Data Transformation Methodologies
between Heterogeneous Data Stores
A Comparative Study

Arnab Chakrabarti'? and Manasi Jayapal?
! Fraunhofer Institute for Applied Information Technology FIT, Sankt Augustin, Germany

2Databases and Information Systems, RWTH Aachen University, Aachen, Germany

Keywords:

Abstract:

Industrial Data Exchange, NoSQL, Hadoop, Pentaho, Talend, Apache Scoop, Cassandra.

With the advent of the NoSQL Data Stores, solutions for data migration from traditional relational databases to

NoSQL databases is gaining more impetus in the recent times. This is also due to the fact that data generated
in recent times are more heterogeneous in nature. In current available literatures and surveys we find that
in-depth study has been already conducted for the tools and platform used in handling structured, unstructured
and semi-structured data, however there are no guide which compares the methodologies of transforming and
transferring data between these data stores. In this paper we present an extensive comparative study where we
compare and evaluate data transformation methodologies between varied data sources as well as discuss the

challenges and opportunities associated with it.

1 INTRODUCTION

RDBMS (Relational Database Management System)
have been running in data centers for over 30 years
and this could no longer keep up with the pace at
which data is being created and consumed. Limita-
tions of scalability and storage led to the emergence
of NoSQL databases (Abramova et al., 2015). This
breakthrough technology became increasingly pop-
ular owing to the low cost, increased performance,
low complexity and the ability to store “anything”.
This led the pathway to the solutions that included
distributed application workloads and distributed data
storage platforms such as MapReduce which trans-
formed into an open source project called “Apache
Hadoop” (Schoenberger et al., 2013). These tools
and technologies have increased the need to find new
ways of transforming data efficiently between differ-
ent heterogeneous data stores for organizations to de-
rive maximum benefits of being a data-driven enter-
prise.

For our work we had to study the platforms in-
volved in transforming data in detail and choose the
most appropriate storage systems by determining a se-
lection criteria. Fundamental reasons like the varied
nature of the platforms and the difficulty in choos-
ing the right technology components made the ini-
tial decision making cumbersome. The focus was

Chakrabarti, A. and Jayapal, M.

Data Transformation Methodologies between Heterogeneous Data Stores - A Comparative Study.

DOI: 10.5220/0006438802410248

then to find out the process of transforming data from
one database system to the other. It was impor-
tant to create a systematic procedure of how the pro-
cess of transformation was done. After which the
appropriate technologies involved in transformation
were identified and then data was seamlessly trans-
ferred between the databases. An important step was
to then determine the characteristics of comparison
which could be system/platform dependent or appli-
cation/algorithm dependent. An experimental set up
to execute the above steps was then done and finally
transformation technologies were compared. While
much has been done in describing the platforms and
tools in great depth, however, there exists no guide to
a comparative study of data transformation between
different big data stores and there lies the contribution
of our work which is presented in this paper.

2 RELATED WORK

Our comparative study presented in this paper could
serve as guidelines for organizations looking to mi-
grate to other platforms by helping them choose the
most efficient way of transforming their data from
one platform to another. Further, data transformation
also finds its utilization in “data exchange” which is
the process of taking data structured under a source

241

In Proceedings of the 6th International Conference on Data Science, Technology and Applications (DATA 2017), pages 241-248

ISBN: 978-989-758-255-4

Copyright © 2017 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

schema and transforming it into data structured under
a target schema (Doan et al., 2012). Industrial Data
Exchange(IDX) is one such application that provides
a solution to the problem of moving or sharing real-
time data between incompatible systems (Xchange,
2015). Our work is also a part of another such ap-
plication called “Industrial Data Space” project which
lays the groundwork for the foundation of an Indus-
trial Data Space consortium. This research project by
the Fraunhofer Institutes (Otto et al., 2016) aims at
creating an inter company collaboration with fast, au-
tomated data exchange to help companies achieve an
edge in the international competition.

Our work is steered particularly into the compari-
son of data transformation between the most widely
used platforms and tools which will be used effec-
tively to select methodologies amid different partners
of the Industrial Data Space project

2.1 Data Transformation

The upsurge of NoSQL databases led to the downfall
of relational database. In this scenario many orga-
nizations switched to NoSQL databases and needed
to transform their data at large. For example, Netflix
moved from Oracle to Cassandra (Netflix, 2015) to
prevent a single point failure with affordable scalabil-
ity. Coursera also experienced unexpected deteriora-
tion with MySQL and after thoroughly investigating
Mongodb, DynamoDB and HBASE shifted to Cas-
sandra (Thusoo et al., 2010). Thus, the study of data
transformation can be useful for many enterprises.

3 OVERVIEW OF THE
APPROACH

In Figure 1 below we depict the solution scope of our
work. It presents a classification of the data stores that
are addressed in our work with the red dotted lines in-
dicating the transformation process between the data
stores that we report in this paper.

Figure 1: Data transformation between data stores.

Keeping one data store as the source, all the pos-
sible transformation technologies to the other data

242

stores were found. For example, transformation from
Cassandra to Neo4j could be done using Talend, Pen-
taho, Neo4j-Cassandra data import tool and such pos-
sible technologies were considered individually.In ad-
dition to the technologies, another important goal was
to find an overlap of methods between them. For
instance, if the transformation technologies between
data store D1 and data store D2 were M1, M2 and
M3.ie,

D1 — D2 =M1, M2, M3 = Set A (Consider)
Similarly,

D3 — D4 = M4, M5 = Set B (Consider)
D4 — D1 =M6, M7 = Set C (Consider)

Set A, Set B and Set C should not be totally indepen-
dent of each other i.e, there should be an overlap of
methods between them. This was to ensure a mean-
ingful comparative study at the end. Figure 1 depicts
all the potential transformation possibilities. How-
ever, an important point to note here is that this list
is not exhaustive and there could be other technolo-
gies available for transformation.

3.1 Selection of the Data Stores

Based on the research done in the field of compar-
ative study (Abramova et al., 2015),(Kovacs, 2016),
leading surveys (DBEngines, 2008) and Google trend
based on the most popularly used NoSQL databases
- MongoDB (document database), Cassandra and
HBASE (column-store database) were chosen for our
work. Though HDFS(Hadoop Distributed File Sys-
tem) is good for sequential data access, being a
file system it lacks the random read/write capabil-
ity. Thereby HBASE, a NoSQL database that runs
on top of the Hadoop cluster was also included in
our work. Keeping in mind the rule of variety in
diversity, including a graph database was important.
Graph databases are fast becoming a viable alterna-
tive to relational databases. They are relatively new,
so most of the comparative studies do not compare
graph databases in their work. One of the primary
goals our work was to study the results and challenges
in data transformation for graph databases. Thus we
also include Neo4;j as one of the NoSQL data stores.

3.2 Selection of the Data
Transformation Platforms

The scope of our work was not to study the various
tools individually in detail but limited to choosing the
platforms based on a selection criteria and then com-
paring the transformation technologies between them.
Further for an optimal solution to manage big data,

Data Transformation Methodologies between Heterogeneous Data Stores - A Comparative Study

choosing the right combination of a software frame-
work and storage system was of utmost importance.
Although the software framework and storage sys-
tem share a very important relationship, data trans-
formation between platforms is mainly dependent on
the storage systems chosen to work with the frame-
work. For instance, if an organization chooses to
run Apache Spark with MongoDB and another orga-
nization chooses Apache Spark with Cassandra, data
transformation techniques need to be applied between
MongoDB and Cassandra. Therefore, the primary fo-
cus of this work is on the transformation between var-
ious data stores and the coming sections head in that
direction.

3.3 Choosing the Right Data Sets

Each of the chosen databases have a unique way of
storing data and it was important to choose the dataset
that can be replicated and stored across all of them
to obtain uniform results. For example, the chosen
dataset would be stored as JSON in MongoDb, CSV
in Cassandra and a graph in Neo4j. Other factors were
also considered like Hadoop’s HDFS demon called
Namenode holds the metadata in memory and thus,
the number of files in the filesystem is limited to the
Namenode’s memory. The best option in this case
would be to use large files instead of multiple small
files (White and Cutting, 2009). Of all the options
available, the Yahoo Webscope Program provided a
“reference library of interesting and scientifically use-
ful datasets for non-commercial use by academics and
other scientists” (Labs, 2016). Different sizes of Ya-
hoo! Music ratings data were requested and finally 3
data sets consisting of 1 million, 2 million and 10 mil-
lion records were selected for the proof of concept.
These data sets consisted of random information like
music artists, songs, user preferences and ratings etc.
This variation of data was needed to test if every cho-
sen technique was able to scale and perform well with
the increase in size.

4 CHARACTERISTICS OF
COMPARISON

In this section we present a set of well defined charac-
teristics that we considered for our comparative study.
Previous research (Tudorica and Bucur, nd) indicates
that NoSQL databases are often evaluated on the basis
of scalability, performance and consistency. In addi-
tion to these, system or platform dependent character-
istics could be complexity, cost, time, loss of informa-
tion, fault tolerance and algorithm dependent charac-

teristics could be real-time processing, data size sup-
port etc. For the scope of this work we only con-
sidered Quantitative Characteristics which is a set of
values that focuses on explaining the actual results ob-
served by performing the transformation. These nu-
merical aspects were carefully studied before collect-
ing the data to give the best comparative picture at the
end. Below we present the metrics that we have used
to evaluate our results.

* Maximum CPU Load: This is the maximum per-
centage of the processor time used by the process
during the transformation. This is a key perfor-
mance metric and useful for investigating issues if
any. There was no quota set and the process was
monitored by shutting down all other unnecessary
processor technologies.

¢ CPU Time: CPU time is the time that the process
has used to complete the transformation.

e Maximum Memory Usage: Maximum memory
usage is the maximum percentage of the physical
RAM used by the process during the transforma-
tion. An important metric to keep a track of re-
source consumption and impact it has on the time.

Analyzing the changes in the resource consump-
tion is an important performance metric. Maximum
CPU load, CPU time and maximum memory usage
were calculated for each of the transformation tech-
niques using hfop command in ubuntu.

¢ Execution Time: The total time taken to com-
plete the transformation. This was measured us-
ing the respective tools for each for the transfor-
mation techniques to compare the faster means
of transforming data between any two given
databases. This time included the time taken to
establish a connection to the source and destina-
tion databases, reading data from the source and
writing data to the destination. As a common unit,
all the results were converted into seconds. How-
ever, some transformations that took a long time
to complete, were expressed in minutes and hours.

* Speed: Speed is computed as the number of rows
transformed per second. For each of the transfor-
mation techniques, this value was obtained from
the tools using which the transformation was per-
formed. The value of speed was important, for
example, in the transformations to Neo4j. Slow
transformations of 3 - 30 rows/second suggested
the need to find alternative faster techniques.

243

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

S IMPLEMENTATION DETAILS

In this section we will describe in detail the imple-
mentation of this study in which an experiment to ex-
ecute the transformations between the data stores was
setup.

5.1 Experimental Setup

An ubuntu machine with the following configuration
was chosen to run all the transformations described in
our work:

e Ubuntu : 15.10
* Memory : 15.6 GiB

¢ Processor : Intel R Core TM i7 -3770 CPU @ 3.40
GHz *8

* OS type : 64-bit

e Disk : HDD 500 GiB, Norminal media rotation
rate : 7200, Cache/ Buffer size : 16 MB, Average

seek read : < 8.5 ms, Average seek write : < 9.5
ms

Only the technology and the concerned databases
were made to run whereas all the other processes were
shut down to make sure that no other variables had
an impact on the results. After the completion of ev-
ery job, the technologies and databases were restarted.
Htop command was used to analyse the processes run-
ning on the machine with respect to the CPU and
memory utilization. The process specific to the tech-
nology was studied using Htop and the quantitative
characteristics like maximum CPU%, Memory% and
Time are documented as Maximum CPU load, Max-
imum Memory Usage and CPU Time respectively.
Figure 2 shows an instance of the Htop command in
which the characteristics are highlighted.

Fal Fs| Fo! F7) F8)

Figure 2: Htop instance.

5.2 Workflow

For the experimental setup as described in the paper a
total of 74 transformations were performed and each
of them were first tested using 1 million records and
then subsequently with 2 million records. The initial

244

plan was to use 10 million records for every transfor-
mation but, some transformations took a long time to
complete and given the time restriction it was not fea-
sible to do so. Every technology underwent a stress
test to check if it could complete a job with 10 mil-
lion records and the other transformations were tested
with 1 and 2 million records. Below as shown in Fig-
ure 3 we give a workflow that we adhered to during
the entire course of the experiment. This was made
to systematically run and verify each job as it was es-
sential in concluding this study with a fair comparison
between the technologies.

Start
Transformation

Run technology

Start data store 1 and
verify if process
started successfull

Start data store 2 and
verify if process
started successfully

Create and
prepare
transformation
job

/R\m]i(op
Shutdown to check ifany Shutdown
technologics, other process is 1 process
datastores \ running
A N /

|
No

Execute
transformation

Cheek for !
solution N
“Tranformation
No:

0 successful?

T
Yes
A4
Record results
for evauation

All

complete?

Yes

Figure 3: Workflow to run the transformations.

5.3 Designing the Data Store

An obstacle that was not expected in the initial design
phase was finding the right combination of database
versions to be used with the technologies. The same
version had to be compatible with all the technologies
of transformation. First, the decision to find the right
version of the technologies was made.

Talend is an open source tool and the latest avail-
able version was used. However, the latest releases
of Pentaho are not open source anymore and an older

Data Transformation Methodologies between Heterogeneous Data Stores - A Comparative Study

stable version 5.0.1 was used. Sqoop was used in ac-
cordance with Hadoop.

Thus, the following versions of the technologies
were chosen:

* Pentaho data-integration - 5.0.1 stable version
* Talend open studio for big data - 6.1.1

* Apache Hadoop - 1.2.1

* Apache Sqoop - 1.4.4

Below we report the versions of the databases that
we selected for our study :

* MySQL -5.5.46
* Cassandra - 1.2.4
* Mongodb - 3.0.9
* Neodj-2.2

» Hbase - 0.94.11

It was then vital to store the chosen datasets into
all the databases. Since the datasets procured were in
the TSV format, an initial idea was to import it into
Cassandra and then transform them into the other data
stores. However, a decision was made to generalize
this as a procedure and first the dataset was stored into
Hadoop. The big elephant is not datatype dependent
and engulfs everything thrown into it. Further, it was
much faster to start the Hadoop demons and upload
the datasets into HDFS.

After the data was stored into 64 MB chunks in
HDFS, the technologies were started one by one. All
databases were subjected to a connection test to check
if they were successfully connected to the tools. Next,
a trial run of the transformations was done. In this
way, two goals were achieved - one testing the whole
system and other getting the datasets into all the data
stores.

5.4 Manual Methods of Transformation

The results of all transformations between Cassandra
and Neo4j were recorded for 2 million records. How-
ever, Neo4j was becoming extremely unresponsive af-
ter transforming 2 million records. For records upto
580,000, successful results were obtained and a de-
cision was made to restrict the number of records in
transformations involving Neo4j and Talend/Pentaho.
To make matters worse, the number of rows trans-
formed per second into Neo4;j using various technolo-
gies was limited between 3-28. For example, HDFS
to Neo4j using Pentaho, data was transformed at an
average speed of 18.5 rows/second and it took a to-
tal of 8.7 hours to complete. Similarly for others, the
job would have taken hours to complete and it was

not in the scope of our work to test each one of them.
Thus, alternative manual methods of transformation
were tested. Surprisingly, the transformation yielded
better results and the jobs ran to completion. Man-
ual method of transformation was able to surpass the
5,80,000 barrier and run jobs with 2 million records.

5.4.1 Cassandra - Neodj Transformation Process

This is a multi step transformation process. As a first
step, it was important to make sure that enough mem-
ory was reserved for the Neo4j-Shell. The memory
mapping sizes were configured according to the ex-
pected data size. Transforming data from Cassandra
to Neo4j was done in the following steps:

* Exporting Cassandra Table: The data needed to
be transformed was exported into a CSV file using
a simple cqlsh query. Cassandra also stores data
in a CSV format, hence there was no change in
the structure of the file.

* Validating CSV File: The exported CSV file had
to be checked for format description, consistency
and the like. To ensure efficient mapping into
Neo4j, the file was checked for binary zeros, non-
text characters, inconsistent line breaks, header
inconsistencies, unexpected newlines etc. This
was done with the help of a user friendly tool
called CSVKkit.

* Load CSV into Neodj: Neodj provides “LOAD
CSV” for the medium sized datasets and “Super
Fast Batch Importer” for very large datasets. For
the datasets chosen by us, LOAD CSV was suf-
ficient to complete the transformation. LOAD
CSV is used to map CSV data into complex graph
structures in Neo4j. According to the Neo4] de-
veloper site, it is not only a basic data import
cypher query but a powerful ETL tool. It is often
used to merge data and convert them into graph re-
lationships. Using the LOAD CSV, the validated
CSV file was transformed into Neo4j.

Similarly, in the Neo4j - Cassandra transforma-
tion, the graph database was first exported from Neo4j
using the copy query and then imported into Cassan-
dra after creating an appropriate table.

6 RESULTS AND DISCUSSION OF
THE CHALLENGES

In this section we discuss the results of the experiment
and also report the challenges that we faced during the
entire phase.

245

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

6.1 Comparing Transformation
Dependent Quantitative
Characteristics

This formative evaluation was used to monitor if the
study was going in the right direction. The data trans-
formation methodologies that were implemented in
this work were compared with one another and eval-
vated in the matrix as described. This on-going eval-
uation was done in parallel with the implementation
stage to facilitate revision as needed. Since every-
thing could not be anticipated at the start of the study
and due to uncertain changes that occurred at different
phases, a revision of the methodologies was necessary
at every stage.

6.1.1 Transformation Results

An environment as described earlier was setup; the
values of maximum CPU load, CPU time, maxi-
mum memory usage were recorded using the Htop
command, outcome of execution time, speed were
documented from the respective technology used in
the transformation and the results were compiled as
shown from table 4 to table 9. There are 6 data
stores in this study and keeping the source constant
and varying the target data store results in 5 combi-
nations per data store. The technologies involved in
this transformation were Pentaho, Talend and Sqoop
(Mappers from 1 to 4). The number of Mappers are
represented with “M” in the table.

* MySQL — > Other Data Stores: Sqoop was much
easier to implement and use in most cases; how-
ever, an increasing number of mappers did not
show a pattern in the execution time. To HDFS,
although Pentaho performed this transformation
in the best way, the output file records in HDFS
consisted of extra 0's which were added when it
was converted into BIGINT datatype. To Mon-
goDB, each row of the table in MySQL was
assigned an object id when it was transformed
into JSON objects to be stored in MongoDB. To
Neo4j, Pentaho and Talend were not successful in
transforming large datasets into Neo4;j. The trans-
formation was very slow in the order of 3-28 rows/
second. Thus, both the transformations were not
completed till the end.

* HDFS —> Other Data Stores: To MySQL, the out-
put table according to the desired schema should
be declared before starting the transformation. Al-
though, Talend started off with 372 percent max-
imum CPU usage, it went down to 1% CPU util-
isation during most of the time with mysql util-
ising 98% of the CPU load during this time.

246

To HBASE, Talend was faster when compared
to Pentaho but, it became unresponsive after the
transformation was complete. To Neo4j, since this
was one of the first instances to be tested, Pentaho
was allowed to run the transformation into com-
pletion and it took 8.7 hours; Talend transformed
data at 3.2 records per second and it would have
taken approximately a day's time to complete.

HBASE —> Other Data Stores: On the whole,
performance of HBASE was not up to the mark
with Talend. Most of the transformations involv-
ing Talend and HBASE ended in making Talend
unresponsive.

MongoDB —> Other Data Stores: To Neo4j, the
quality and structure of the output graph in Neo4j
using Pentaho depends on the cypher query given
manually in the generic database connection. On
the other hand talend has an inbuilt Neo4j connec-
tor and the resulting graph is generated based on
the schema declared by the user.

Cassandra —> Other Data Stores: To Neo4;j, Pen-
taho and Talend were very slow in transforming
data. An alternative manual method was then used
which completed transforming 2 million records
in a total time of 153.224 seconds. However,
the output of the manual method depends on the
cypher query used. Despite completing 2 million
records, Neo4j became unresponsive in the end.

Neo4j —> Other Data Stores: To MySQL, since
Pentaho 5.0.1 was connected to Neo4j using a
generic database connection, MySQL was throw-
ing errors with respect to the length of the record
specified from the graph database. The transfor-
mation to HDFS was a little different than the oth-
ers in this category. For all the other databases, the
schema was identified automatically in Pentaho,
but since Hadoop is not datatype dependent, at-
tributes from Neo4j nodes were directly saved into
HDFS. As Pentaho 5.0.1 does not support Neo4j
directly, there was no option to specify the schema
explicitly.

MySQL->Other databases

- Maximum | CPUTime | Maximum | Execution Speed

CPULoad | (seconds) | Memory Usage| Time (rows/sec)
Pentaho S 2650 73 363 5eC 75840
en 138 832 69 17825ec | 112233
24 343 18 287963sec | 69453
326 252 27 21g5685ec | 91504
273 274 24 27.11815ec | 73751
349 258 29 237855ec | 84086
6.4 16 1239 4643sec | 430755
354 19 66 5.535ec 361663
34 3.38 21 120385 | 166140
364 237 21 106057 sec | 188577
311 385 19 135969 sec | 147002
29 394 24 13663sec | 146380

303 157.26 1438 2152.2515ec 929

132 7.82 54 14.385ec 139082
320 10431 102 194.0485ec | 10306
169 6137 63 133 38sec 14994

MySQL->HBASE

MysQL->HDFS

MysQL->Cassa

MysQL->MongoDB

entaho
MysQL->Neod) |

167 68 32

Figure 4: MySQL to other data stores.

Data Transformation Methodologies between Heterogeneous Data Stores - A Comparative Study

HDFS—>Other databases
[Maximum | CPUTime | Maximum | Execution | Spesd
Technologies| cpy Load | (saconds) | Memory Usage| Time (rows/sec)
Pentaho 0.4 50.18 51 215,688 sec
Talend n 10347 65 Si8s7sec | 6278
. Sqoop(m=1) | 263 1038 28 4753535 | 42073
HOFSMYSQL ocoopi-2) | 285 956 27 ars02sec | asii
Sacop(M=3) | 267 952 29 s50631sec | 44382
sqoop(M=a) | 323 a7 33 13663sec | 146380
Pentaho 764 1439 16 Fedsec | 53148
-
HDFS>HBASE | ratend 136 827 66 1275 | 15780
Pentaho 38 5058 a1 | 33ee0dsmins| 990
HOFS—>Cassandr? |ratend 265 432 67 1105ec | 180342
Pentaho 912 3768 26 WaeTasec | 44769
HDFS—>MongOD® | ratend P s138 3 1801sec | 15623
Pentaho 3% 62 8.7 hours 185
HOFS>Neod) |ratend 133 66 332

Figure 5: HDFS to other data stores.

WBASE->Other databases
ecmotogies] MaXMUm | CPUTIme | Maximum | Execution | _Speed
8¢5 CPULoad | (seconds) | Memory Usage| Time | (rows/sec)
Pentaho 6 75.48 a7 19254sec | 10280
HBASE>MYSQL Iratend 742 153.74 7 44128 5ec| 4532
Pentaho 27 56.83 62 Ta63sec | 13670
HBASE>HDFS | ralend 412 43.27 6 12325 sec| 16227
Pentaho 103 184.92 5] 34223sec| 5844
HBASE->Cassandra 1. en 216 74.22 53 128485ec| 15566
Pentaho 4
P — 7 %62 61 72.48sec | 27593
Talend 219 138.28 s6 296.165ec| 6753
Pentaho Ta 57 27
HBASE—>Neod Jratend 368 66 261

Figure 6: HBASE to other data stores.

MongoDb—>Other databases
] Maximum [CPU Time Maximum Execution Speed
%% cPULoad | (seconds) | Memory Usage | Time | (rows/seq) |
Pentaho w1 | o382 56 T899 50| 7695
e ool |+ alend 9 104.28 10 279.56 sec 7154
Pentaho 157 2135 73 4738 sec | a2
(LTS Talend 318 832 9.8 15.74 sec 127064
PP 208 12 67 T6:588sec | 120569
ralend 995 351 67 896sec | 22314
Pentaho a4 | 64375 27 |73 987
Talend an 694 65 15055ec | 13289
Pentaho 125 64 20-23
MongoDB->Neod) | \ond 485 6.8 23-24

Figure 7: MongoDB to other data stores.

Cassandra—>Other databases
Tectmotogies | Maximum [CPUTime| Maximum | Execution | Speed
%! CPULoad | (seconds)| Memory Usage| Time | (rows/sec)
Pentaho 25 5272 148 |266.5605ec| 7503
Cassandra>MYSQL |ratend 153 9628 58 s35sec | 3800
Pentaho 7 1735 3 838sec | 41339
Cossandra—>HBASE |ratend 86 2657 56 64.720sec| 30902
Pentano 23 327 57 73510sec| 83647
Cossandra SHOFS | ratend 107 2186 58 S648sec | 35410
Pentaho 21 3651 59 So460sec| 33636
(Cossandra=>MongoDBl end 202 80.47 62 8sec | 7462
Pentano 3 71 2
J Talend 182 66 16
Manual(stept) [257 5238 %63 [190345sec| 14250
274 469 233 12879 sec | 155201

Figure 8: Cassandra to other data stores.

Neodl-—>Other databases (5,80,000 records)
Technologies | MaKimum [CPUTime | Maximum | Execution | Speed
815 | cPU Load | (seconds) | Memory Usage | Time (rows/sec)

Pentaho 574 1174 38 56.4805ec | 10269

Neodl>MySQL |1 jend 214 328 49 7.09sec | 80667
Pentaho 524 535 a6 Tab3sec | 39648

Neodl-->HBASE

« Talend 209 292 57 75 sec 77333
Pentaho 136 127 a2 37295ec | 155537
Neodl>HDFS |[ratend 200 093 61 468sec | 123931

Pentaho 311 | 11486 63 59277sec | 978
S Talend 214 101 6 402sec | 148278
Manual(stepD)| 104 577 187 26358 sec | 22004

948 9253 168 303.178sec| 1013

Pentaho 286 241 55 7913sec | 73297

ralend 202 1839 3 39.03sec | 14860

Figure 9: Neo4;j to other data stores.

6.1.2 Processing Speed of Transformation
Methodologies

The processing speed of all transformation method-
ologies involved in transforming data from one
database to the other have been plotted as shown from
figure 10 to figure 15. This gives a clear picture of
which technology was the fastest in comparison to the
others. The average rows transformed per second for
each technology has also been plotted to convey the
capability of each technology.

6.2 Summarization of the Results

Although, a conclusion on the fastest tool amongst
them on the whole cannot be drawn, there were cer-

.
400000
350000 .
300000
3 *MySQL->HBASE
F 250000 EysQLHORS
£ MysaL->Cassandea
3 200000
1 . . MySQL->Mongo0s
15000 - - - MySaL->Neot)
. . o Average
Y)
100000
. ¢ .
. .
50000 .
¥ X
Pentaho Taend SacoplMel) SaoopiMe2) SaoopiMe3) Sqop(Med)
Technologies

Figure 10: MySQL to other data stores.

180000 =
160000 "
.
= 140000
$ 120000 # HDFS-—->MySQL
% 100000 =
H .
H A HDFS->Cassandra
£ 50000
H L X HOFS-->MongoDB.
2 60000
& [N ¥ HDFS-->Neod)
40000 * * © nverage
20000 .
X
*
o - Y
Pentaho Talend Sqoop(M=1) Saoop(M=2) Saaop(M=3) Saoop(M=4]

Technologies

Figure 11: HDEFS to other data stores.

X
2 15000
& L] ¥ HBASE->Neod)
X
.
Pentaho Talend.

Technologies

Figure 12: HBASE to other data stores.

25000
200000
§ -
& 150000 MongoDB-->MySQL
K3 e #MongoDB-->HBASE
¢ bt
3 100000
3 Mongoos->cassandra
& MongoDB-->Neod)
50000 (] o Average
0 P

Pentaho Talend

Technologies

Figure 13: MongoDB to other data stores.

180000

160000
_ 140000
5
§ 120000
§ * Cassandra->MySaL
3 10000 BCassandra->HBASE
2 w00 A Cassandra->HOFS
R Cassandra->Mongods
H Cassandra->Neod)

40000]

. . © Average
20000 . .
° $ +
pentaho Talend Monual (stept) Manual (step?)

Technologies

Figure 14: Cassandra to other data stores.

180000

160000 ,
_ 140000 x
3
§ 120000 A
; e ——
2 100000 BNeodj->HBASE
] ('] .
£ o0 < : Neadj->HDFs
3 XNeodj->Cassandra
% oo - Neatj->Cassand
& * Neodt->MongoDB

40000 -

o nverage
20000 % x
*
0 % %
Pentaho Taend Manual(Stepl) ManualStep2)
Technologies

Figure 15: Neo4j to other data stores.

247

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

tain results worth noting:

* Talend reached a higher maximum CPU load than
Pentaho in most scenarios.

* In transformations from all data stores (except
Neo4j) to MySQL, Pentaho proved to be faster
than Talend.

* There was a significant difference in the results of
the transformation from all stores to Cassandra.
Talend was much faster in performing transfor-
mations, sometimes even 10,000 times faster than
Pentaho in these cases. Ironically, for the transfor-
mations from Cassandra to all other data stores,
Pentaho was much faster compared to Talend.

Throwing light on the other transformation technolo-
gies: Although manual method is a multi-step (ex-
port, data validation, load) process of transformation,
it was much faster than Pentaho or Talend. While its
counterparts were extremely slow in some cases and
transformed only 5,80,000 records in others, manual
method was able to complete the jobs with 2 mil-
lion records. A big drawback was that in some cases
Neo4j became unresponsive.

7 CONCLUSION AND FUTURE
WORK

The main aim of our work was to compare these tech-
nologies in detail using well defined characteristics
and datasets.Though there exist other ways of trans-
forming data like using commercial tools, but the crux
of this study was to compare the open source tools
which are freely available resources for every user.
When tools like Pentaho and Talend did not deliver,
other alternatives like manual methods were defined.
All the 74 transformation methodologies in this work
were implemented individually and evaluated. Fur-
ther as a reference, all the challenges faced during the
course of this work have been documented. Our vi-
sion for our work in this paper is that it could serve as
a guidelines to choose suitable transformation tech-
nologies for organizations looking to transform data,
migrate to other data stores, exchange data with other
organizations and the like. Although the number of
technologies could be limited with some factor, there
can always be more data stores that can be a part of
this comparative study. Every organisation has it’s
own needs and thereby follows different database so-
lutions. Adding more databases will help widen the
study and prove beneficial for future users.

248

REFERENCES

Abramova, V., Bernardino, J., and Furtado, P. (2015). Sql or
nosql? performance and scalability evaluation. Inter-
national Journal of Business Process Integration and
Management, 7(4):314.

DBEngines (2008). Db-engines ranking. http://db-
engines.com/en/ranking. Accessed: 2016-01-25.
Doan, A., Halevy, A., and Ives, Z. G. (2012). Principles
of data integration. Morgan Kaufmann Publishers In,

Waltham, MA.

Kovacs, K. (2016). Cassandra vs mongodb vs couchdb
vs redis vs riak vs hbase vs couchbase vs hyper-
table vs elasticsearch vs accumulo vs voltdb vs
scalaris comparison: Software architect kristof ko-
vacs. http://kkovacs.eu/cassandra-vs-mongodb-vs-
couchdb-vs-redis. Accessed: 2016-01-20.

Labs, Y. (2016). Webscope datasets. http://webscope. sand-
box.yahoo.com/. accessed: 2016-02-22.

Netflix (2015). Case study: Netflix. http://www.datas
tax.com/resources/casestudies/netflix. Accessed:
2016-02-02.

Otto, B., Juerjens, J., Schon, J., Auer, S., Menz, N., Wenzel,
S., and Cirullies, J. (2016). Industrial data space - dig-
ital sovereignity over data. Fraunhofer-Gesellschaft
zur Foerderung der angewandten Forschung e.V.

Schoenberger, V. M., Cukier, K., and Schonberger, V. M.
(2013). Big data: A revolution that will transform
how we live, work, and think. Eamon Dolan/Houghton
Mifflin Harcourt, Boston.

Thusoo, A., Anthony, S., Jain, N., Murthy, R., Shao, Z.,
Borthakur, D., Sharma, J. S., and Liu, H. (2010). Data
warehousing and analytics infrastructure at facebook.
SIGMOD’10, 978-1-4503-0032-2(10):06.

Tudorica, B. G. and Bucur, C. (n.d). A comparison between
several nosql databases with comments and notes.

White, T. and Cutting, D. (2009). Hadoop: The definitive
guide. O’Reilly Media, Inc, USA, United States.

Xchange, I. D. (2015). Industrial communications, indus-
trial it, opc, profibus - industrial data xchange (idx).
http://www.idxonline.com/Default.aspx ?tabid=188.
accessed: 2015-12-04.

