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Abstract: The features of probabilistic adaptive systems are especially the uncertainty and reconfigurability. The 
structure of a part of the system may be totally unknown or partially unknown at a particular time. Openness 
is also an inherent property, as agents may join or leave the system throughout its lifetime. This poses 
severe challenges for state-based specification. The languages in which probabilistic reconfigurable systems 
are specified should be clear and intuitive, and thus accessible to generation, inspection and modification by 
humans. This paper introduces a new approach for specifying adaptive probabilistic discrete event systems. 
We introduce the semantics of GR-TNCES to optimize the specification of unpredictable timed 
reconfiguration scenario running under resources constraints. We also apply this approach to specify the 
requirements of an automotive transport system and we evaluate its benefits. 

1 INTRODUCTION 

A system is an abstract concept that describes how 
entities behave over time. It describes output 
behavior on the basis of inputs and state information. 
A variety of approaches and methods ranging from 
model checking to static analysis of source code, 
simulation and theorem proving to ensure and prove 
the correctness and the safety of system specification. 
A state-based description of a system is assessed with 
respect to a property expressed in an appropriate 
specification language like temporal logic (Zhang et 
al., 2013). A system is nondeterministic if the set of 
enabled transitions is not unique, that is, some 
machine can have more than one transition enabled at 
the same time. Probabilistic reconfigurable systems 
are characterized by the ability to change their 
behaviors during run-time process according to the 
occurrence of unpredictable discrete events. A 
reconfiguration function is the adding/removing of 
any software or hardware component during run-time 
process. Examples of reconfigurable systems include 
most kinds of space systems, control plants and 
interactive software of varying nature (Khlifi et al., 

2015). The notion of reactive systems means that they 
are not adequately described by a simple relationship 
that specifies outputs as a function of inputs, but, 
rather, requires relating outputs to inputs through their 
allowed combinations in time (Bortolussi et al., 
2015).  

The languages in which probabilistic reconfigu-
rable systems are specified should be clear and 
intuitive, and thus accessible to generation, inspection 
and modification, as well as precise and conscientious 
to ensure the maintenance, analysis and simulation by 
computers (Harel et al., 1990). Such specification 
method should make it possible to move easily with 
sufficient semantic underpinnings from the initial 
stages of requirements and specification to prototype, 
design, and to form the basis for modifications and 
maintenance (Leveson et al., 1994). The behavioral 
and control aspects included should be based on large 
extent of visual formalisms (Bastide and Buchs, 
1998), admit a formal semantics that provides each 
feature, graphical and non-graphical alike for a 
precise and unambiguous meaning (Harel et al., 
1990). For probabilistic reactive systems, this means 
that the specification method should be intuitive and 
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able to deal with probabilistic reconfiguration under 
resources constraints. It would be helpful that the 
specification can be analyzed, simulated and 
debugged at any stage. Statecharts and temporal 
logic are currently used to specify systems. 
Nevertheless, statecharts are not able to specify 
reconfigurable probabilistic behavior and time 
constraints for real time systems. Temporal logic 
could not easily deal with the unpredictable 
reconfiguration scenarios during run-time process. It 
is also complex to specify reconfigurable running 
processes under limited energy and memory 
resources because these systems can violate its 
resources after some adaptation scenarios. 

In particular, an optimized and an expressive 
system specification positively affects formal 
verification of probabilistic adaptive systems. An 
expressive specification is essential for the system 
requirements specification and the formal 
verification. Typically, such descriptions involve 
complex sequences of events, actions, conditions 
and information flow, often with explicit timing, 
energetic and memory constraints, that combine to 
form the overall behavior of a system (Khlifi et al., 
2015). We focus on specification of systems that are 
able to undergo structural changes. The purpose of 
this paper is to introduce an optimized specification 
approach based on GR-TNCES formalism 
“Generalized Reconfigurable Timed Net Condition 
Event Systems” (Khlifi et al., 2015) that would 
enable us to cover the limits of statecharts and 
temporal logic. We describe also how to encode 
system specification and its requirements with an 
optimized and expressive approach. There are many 
systems which are operating under energy and 
memory constraints (Andrade et al., 2009). The 
designer has to optimize the consumption of 
resources for energy efficiency perspectives. Thus, 
the paper tries to present a complete approach 
ranging from specification, modeling to simulation. 
The authors will specify an automotive transport 
system with the aim to save energy in a skid 
conveyor system. Then, we present a model for this 
system using the environment ZIZO which is used 
for system modeling and simulation respecting the 
GR-TNCES formalism (Salem et al., 2015).  

The remainder of this paper is organized as 
follows. The next Section describes the preliminaries 
on top of system analysis and specification 
approach. Section 3 introduces the new semantics of 
the proposed specification. The case study, the 
system’s model are introduced in Section 4. A 
discussion is provided in Section 5. Finally, Section 
6 concludes the paper. 

2 BACKGROUND 

In this section, we introduce the syntax and 
semantics of R-TNCES, GR-TNCES and statecharts 
(Chan et al., 2001). We present an approach used for 
analyzing systems.  

2.1 System Analysis 

Complex adaptive systems under development need 
to be specified and analyzed (Chen et al., 2014) from 
three closely related points of view: functional, 
behavioral and structural (Harel et al., 1990). In the 
structural view, one provides a hierarchical 
decomposition of the system under development into 
its components, called modules. We present also the 
information that flows between them; data and 
control signals. Nevertheless, we do not specify 
when that will flow, how often will it flow and in 
response to what. The functional view can identify a 
detailed hierarchy of activities and signals that flow 
between them. However, we do not specify 
dynamics: we do not say when the activities will be 
activated, whether or not they terminate on their 
own, and whether they can be carried out in parallel. 
In the functional view, we specify only that data can 
flow and not whether and when it will terminate 
(Harel et al., 1990). In other words, the functional 
view presents the decomposition into activities and 
the possible flow of information, but not how those 
activities and their associated inputs and outputs are 
controlled during the continued behavior. It is the 
behavioral view (Harel et al., 1990) that is 
responsible for specifying control. This is achieved 
by allowing a control activity to be present on each 
level of the activity hierarchy. These controllers are 
responsible for specifying when, how and why 
things happen as the system reacts over time.  

2.2 Related Work 

In the previous related works that no one of our 
community was interested in optimizing the 
specification of probabilistic timed reconfiguration 
aspect which is featured by many control systems. 
Nevertheless, reconfiguration has become, 
nowadays, a crucial feature to consider when 
designing new probabilistic adaptive systems. There 
have been a set of approaches for formal 
specification of different systems. The state/event 
approach, in the form of finite-state machines or 
state transition diagrams, has been suggested 
numerous times for system specification. It proposes 
state machines for the user interface of interactive 
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software, data-processing systems, hardware system 
description, the specification of communication 
protocols and computer-aided instruction (Harel D., 
1987). There are also augmented transition networks 
(Wasserman. A., 1985) provided for hierarchical 
state/event descriptions by authorizing a transition in 
one machine to be labelled using another machine’s 
name.  A lot of the methodologies proposed for the 
specification of complex systems, such as SADT 
(Ross. D., 1997) that focus mostly on the functional 
and structural aspects of these systems, but do not 
provide any dynamic semantics related to their 
behavioral characteristics. There is also related 
works based on formal methods: Zedan et al. (Zedan 
et al. 1999) present an object based formal method 
for the development of real-time systems which is 
called ATOM. It is based on the refinement calculus 
and also the formal specification contains a 
description of the behavior of a real-time system. An 
executable specification model (El-kustaban et al. 
2012) was proposed for an abstract transactional 
memory (lock-free technique) that offers a parallel 
programming model for future chip multiprocessor 
systems. 

2.3 Statecharts 

The statecharts language is defined for specifying 
complex reactive systems (Chan et al., 2001).  
RSML is another language based on statecharts with 
slightly different syntax and semantics (Leveson et 
al., 1994). They both extend state-machine diagrams 
with parallelism, superstates, and broadcast 
communications. The STATEMATE toolset 
implements a particular semantics of statecharts 
(Chan et al., 2001). It presents a system model 
which consists of a finite number of parallel local 
state machines with a finite set of events and inputs 
interacting with a nondeterministic environment. 
Fig. 1 (Chan et al., 2001) presents a simple example 
with two parallel state machines A and B which are  
synchronized using events. Arrows without sources 
present the initial local states. Other arrows indicate 
local transitions, which are identified with the form 
trig[cond]/acts, where trig is a trigger event, cond is 
an optional guarding condition, and acts is a 
(possibly empty) list of action events. The guarding 
condition is simply a predicate on local states of 
other state machines and/or inputs to the system. The 
general idea is that if the trigger event occurs and the 
guarding condition either is absent or is evaluated to 
true, then the transition is enabled. Initially, some 
external events, along with some inputs from the 
environment, arrive, marking the beginning of a  
 

 

Figure 1: Statechart example. 

step. The system leaves the source local states, 
enters the destination local states, and generates the 
action events (if any). The events are used to enable 
some transitions as described above. 

2.4 R-TNCES 

An R-TNCES, as defined in (Zhang et al., 2013), as 
a structure RTN=(B, R), where R is the control 
module consisting of a set of reconfiguration 
functions R = {r1,...,rn} and B is the behavior module 
that is a union of multi TNCESs, represented as: 
B = (P,T,F,W,CN,EN,DC,V,Z)  
where: (i) P (respectively, T) is a non-empty finite 
set of places (respectively, transitions), (ii) F ⊆ (P × 
T) ∪ (T × P) is a subset of flow arcs, (iii) W: (P × 
T) ∪ (T × P) → {0,1} maps a flow 
arc to a weight, W(x,y) > 0 if (x,y) ∈ F, and W(x, 
y)=0 otherwise, where x,y ∈ P ∪ T, (iv) CN ⊆ (P × 
T) (respectively, EN ⊆ (T × T)) is a subset of 
condition signals (respectively, event signals), (v) 
DC : F ∩ (P × T) →  
{[l1,h1],...,[l|F∩(P×T)|,h|F∩(P×T)|]} is a subset of 
time constraints on output arcs, where i ∈ [1,|F ∩ (P 
× T)|],li,hi ∈ N, and li < hi, (vi) V : T ∨∧→ { , } 
maps an event-processing mode (AND or OR) for 
every transition, (vii) Z = (M0, D0), where M0 : P → 
{0,1} is the initial marking and D0 : P → {0} is the 
initial clock position. 

2.5 GR-TNCES 

The formalism GR-TNCES was introduced recently 
in (Khlifi et al., 2015). It is used to model and 
control memory and energy resources of adaptive 
probabilistic systems as well as discrete event 
systems. A GR-TNCES is a network of R-TNCES 
(Zhang et al., 2013). It is a structure G = ∑ R-
TNCES where R-TNCES = (B, R). R is the control 
module consisting of a set of reconfiguration 
functions {r1,…,rn} managed under memory and 
energy controllers, and B is the behavior module 
which is a union of multi TNCES (Zhang et al., 
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2013), represented as follows: B = (P, T, F, QW, CN, 
EN, DC, V, Z0) where:  

(i). P (respectively, T) is a non-empty finite set of 
places (respectively, transitions); 

(ii). F is a set of flow arcs with F ⊆ (P × T) ∪ (T × 
P); 

(iii). QW=(Q,W) where Q: F→[0, 1] is a real 
number that represents the probability on the 
arcs and W: (P × T) ∪ (T × P) →{0, 1} maps 
a flow arc to a weight. Specifically, W(x, y) > 
0 if (x, y) ∈ F, and W(x, y)=0 otherwise, 
where x, y ∈ P ∪ T; 

(iv). CN (respectively, EN) is a set of condition 
(respectively, event) signals with CN ⊆ (P × 
T) (respectively, EN ⊆(T × T)); 

(v). DC: F ⊆ (P × T) → [l, h] is a superset of time 
constraints on output arcs; 

(vi). V: T→{∨, ∧} maps an event-processing mode 
(AND or OR) to each transition; 

(vii). Z0 = (T0, D0) where T0: P → {0, 1} is the 
initial marking and D0: P → {0} is the initial 
clock position. 

Each reconfiguration r is controlled by the controller 
module R. It is a structure R consisting of a set of 
reconfiguration functions {r1,…,rn}. A 
reconfiguration function r is a structure  
            r = (Cond, Q, E0, M0, S, X), where:  

(i). Cond: CN → {true, false}: the precondition 
Cond of r can be evaluated to true or false and 
can be modeled by external condition signals; 

(ii). Q: F → [0..1]: TNCES probability which 
could be a functional (internal to the TNCES) 
or a reconfiguration probability. It is a new 
parameter for GR-TNCES; 

(iii). E0: P → [0..max]: controls the energy 
requirements by the TNCES to the energy 
reserves; 

(iv). M0: P → [0..max]: controls the memory 
requirements by the TNCES to the reserves; 

(v). S: TN(•r) → TN(r•): is the modification 
instruction of the reconfiguration scenario; 

(vi). X: last state (•r)→ initial state (r•): is the state 
processing function, where last state (•r) 
(respectively, initial state (r•)) denotes the last 
(respectively, initial) state of •r (respectively, 
r•) before (respectively, after) the application 
of r.  

Let TN = P ×T ×F ×QW ×CN ×EN ×DC ×V  be 
the  Cartesian product of all feasible net structures 
that can be performed by a system. Let •r 
(respectively, r•) denotes the original (respectively, 
target) R-TNCES before (respectively, after) the 
reconfiguration function r is applied, where TN(•r), 
TN(r•) ∈ TN. A state machine specified by an R-

TNCES, which is called Structure_changer, is 
introduced to describe the control module. In this 
state machine, each place corresponds to a specific 
TNCES that refers to a configuration scenario. This 
place can be introduced as a macro-step which is 
composed of a set of micro-steps as shown in Fig. 2. 
Initially, some external events along some inputs 
from the environment arrive, marking the beginning 
of a macro-step. The events may enable some 
transitions. The system leaves the source local states, 
enters the destination local states, and generates the 
action events (if any). Unless they are regenerated 
by other transitions, the events disappear after one 
micro-step. The macro-step is finished if there is no 
enabled transition. Each transition of the 
Structure_changer corresponds to a reconfiguration 
function. A place sp gets a token, which implies that 
the TNCES to which sp corresponds is selected. If a 
transition st (∀ st ∈ sp•) fires, then it removes the 
token away from sp and brings it into a place sp’ 
with sp’ ∈ st•. Firing st implies that a reconfiguration 
function is applied. Then, the TNCES is changed 
into another one corresponding to sp’. The 
Structure_changer is formalized as follows:  

Structure_changer = (P, T, F, Q, E’, M’) 
where ∀ t ∈ T, |•t| = |t•| =1, and only one TNCES is 
performed at any time. Each place of this structure 
contains the whole information about the 
corresponding TNCES e.g. its energy and memory 
requirements (number of states in this TNCES). Fig. 
3 shows an example of a GR-TNCES model of four 
R-TNCES. M and E design respectively the memory 
and energy resources of each R-TNCES. Mem and 
Eng are the memory and the energy reserve of the 
control module R. The parameter Q ∈ [0, 1] is the 
corresponding probability for each R-TNCES 
branch. It represents the chance to attend such a 
scenario for unpredictable systems. Let ß be a 
TNCES and Cost TNCES be the needed resources 
by this TNCES. The states of a GR-TNCES are 
defined as follows; A state of G is a pair (TN(ß), 
State(ß)), where TN(ß) denotes the net structure of G 
and State(ß) denotes a state of G. The evolution of a 
GR-TNCES depends on what events, energy and 
memory constraints take place. GR-TNCES deals 
 

 

Figure 2: Macro-step, micro-step. 
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Figure 3: Example of a GR-TNCES architecture. 

with the system’s reconfiguration. A reconfiguration 
function r = (Cond, Q, E’, M’, S, X) is enabled at 
state (TN(ß), State(ß)) if the following conditions are 
met: 

(i). TN(ß) = TN(•r), i.e., TN(ß) is equal to the net 
structure of •r and the firing time constraints 
are valid,  

(ii). Cond = true: The reconfiguration’s 
precondition is fulfilled, 

(iii). The energy and memory reserves can cover 
the cost of that scenario,  

The memory reserves M’ are enough: i.e., M’ > Cost 
TNCES (M0). M0 is removed from the memory 
controller. Once this reconfiguration is finished, 
these memory tokens are added back to the memory 
reserve. 

3 SPECIFICATION APPROACH  

To analyze GR-TNCES using state-exploration 
techniques, we have to deal separately with the 
behavior and the control module of this formalism. 
We view the control module as a transition system   
(C, Rec, In) where C is a set of macro-steps or a set 
of system configuration, Rec ⊆C×C a transition 
relation or reconfiguration function. It is a labeled 
function with the control property. It maps the 
reconfiguration scenario to the respected constrains 
(energy, memory, probability). In describes the 
initial system configuration which should be a 

standard defined configuration. So, the start point 
will be static. The initial state will be described later 
in the behavior model. The reconfiguration function 
is assumed to be a tuple of the current configuration 
(macro-step), the events and conditions occurring, 
the desired probability, and the needed energy and 
memory resources compared to the current storage. 
At each reconfiguration scenario respecting to high 
level strategy, the controller choose the maximal 
probabilistic transition to be fired for the next step.  

RecMax ≡ (E’ > Cost TNCESMax (E0)) ˄ (M’ > Cost     
TNCESMax (M0)) ˄ ∩e∈EN e ˄ ∩c∈CN c              (1) 

which describes how macro-steps are selected: the 
highest probabilistic scenario have to guarantee the 
resource constraints related to energy and memory. 
The events and conditions should also occur. 
Otherwise they are considered to be true. For low 
probability reconfiguration, the transition relation 
will be introduced as: 

RecMin ≡  (E’ > Cost TNCESMin (E0)) ˄ (M’ > Cost        
TNCESMin (M0)) ˄ ∩e∈EN e ˄ ∩c∈CN c              (2) 

which describes how macro-steps are selected: the 
lowest probabilistic scenario have also to respect 
resource constraints related to energy and memory. 
The events and conditions should also occur. If there 
is no event, it is considered to be true.  

 Once the macro-step is selected, the system 
should start the micro-steps of the fixed 
configuration. We view the behavior module as a 
transition system (P, R, I) where P is a set of global 
states, R ⊆ P×P a transition relation. It is a labeling 
function that maps each transition to the holding 
properties in the corresponding transition, and I ⊆ P 
a set of initial state. A transition in R is a tuple of the 
current local state (system source state), the events 
and conditions occurring, the probabilistic value of 
the environment inputs and the time period in which 
the transition could be fired. A path is sequence of 
states that belongs to P. A state is reachable if it 
appears on such trace path execution. We 
symbolically encode the global state space P of a 
GR-TNCES system by declaring a set Y of state 
variables as follows: For each system state m, 
declare a state variable ranging in the local states of 
m. Given this encoding, the set of initial states I is 
represented as:  

I≡ ∩m∈P m≡ m0 ˄ ∩e∈Ei ¬e ˄ ∩c∈CNi ¬c ˄ (T0={1}) ˄ 
(D0={0})                                    (3) 

where m0 is the initial local state, Ei the set of 
internal events and CNi the set of internal guarding 
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condition. This simply says that, initially, each 
system is in its initial local state, all internal events 
and guarding conditions do not occur, the state is 
marked and the clock position is 0, but the condition 
events are not constrained. The most important thing 
is the encoding of the nondeterministic transition 
relation R. Here we are considering the micro-step 
transition. To illustrate the idea of the encoding, for 
each state variable var ∈ Y, declare a variable var' 
that has the same range as var and intuitively 
represents its next-state value. Let Y0 be the set of all 
these primed variables. We would like to define an 
expression over Y ∪Y0 to specify the relation R. For 
each local transition t, let src(t), dst(t), evt(t), 
cond(t), time(t), mode(t),  and prob(t), denote its 
source local state, destination local state, trigger 
event, guarding condition, and the firing time 
interval, the firing mode{AND, OR}, and the firing 
probability respectively. The expression evt(t) and  
cond(t) are defined to be true if transition t does not 
have a guarding condition and event inputs. Define 
curr(t) to be the current state of the system in which 
t is located and an expression enbprob(t) as: 

enbprob(t) ≡curr(t) ˄ evt(t) ˄ cond(t) ˄ time(t)        (5) 

it represents whether the desired probabilistic 
transition t is enabled: It is enabled when its trigger 
event and guarding condition simultaneously occurs 
and the current clock time respects the firing time 
constraints if the firing mode is AND. We have also 
the possibility to deal with other firing mode as it 
described here:  

enbprob(t)≡ curr(t) ˄ time(t) ˄ (evt(t) ˅ cond(t))     (6) 

It presents how the transition t is enabled: It is 
enabled if one trigger event or guarding condition 
occurs and the current clock time respects the firing 
time constraints of this transition once the firing 
mode is OR. We assume that the system now is in a 
configuration scenario, we want to describe how the 
system moves in a micro-step. For each state m of 
the system, we define microm to describe how the 
system state can progress during time:   

microm≡(∩t/curr(t)=m (enbprob(t)→curr'(t)=dst(t))) ˄ 
(∩t/curr(t)=m (¬enb(t)→curr'(t)=curr(t)))           (7) 

The first conjunct guides the system states from the 
enabled transition to the destination state of an 
enabled transition, while the second conjunct 
prohibits the system from making any state change if 
none of the transitions are enabled. Each fired 
transition can generate some events. The generation 
of events evt(t) and conditions cond(t) at each state 

through the system execution are described 
respectively as follows: 

           microe ≡ (∪t/e∈Evt(t) enbprob(t)) ↔ e'         (8) 

which present if an event is generated by the current 
micro-step. It is derived from the union of enabled 
transition that can send events to activate different 
states of the system. Similarly, the micro-step 
generates guarding condition. It is represented as:     

            microc ≡ (∪m/c∈Cnd(t) microm(t)) ↔ c'         (9) 

It is derived from the union of states that can be 
guarding conditions to activate other different states 
of the system. Then, we can introduce micro to 
encode all the micro-steps in one macro-step. It is a 
conjunction of micro states, micro events and micro 
conditions. 

micro≡∩e∈CN microc  ˄ ∩c∈EN microc  ˄ ∩m∈P microm                                              

----------(10)   

The authors introduce an optimized specification 
approach: it is useful to describe the system 
requirements. It makes possible to deal with 
unpredictable reconfiguration scenario, time 
constraints, and limited energy and memory 
resources.  

4 TEST CASE: SKID CONVEYER 

Skid conveyors are one type of transport systems 
that are widely used in the automotive industry. 
Transporting a body in the paint shop or transporting 
chassis from one workstation to another in the final 
assemblies are typical use cases. For this purposes, 
we define an extended skid conveyor system showed 
in Fig. 4, which will be one part of the automated 
commissioning line in the “Zentrum für 
Mechatronik und Automatisierungstechnik” (ZeMA) 
in Saarbrücken, Germany. The following section 
describes the functional requirements of the system.  

 

Figure 4: CAD model. 

4.1 Functional Requirements 

The skid conveyor should consist of three conveyor 
parts (Khlifi et al., 2016). Actually, there is an old 
system where all the conveyor’s motors could be 
only switched together and manually from one mode  
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Figure 5: Worker use cases. 

to another operation mode. We aim to introduce new 
functional modes. It should be possible to localize 
the chassis on every part. In each conveyor part, the 
chassis should stop for 7 seconds for other tasks by 
various robots. In order to minimize the energy 
consumption, every unused actor should be in a 
standby mode or switched off. The purpose is to 
reduce the consumed resources to move the car from 
one skid position to the next one. For example once 
the chassis is in the second conveyor part, the motor 
of the first one should be switched off. The 
activation/deactivation of the motors is controlled 
with the help of the car position by the control 
system. The worker should control the system with a 
panel and Fig. 5 shows the possible uses cases.  

4.1.1 Control 

With this mode the worker can choose one operation 
mode for the system. The requirements for these 
operation modes are explained in the following part. 
The system is reconfigurable. There are three 
possible reconfigurations: 

 Automatic Mode: The worker should start and 
stop this mode with the panel. The speed of the 
skid should as well be controlled by the 
worker. All other sensors and actors should run 
automatically now. This means that first of all 
the chassis position has to be clear. Then, the 
chassis moves from one workstation to another 
without user interaction. Since the position of 
the chassis is logged, all unused actors can be 
switched off. As soon as the chassis is at the 
third position it should move backwards to the 
start position and start again. 

 Manual Mode: In this mode the worker should 
manually control all system functions. It should 
be possible to start and stop all three conveyor 
parts individually and together. It should be 
possible to increase and reduce the speed of the 
chassis.  

 Pause Mode: In order to save energy the 
worker can activate and deactivate this mode 
with the panel. If the mode is activated all 
sensors and actors are switched off or change 
to a standby mode.   

4.1.2 Additional Information 

If the worker uses this case all relevant sensor and 
actor data should be visible. For example whether a 
motor is on or off and the speed of the motor. 
 Settings: This mode should help the worker to 

use the panel. It should be possible to increase 
and reduce the contrast or to calibrate the 
screen. 

 Diagnosis: If an error occurs the worker can 
choose this mode. All sensor and actor errors 
are displayed here. 

4.2 System Encoding  

The skid conveyor is supervised by a centralized 
controller. It enables the reconfiguration and 
switching mode from one configuration to a second 
one. To simplify the use case specification, we 
consider that the system is not probabilistic and that 
the switching mode is chosen by the user of this 
system to be denoted by RTNskid= {Bskid, Rskid}. Let 
Eskid and Mskid be respectively the energy and 
memory skid reserves. We use the proposed 
specification approach to specify the system. Each 
mode is represented by a macro-step. We identify 
three macro-steps for the different modes: Rec1= 
Macro1: Automatic mode, Rec2= Macro2: Manual 
mode, Rec3= Macro3: Pause mode. This is a 
reconfigurable system: it can change its behavior 
from one mode to another mode.  Rskid is the control 
module of the system. It is represented as: 
Rskid = Rec1 ∪ Rec2 ∪ Rec3 
        ={rRec1,Rec2, rRec1,Rec3, rRec2,Rec1, rRec2,Rec3,   

rRec3,Rec1, rRec3,Rec2}   
For example, the first reconfiguration: “rRec1,Rec2” 
implies that “•r”= “Rec1” and “r•”= “Rec2”. It 
enables the switching mode from the current and the 
next configuration of the system. Fig. 6 describes an 
overview of the system model. It shows the possible 
switching mode between all the macro-steps. The 
initial state is the Idle position where the clock is 
null and the initial marking exist. It could be 
specified as follow:   
I ≡∩m∈P m 
   ≡Idle˄∩e∈Ei ¬e˄∩c∈CNi ¬c ˄ (T0={1}) ˄ (D0={0}) 
   ≡Idle  
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Figure 6: System model. 

Then, according to the user choice, the system reacts 
to the received command. Let EN1, EN2, EN3 be 
respectively the external events that activate Rec1, 
Rec2, Rec3. These events are generated by the 
system user. Marco1 is introduced as the 
conjunction of the energy constraint condition, the 
memory constraint condition and the trigger event 
that will initiate the desired configuration.  

 
Macro1≡ (Eskid > Cost ‘Macro1’ (E0)) ˄ (Mskid > 
Cost ‘Macro1’ (M0)) ˄ EN1. 

 
The system keeps the same running mode till it 
receives a trigger event from the user to change the 
operational mode. The second reconfiguration is also 
introduced as follow:  
 
Macro2≡ (Eskid > Cost ‘Macro2’ (E0)) ˄ (Mskid > 
Cost ‘Macro2’ (M0)) ˄ EN2. 
 
The system could switch for the third configuration 
once its conjunctions are validated. This 
configuration is introduced as followed:  
 
Macro3≡ (Eskid > Cost ‘Macro3’ (E0)) ˄ (Mskid > 
Cost ‘Macro2’ (M0)) ˄ EN3.  
  

Once the configuration is chosen the system starts to 
execute the different internal tasks of that macro-
step. The behavior module of RTNskid is formally 
described as follows: Bskid = (P, T, F, QW, CN, EN, 
DC, V, Z0) where the system network structure 
TNMaco1, TNMaco2, TNMaco3 ∈ TNskid. We have P = P1∪ 
P2∪ P3, T = T1∪ T2∪ T3, F = F1∪ F2∪ F3, W = W1∪ 
W2∪ W3, CN = CN1 ∪ CN2 ∪ CN3, EN = EN1 ∪ EN2 
∪ EN3, DC = DC1∪ DC2∪ DC3, V (t) = V1(t) ∪ V2(t) 

∪ V3(t), and ∀p ∈ P1∩ P2 ∩ P3, Z0(p)= z01(p)= 
z02(p)= z03(p).  
Let’s focus on the behavioral module; we would like 
to specify some system requirements of the model. 
We are focusing on the first macro-step: (Macro1). 
We aim to introduce some micro-steps of the target 
macro-step. The authors start to introduce some 
properties of the system. ‘It should be possible to 
localize the chassis on every part of the conveyor’. 
We note Pos1enb the micro-step that represent that the 
car position is in the first skid part. We assume 
curr(t) the system state that describes the position of 
chassis. We focus on the case that the chassis should 
be in the first position at a predefined time period 
[a1,b1]. To detect that the chassis is in the suitable 
location, the trigger events E1.1 and E1.2 should both 
occur at that time period. We can formally introduce 
this micro-state as:  
 

Pos1enb ≡ curr(t) ˄ E1.1 ˄ E1.2 ˄ time[a1,b1] 
 

which evaluates the transition. This transition could 
be enabled only if all the conjunctions of the 
declared formula are validated. Regarding the 
second position of the skid, it is formalized 
respecting the same rules as follow: 
 

Pos2enb ≡ curr(t) ˄ E2.1 ˄ E2.2 ˄ time[a2,b2] 
 

where E2.1 and E2.2 are the corresponding events to 
detect that position,  [a2,b2] is the time period for this 
scenario. The system specification aims to save the 
energy consumption of the system, i.e., the 
corresponding motor for each conveyor part should 
be off if there is no car at that moment. Let m1act(t) 

be the active state of the first motor and m2act(t) for 
the second motor. Here we define the rules of 
m2act(t) as:  
 

m2act(t) ≡ m1act(t) ˄ curr(t) ˄ E2.1 ˄ E1.2 

 

which represent that the active state of the second 
motor is a conjunction of the active state of the first 
motor, the presence of the chassis in the conveyor, 
the occurrence of the  E1.2: (chassis at the end of 
conveyor 1) and E2.1: (chassis at the beginning of 
conveyor 2). For the aim of saving energy the 
system has to switch ON/OFF the motors according 
to the position of the chassis. Once the second motor 
is turned ON, the first one should be switched OFF. 
We formalize the switching rules.  
 

¬m1act(t) ≡ m2act(t) ˄ ¬curr(t) ˄ E2.1 ˄ ¬E1.2 
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That represent that the deactivation of the first motor 
is conditioned by the activation of the second motor, 
the non-existence of the chassis in that skid which is 
confirmed by the absence of the event E1.2 and the 
presence of the next event E2.1. The enabled 
transitions can generate many events for the 
synchronization and the interaction of the system 
parts. Then, the micro event E2.1 is generated through 
the movement of the chassis from the first skid to 
second one (curr(t) → curr’enb(t)). The formalization 
is as follow:  

microe ≡ (∪t/e∈EN1(t) curr’enb(t)) ↔ E2.1 

The authors present and clarify the specification of 
the system requirements using the presented 
approach. Once finishing, we move to the next step 
which is: the modeling and simulation. 

4.3 System Modeling  

In this Section, we expose the automotive transport 
system model. We model the system using GR-
TNCES formalism using the environment ZIZO11 
(Salem et al., 2015). It allows modular architectures 
communicating using condition/event signals. The 
tool ZIZO is developed as a collaboration between 
Saarland University and Carthage University. It is 
useful for the modeling and simulation of distributed 
control systems. We model the system with aim to 
save the consumed energy by proposing an optimal 
control strategy of the chassis position in the skid. 

The new model features additional sensors to 
detect the position of the workpiece on the conveyor. 
Fig. 7 describes the proposed model which is a 
distributed discrete event system composed of four 
modules: The car in the conveyor, the sensors, PLC 
and the three motors. If the sensitive sensor detects 
the entrance of a car in the conveyor, then it sends 
 

 
Figure 7: Transport system model. 

                                                           
1 www.aut.uni-saarland.de/forschung/forschung-zizo-tool-khlifi/ 

an event signal to the PLC. It activates and 
deactivates the corresponding motors according to 
the car position in the conveyors. The first module 
contains six events which correspond to the six 
sensors installed in the three skid conveyor parts. 
For the sensors module, it receives the events sent 
by the conveyor then transfers them to PLC. It has 
three extra-events denoted by “No-Car2”, “No-
Car4”, and “No-Car6” which correspond 
respectively to events received from sensors number 
two, four and six to notify the PLC about the car’s 
availability. The third module corresponds to the 
PLC module that controls the whole system. The 
PLC receives signals from the sensors to control the 
state of the motors (active, standby, off). The events 
“M1.ON”, “M1.SB”, “M1.Act”, and “M1.Off” 
correspond respectively to control the states of the 
motors “Start, Standby, Active and Off”.  

4.4 Simulation 

To evaluate the energy optimization of the proposed 
model, we refer to the old system. Thus, it is 
possible to calculate the energy gain. We suppose 
that the motor consumes four energy units (tokens) 
per second in the running mode, one token in the 
standby mode and zero unit if it is off. The 
simulation results are shown in Fig. 8. The energy 
consumption curves are showed during a simulation 
time (30 seconds). This figure illustrates the 
evolution of the token number needed by the system 
in this period. We present the curves that describe 
the proposed energy efficient mode’s consumption 
on the right graph and the old model’s consumption 
on the left. In the energy efficiency mode, usually 
there is only one motor which is active. The idea is 
based on the detection of the car position to activate 
and deactivate the corresponding motors. The curves 
present three horizontals parts. It corresponds to the 
period in which the motors are deactivated in the old 
model and the standby mode in the proposed model. 
The other portions correspond to the motors’ 
activation period and the energy consumed by the 
three motors to move the car from one position to 
the next one. We notice that there is an important 
reduction of the energy consumed in the proposed 
model. For the first part (2-4 seconds), the 
consumption is highly reduced (21 to 7 tokens) since 
only one motor is activated instead of three motors 
compared to the old model. To move the car to the 
second position (16-19s), the proposed system 
model consumed 26 tokens. On the other hand, the 
basic model needs 44 energy units for the same task. 
It is a valuable optimization. In fact, the sensors  
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Figure 8: Comparison of the consumed Energy. 

detect the car position and the PLC controls the 
activation and deactivation of the motors: It 
deactivates the first motor and turn on the second 
one. For the third part of the system, this strategy 
enables us to save 22 energy units compared to the 
basic plant model.  

5 DISCUSSION 

We proposed a new specification approach. It is 
much more expressive and optimized compared to 
statecharts used in symbolic model checking. The 
aforementioned approach is distinguished from 
statecharts by the ability of coping with 
reconfigurable systems and time constraints. It is 
possible to express more restrictions related to timed 
systems and real time process. This approach could 
describe systems that could change their behavior at 
run-time process which are recognized as adaptive 
systems. It is also possible to use deferent firing 
mode for the system transition states: i.e., we can opt 
from AND/OR mode according to the system 
requirements. (AND if all the transition inputs are 
required, OR is used if one them if enough). Thanks 
to this formalism, it is possible to check resources 
availability before starting such a reconfiguration 
scenario. It is not possible to have resources 
violation once the system executes its tasks because 
it has already checks their availability. The concept 
of unpredictable behavior is also coved here. The 
specification approach is able to describe the 
probabilistic behavior; the unpredictable 
reconfiguration and tasks are both specified. We 
present also a complete approach ranging from 
specification, modeling to simulation of the 
automotive transport system used as a case study. 
 
 
 

6 CONCLUSIONS 

Our work consisted, through this paper, in proposing 
a new specification approach to specify and model 
unpredictable flexible control systems running under 
memory and energy resources constraints. The 
proposed approach is based on the GR-TNCES 
formalism. We introduced expressive method that 
could deal with limited memory and energy reserves 
at run-time processes which was not discussed in our 
previous work. It is possible to express the 
probabilistic reconfiguration scenario of such a 
system and an optimal specification of the system 
requirements. An automotive transport system is 
used as a case study for specification, modelling and 
simulation. The reconfigurations and the 
functionalities of the system are specified thanks to 
this approach. A new GR-TNCES model with aim to 
save of the proposed system is implemented using 
ZIZO. We simulate the new proposed model to 
evaluate its energy consumption compared to old 
system model. The reported result of the improved 
system shows energy savings quite nicely. During 
the next step of this project, we will work on the 
validation of the proposed model through a real 
energy data measurement of the skid conveyor.    
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