, most of the input domain knowledge
functions as a dictionary of method names and their
corresponding components.

4.4 Applying Inference Rules

In the role inference, candidate components in a role
are narrowed down gradually. To update the role
of each node, we use the inference rules represent-
ing the responsibilities or dependency constraints of
components. An inference rule removes inappropriate
candidate components from a role by examination of
the dependencies among nodes and the roles of their
neighboring nodes in the graph. The update of a role
might influence another; inference rules are repeat-
edly applied until no rule produces a change.

An example of role inference byModification rule
in MVC2 is the following. TheModification rule is
based on the dependency constraint ofmodifiability
in MVC2 components. In MVC2, the state ofModel
can only be modified byModeland/orController: not
by View.

This constraint can be represented as a binary re-
lation of components shown in Table 2. Each row and
column of the table respectively represent the source
and target components of modification to which the
focused code fragments belong. The symbol

√
in the

table denotes the possibility of modifications. We ex-
clude as inappropriate those possibilities of candidate
components in a role which do not satisfy this con-
straint (cells without

√
).

Review of Figure 4 shows howModification
rule is applied. The role of the field “status” is
{Model} based on the domain knowledge. In addi-
tion, the dependencies express that the statement node
“ task.status = Task.COMPLETED” accesses the field
“status”. Because this statement node modifies the
field node determined asModel, it is apparent that the
statement node should not beViewbased on Table 2.
Therefore, the possibility ofView is excluded from
the role of the statement node, and the possibility of

public static void completeTask() {

long id = Long.parseLong(params.get("id"));

Task task = Task.findById(id);

task.status = Task.COMPLETED;

task.completedDate = new Date();

task.save();

render();

}

{ Model } { Controller } { Model, Controller }

in Controller

Figure 5: Result of role inference.

{Model,Controller} remains. In the same way,View
is excluded from the role of node “task.completeDate
= · · · ”. In addition to these, the possibility ofCon-
troller was also excluded by another rule namedAne-
mic Domain Model, and the possibility of the two
nodes is eventually limited toModel. Figure 5 shows
the final result of the role inference of the example
shown in Figure 4.

4.5 Detecting Violations

The inferred roles of code fragments are compared
with their currently belonging component to detect
violations. If the currently belonging component is
not included in the inferred role, then it is detected
as an architectural violation that the code fragment is
incompliant to the responsibilities, dependency con-
straint, or both.

In the example shown in Figure 4, the possi-
bility of View and Controller is excluded from the
role of nodes “task.status = Task.COMPLETED” and
“ task.completeDate =· · · ” by the role inference, and
their role is finally specified asModel. However, these
nodes currently belong toController. Because the
belonging component is not included in the inferred
role, it is detected as a violation. In this case, apply-
ing Move refactoring to move the corresponding code
fragment toModel, which is the remaining candidate
component in the role, is considered.

5 IMPLEMENTING OUR
TECHNIQUE

5.1 Inference Rules

We have defined inference rules for MVC2 with tak-
ing both the responsibilities and dependency con-
straints of components into consideration. The rules
on dependency constraints wereDef-Use express-
ing constraints on data dependence,Visibility express-
ing constraints on interface visibility, andModifi-
cation expressing constraints on availability of data
changes. They were easily derived from the definition

ICSOFT 2017 - 12th International Conference on Software Technologies

398



of MVC2, and we believe that rules based on similar
constraints in some architectural patterns can be de-
fined in the same way. For example, the Layers archi-
tecture (Buschmann et al., 1996) restricts accesses of
non-adjacent layers, which can be defined as depen-
dency constraints.

Meanwhile, the definition of responsibilities in
MVC2 was ambiguous, and it was difficult to com-
pose rules on them based only on the definition.
Therefore, rules on responsibilities were extracted
based on the violation patterns observed in actual
projects using MVC2. One of the authors manually
analyzed the source code of 11 web applications de-
veloped by students majoring in computer science and
identified the code fragments incompliant to the re-
sponsibilities of the components. Then, two patterns
could be observed.

The first pattern is generating strings only for dis-
play in Controller. This expresses a situation that
statements generating strings to be displayed only,
which should be regarded as presentation logic, are
in theControllercomponent instead of theViewcom-
ponent. It violates the architecture of MVC2. In or-
der to be compliant to MVC2, only the source data
of such strings should be passed from theController
component to theViewcomponent, and the generation
of strings to be displayed should be performed in the
Viewcomponent.

The second pattern is defining domain logics in
Controller. This is related to Anemic Domain Model
anti-pattern (Fowler, 2003), which is a case in which
domain logics are inController instead ofModel. In
order to be compliant to MVC2, it is necessary to de-
scribe the domain logic in theModel component as
much as possible.

Including these two related to the responsibilities
of components, we defined totally five inference rules
for detecting architectural violations in MVC2 as fol-
lows.

• Def-Use uses the data dependency among com-
ponents, e.g., variables defined inViewcannot be
referred byModelor Controller.

• Visibility excludes the candidate components in
roles using the relation among components and
the access and invocation dependencies.

• Modification excludes the candidate components
in roles using the relation among components and
the access, invocation, and inclusion dependen-
cies.

• Visual String looks for code fragments inCon-
troller that generate strings to be displayed only in
View. This rule obtains the interface ofViewfrom
the domain knowledge and finds code fragments

generating strings to be passed toViewbut not to
Modelby tracingDef-Usedependency, and not to
be affected by control flow. More specifically, it
checks paths on the data and control flows. If a
path from a string expressions generated inCon-
troller to a node inView is found, but not path
from s to nodes inModel or any branch condi-
tions, the role ofs is assigned as{View}.

• Anemic Domain Model explores a set of code frag-
ments inController for which dominant depen-
dees act asModelor not and determines the role
of the code fragments also asModel. More specif-
ically, it counts the dependees having the role of
Model and those ofController for each node in
Controller. If the number of dependees inModel
is greater than those inController, the role of the
node is assigned as{Model}.

5.2 Implementation

We have implemented the proposed technique as an
Eclipse plug-in as well as the five inference rules.
Domain knowledge of web applications using Play
Framework has been predefined, which is used for ini-
tializing and inferring the role of each code fragment
and for theVisual String rule.

For building dependence graphs, we used jxplat-
form2. The jxplatform is a static analysis tool for
Java to build a Java model consisting of system de-
pendence, program dependence, control flow, and call
graphs.

6 EVALUATION

6.1 Study Design

We evaluated our technique by application of the im-
plemented detector to multiple projects. In the eval-
uation, we focused on two criteria:accuracyof the
detection results andvalidity of the inference rules.
The first criterion relates to the possibility of detect-
ing code fragments that violate the responsibility or
dependency constraint of components expressed by
each inference rule. The second criterion is used to as-
certain whether each inference rule is actually mean-
ingful, or not. We confirmed that each inference rule
actually excludes candidates from roles and that such
removal of candidates actually affects the detection of
violations.

We applied our technique to 37 web application
projects developed by students majoring in computer

2https://github.com/katsuhisamaruyama/jxplatform

Inference-based Detection of Architectural Violations in MVC2

399



Precision Recall

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 6: Distribution of precision and recall values.

science.3 Each project uses Play Framework v1 and
follows MVC2 architecture. Regarding the accuracy,
we used two metrics: precision and recall. In mea-
suring the precision, one author confirmed the de-
tected violations and judged their correctness for all
37 projects. In measuring the recall, because it was
difficult to prepare the correct detection results of all
projects, one of the authors manually identified all vi-
olations for five randomly sampled projects. The re-
call values were measured for these five projects. Re-
garding the validity, we counted applications for each
inference rule. We also counted only those which con-
tributed to the detection of violations.

6.2 Results

Figure 6 shows the distribution of the precision and
recall values together with a bee swarm plot includ-
ing all the data points. Many projects showed high
precision and recall values; their averages are re-
spectively 0.94 and 0.76. Since we have obtained
both high precision and recall rates in many projects,
we can conclude that the proposed technique could
detect violations from the subject projects. How-
ever, some projects showed very low values. We in-
vestigated that phenomenon and reached the conclu-
sion that many false positives were produced byAne-
mic Domain Model rule. As a result of faulty deci-
sions that the role of a code fragment is decided as
Model, the technique produced subsequent wrong de-
cisions that the peripheral code fragments similarly
decided asModel falsely, which increased the inci-

3The projects used by the analysis in Section 5.1 were ex-
cluded.

Table 3: Numbers of applications of inference rules.

Rule # apps. # effective apps.
Def-Use 3578 315
Visibility 781 583
Modification 925 478
Visual String 48 48
Anemic Domain Model 856 620

dence of wrong results. In addition, when examining
the projects with a low recall value, results showed
that some violations based onAnemic Domain Model
were not detected. This result derived from the fail-
ure of the propagation in role inference attributable to
the long distance between the violated code fragments
and their related fragments.

Table 3 shows how many inference rules were ap-
plied. The columns indicate the name of the inference
rules, the number of applications that succeeded to ex-
clude at least one candidate of a role, and the number
of effectiveapplications, which succeeded to exclude
at least one candidate in a role and which affected the
detection of at least one violation. The effective ap-
plications were numerous for all the inference rules.
This result indicates that all the inference rules influ-
enced the detection of violations and were effective.

6.3 Threats to Validity

Internal Validity. Although the precision and recall
values were measured based on the number of vio-
lated code fragments, the cause of multiple violations
might be the same. However, it is difficult to define
clear criteria to identify the causes. Also, the oracle
preparation was done by one of the authors, which
might be biased. Similarly, there might have been
ambiguity in deciding the roles of the oracle in re-
lation to the Anemic Domain Model. Preparation of
more reliable benchmarks is necessary. Additionally,
since two inference rules were derived using projects
by students, which are the same sort of the ones used
in the evaluation, it might introduced an overfitting to
detect violations in the same sort of projects.

External Validity. All projects in our evaluation
were developed by students, which might result in dif-
ferent results when we apply our technique to busi-
ness applications in general developed by practition-
ers. Additionally, whether our technique works for
other frameworks, or not, has not been investigated.

7 CONCLUSION

To perform refactoring to adapt a program for an ar-
chitecture pattern, a technique considering both the

ICSOFT 2017 - 12th International Conference on Software Technologies

400



responsibilities and dependency constraints of com-
ponents is required in a fine-grained way. As de-
scribed herein, we proposed a technique to detect vi-
olations by introducing role inference rules to esti-
mate the components to which each code fragment
can belong. In role inference, both the responsibil-
ities and dependency constraints of components are
expressed as inference rules. Using MVC2 and Play
Framework as the target architecture and framework,
we have implemented an automated violation detec-
tor and evaluated its usefulness by its application to
multiple projects.

An important future task is to establish a refactor-
ing technique of the detected violations. In this pa-
per, we did detect the code fragments including vi-
olations, but we did not address to which technique
the detected code fragments should be moved. It is
preferable to move a code fragment containing vio-
lations along with its surrounding related code frag-
ments. It is important to find the code fragments to
be moved at the same time, which can be specified
using the result of our role inference. In addition, it
is also necessary to find other refactoring techniques
to fix violations that are unable to be fixed by Move
refactoring.

It is also an important task to apply our approach
to other architectural patterns. We believe that the in-
ference rules on dependency constraints are consid-
ered to be applicable to other architecture patterns
such as Layers, but rules on responsibilities can vary
greatly depending on the architecture themselves. It
is important to confirm whether inference rules can
express responsibilities of components for various ar-
chitecture patterns.

ACKNOWLEDGEMENTS

This work was partly supported by JSPS Grants-in-
Aid for Scientific Research Numbers JP15K15970,
JP15H02683, and JP15H02685.

REFERENCES

Budi, A., Lucia, Lo, D., Jiang, L., and Wang, S. (2011).
Automated detection of likely design flaws in layered
architectures. InProc. 23rd International Conference
on Software Engineering and Knowledge Engineer-
ing, pages 613–618.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
and Stal, M. (1996).Pattern-oriented Software Archi-
tecture. John Wiley & Sons, Inc.

Coelho, W. and Murphy, G. (2007). ClassCompass: A

software design mentoring system.Educational Re-
sources in Computing, 7:1–18.

Fowler, M. (1999). Refactoring: Improving the Design of
Existing Code. Addison-Wesley.

Fowler, M. (2003). AnemicDomainModel. http://www.
martinfowler.com/bliki/AnemicDomainModel.html.

Hickey, S. andÓ Cinnéide, M. (2015). Search-based refac-
toring for layered architecture repair: An initial inves-
tigation. InProc. 1st North American Search Based
Software Engineering Symposium.

Macia, I., Arcoverde, R., Cirilo, E., Garcia, A., and von
Staa, A. (2012). Supporting the identification of
architecturally-relevant code anomalies. InProc. 28th
IEEE International Conference on Software Mainte-
nance, pages 662–665.

Macia, I., Garcia, A., Chavez, C., and von Staa, A.
(2013). Enhancing the detection of code anomalies
with architecture-sensitive strategies. InProc. 17th
European Conference on Software Maintenance and
Reengineering, pages 177–186.

Sales, V., Terra, R., Miranda, L. F., and Valente, M. T.
(2013). Recommending move method refactorings us-
ing dependency sets. InProc. 20th Working Confer-
ence on Reverse Engineering, pages 232–241.

Terra, R., Valente, M. T., Czarnecki, K., and Bigonha,
R. S. (2015). A recommendation system for repair-
ing violations detected by static architecture confor-
mance checking.Software: Practice and Experience,
45(3):315–342.

Trifu, A. and Reupke, U. (2007). Towards automated re-
structuring of object oriented systems. InProc. 12th
Working Conference on Reverse Engineering, pages
39–48.

Tsantalis, N. and Chatzigeorgiou, A. (2009). Identifica-
tion of move method refactoring opportunities.IEEE
Transactions on Software Engineering, 35(3):347–
367.

Turner, J. and Bedell, K. (2002).Struts Kick Start. Sams.

Inference-based Detection of Architectural Violations in MVC2

401


