
SPDC: Secure Proxied Database Connectivity 

Diogo Domingues Regateiro, Óscar Mortágua Pereira and Rui L. Aguiar 
DETI, University of Aveiro, Instituto de Telecomunicações, 3810-193, Aveiro, Portugal 

 

Keywords: Access Control, Software Architecture, Security and Privacy Protection, Network Communications, 
Database Connectivity. 

Abstract: In the business world, database applications are a predominant tool where data is generally the most 
important asset of a company. Companies use database applications to access, explore and modify their data 
in order to provide a wide variety of services. When these applications run in semi-public locations and 
connect directly to the database, such as a reception area of a company or are connected to the internet, they 
can become the target of attacks by malicious users and have the hard-coded database credentials stolen. To 
prevent unauthorized access to a database, solutions such as virtual private networks (VPNs) are used. 
However, VPNs can be bypassed using internal attacks, and the stolen credentials used to gain access to the 
database. In this paper the Secure Proxied Database Connectivity (SPDC) is proposed, which is a new 
methodology to enhance the protection of the database access. It pushes the credentials to a proxy server 
and separates the information required to access the database between a proxy server and an authentication 
server. This solution is compared to a VPN using various attack scenarios and we show, with a proof-of-
concept, that this proposal can also be completely transparent to the user. 

1 INTRODUCTION 

Security is an important aspect to consider when 
sensitive data is being served by some service. 
However, no computer system can be completely 
secure without making it unusable, so the key is to 
find the right balance. When it comes to databases, 
the usage of standard APIs to access and manipulate 
data, such as Java Database Connectivity (JDBC) 
(Oracle, 1997), Hibernate (Bauer and King, 2005) 
and other similar mechanisms, is very pervasive.  

When client database applications connect 
directly to databases using such connectivity tools, 
some problems may arise in regards to access 
security. If an attacker gets access to the client 
application of a business that connects directly to a 
database, he can potentially obtain the database 
credentials and use them to connect to the database 
in an unsupervised manner. This is possible because 
the database credentials are normally written directly 
into the application code or configuration files, 
meaning that users of the application do not need to 
know them. This issue is normally addressed by 
securing the access to the database service using 
solutions such as virtual private networks (VPNs).  

However, a global VPN solution to access many 

services in a company has limited security, since 
anyone with access to one service may attempt to 
connect to another. Similarly, a service specific VPN 
does not protect against internal attacks that can 
bypass the VPN altogether. By compromising the 
VPN server, the database becomes much more 
exposed, and many times just looking at the client 
application source code or configuration files can 
reveal the database credentials to an attacker. 

Using an authentication service on top of the 
database service is another solution to this problem, 
e.g. web services, but the client application must use 
the interface of the service and discard database 
tools such as JDBC. Therefore, frameworks like 
Hibernate that rely on them do not work. 
Furthermore, simply removing the credentials from 
the application code is not easy since there may be 
many of them, so providing the user of the 
application with all the credentials is not an option in 
most cases.  

The reason behind it is that, among others, the 
user would be prone to write the credentials down if 
a complex credential policy is in place, i.e. policies 
regarding password complexity and length (Shay et 
al., 2016), making it easier to be disclosed. Various 
results also show that developers are aware of the 

56
Regateiro, D., Pereira, Ó. and Aguiar, R.
SPDC: Secure Proxied Database Connectivity.
DOI: 10.5220/0006424500560066
In Proceedings of the 6th International Conference on Data Science, Technology and Applications (DATA 2017), pages 56-66
ISBN: 978-989-758-255-4
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



 

security issues regarding passwords (Yang et al., 
2016). One might consider the usage of one-time 
passwords to secure the credentials, which also 
assumes the user has some sort of smartcard or 
similar device. However, database management 
systems (DBMS) do not usually support this type of 
authentication natively. Implementing them 
manually to verify if a valid one-time password was 
provided requires the exclusive use of stored 
procedures, which becomes hard to manage in 
complex scenarios, or triggers to be added to each 
query, which decays the database performance.  

In this paper, we propose a solution called Secure 
Proxied Database Connectivity (SPDC) which aims: 
to provide a mechanism that separates the 
information needed to connect to the database 
between a proxy server and an authentication server 
running within the database server; allow standard 
database connectivity tools, such as JDBC or 
ADO.NET, to be used; and take the database 
credentials out of the client application, so that a 
compromised client application does not disclose 
them. This solution requires a malicious user to 
compromise both servers to be able to establish a 
connection to the database and access its data. 

This proposal emerged from the work done in 
(Pereira et al., 2015; Regateiro et al., 2014; Pereira 
et al., 2014), where a distributed access control 
framework allows the clients to connect to a 
database through runtime generated access control 
mechanisms. There, client applications can use an 
interface based on JDBC, where the methods are 
only implemented by the access control mechanisms 
to access and manipulate data stored in a database if 
the user has permission to use them. A connection to 
a server side application is also established to 
configure the runtime generation of the access 
mechanisms, based on the security policy that 
applied to that client. While this eases the 
development effort to write a database application 
by giving developers interfaces tailored to the 
permissions given to the application, it lacks security 
in term of access to the database itself. SPDC was 
designed to enhance the access security to the 
database, while keeping support for the convenience 
of database connectivity tools, such as JDBC. 

The paper is divided as follows: chapter 2 
presents the related work, chapter 3 presents the core 
concepts of SPDC, chapter 4 presents a proof-of-
concept implementing SPDC, on chapter 5 a 
performance assessment regarding network traffic is 
made and chapter 6 finalizes with a brief discussion 
of the presented contents. 

2 RELATED WORK 

To be best of our knowledge, there is not much work 
done to secure the JDBC or ADO.NET driver type 
protocols. A possible explanation is that most drivers 
used with these tools already support SSL/TLS 
(IETF, 2008) connections to DBMS using digital 
certificates. While this normally protects the 
credentials from being obtained from the network by 
eavesdropping it or through some other means, if the 
malicious users have access to the client application 
it may be possible to steal the credentials from there. 

While there is not much work done to secure the 
driver protocols, the SSL/TLS protocol on the other 
hand has seen some work to try to improve its 
security. In (Oppliger et al., 2006) and (Oppliger et 
al., 2008), a session aware user authentication is 
introduced and expanded to thwart Man-In-The-
Middle (MITM) attacks. Nevertheless, an internal 
attack on the database service to establish a direct 
connection is enough to allow a malicious user to 
access the data if the credentials are obtainable from 
the client application. In (Abramov et al., 2012) a 
methodology is proposed to assist developers and 
database designers to design secure databases that 
follow the organization’s guidelines for access 
control. It is applied and verified at the organiza-
tional and application development levels to ensure 
the satisfaction of the security requirements. Once 
more, it does not protect the database from being 
read from or even from being modified directly if 
the credentials are stolen from the client application, 
depending on the client application permissions. 

Another solution to this problem is to connect to 
the database through a web service instead of a 
direct connection to the database, such as a login 
service. While this has several advantages, such as 
only the server can establish connections to the 
database and the operations performed by the client 
applications can be more easily controlled, they 
must use the web service interface to access the 
database. The issue with this approach is that in most 
cases the interface provided differs from web service 
to web service. This means that the developers must 
master them, whereas tools such as JDBC and 
ADO.NET provide a well-known and well-
established interface to access any supported 
database. The work presented in (Gessert et al., 
2014) leverages the importance of this problem, 
stating the need to create a unified interface for 
cloud data stores that have emerged recently. 
Furthermore, compromising the login service may 
be enough to access the database, since the 
malicious user knows  the  database endpoint and the  

SPDC: Secure Proxied Database Connectivity

57



Table 1: State of the art summary in relation to SPDC features. 

Solution Cred. on the Client Nodes to Breach API Other Notes 
Basic Driver Yes Client Standard N/A 
Oppliger et al. Yes Client Standard MITM mitigation 
Abramov et al. Yes Client Standard Security Guidelines 
Webservice No Webservice Custom Access Proxy 
HA-JDBC Yes Client Standard Access Proxy 
Other Auth Methods Yes Client Standard May not be supported 
VPN Yes Client Standard Internal access not prevented 
SPDC No Auth. and Proxy Servers Standard Architecturally costly  

 

database credentials are still configured in the client 
application. 

Web services can almost be seen as proxy servers 
that users use to access to manipulate the data stored 
in a database according to their permissions, albeit 
with their own interface. Proxy servers are used 
throughout the literature in some way to provide 
better security to access resources, be it a database, 
the Internet, etc. The work presented in (Zarnett et 
al., 2010) and (Naylor et al., 2015) show how proxy 
servers can be beneficial in both providing security 
and additional services. We restate that use of proxy 
servers in this paper aims to provide increased 
security by removing the need for client applications 
to possess real credentials to the database, while 
allowing them to use database connectivity tools 
transparently. Furthermore, a malicious user should 
only get access to the data in the database by 
successfully compromising both the proxy server 
and the authentication server, where other solutions 
usually only require one service to be compromised. 

HA-JDBC (Ferraro, n.d.) is an existing JDBC 
proxy project that has been implemented, is readily 
available and provides many features on top of what 
JDBC currently supports. However, it only focuses 
on being light-weight, transparent, and providing 
fault tolerant clustering capabilities to the underlying 
JDBC driver. Therefore, it still requires the client 
application to use the database credentials. In this 
light, it differs from the work done in this paper in 
which the client authenticates with the proxy itself 
using a server generated token and never uses the 
database credentials directly. 

Other methods of authentication with databases 
have been proposed, such as using biometric data 
(Villager and Dittmann, 2008), digital certificates 
(Lavarene, 2010), third-party based authentication 
(Oracle, n.d.), etc. In the case of digital certificates, 
the application would have to store it within itself, 
meaning that it could be stolen just like we argue 
with username/password credential pairs. 
Additionally, SQL Server is able to use Microsoft 
Windows Integrated Security (Microsoft, n.d.) to use 

the operating system’s user account as the 
credentials used for authentication. While it does 
prevent the client applications from having 
credentials hard-coded, it now matters which 
account the user is logged into when using the 
application. Furthermore, normally an application 
only has one set of credentials to access a database. 
User biometric data suffers from the same issue and 
is not necessarily a safer or a more convenient 
option over the alternatives (Zimmerman, 2003). 

A summary of the information presented on this 
section can be seen in Table 1, showing if the 
database credentials are on the client application, the 
nodes required to breach to get the credentials and 
the API provided to the client to access the database. 

3 SOLUTION CONCEPT 

In this section the core concepts behind SPDC are 
presented. The main goal is to offer a new approach 
to secure the access to a database while allowing a 
standard tool, such as JDBC, to be used through a 
proxy server. Furthermore, we show that this 
method protects the database from being accessed by 
a malicious user even if information stored in the 
proxy server or the authentication server are 
disclosed individually.  

To reiterate the issue SPDC is trying to solve, 
solutions like VPNs do protect access to services, 
such as databases, while still allowing client 
applications to use standard APIs such as JDBC to 
connect to them. However, VPN solutions can be 
used to access a global set of services within a 
company, a single service or something in-between. 
If a database service is provided within a VPN along 
with other services, then it becomes less secure, 
since users that can access one of the other services 
may attempt to connect to the database. If another 
login layer is used on top of the DBMS then other 
mechanisms must be implemented to support the 
usage of standard database connectivity tools, such 

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

58



 

as JDBC, to connect to it. In the case the database 
service is served in its own VPN, and like the login 
layer solution just described, internal attacks can still 
leave the DBMS vulnerable to malicious users that 
have access to client applications with the 
credentials hard-coded. It only takes the VPN server 
to be compromised to leave a DBMS much more 
exposed, and if just by looking at a client application 
source code the database credentials can be 
obtained, then the data becomes accessible. 

3.1 Conceptual Architecture 

SPDC was designed to protect the database by using 
a proxy server to communicate with the database, as 
shown in Figure 1. The idea is that the client 
connects to a proxy server, authenticating with it, 
and then the proxy server connects to the database 
using credentials it has stored, proceeding to relay 
the communication between them. This proxy server 
was then devised to serve as a credentials provider, 
using the client application real credentials when 
establishing the connection to the database. These 
credentials are also encrypted to prevent them from 
being disclosed in plain text in the event the proxy 
server is compromised.  

 

Figure 1: Conceptual Client to Database connection. 

It is stated that the presented solution protects a 
database even when the information in the proxy 
server or the authentication server is compromised. 

The only exception is if the DBMS itself is 
compromised in an internal attack and access is 
granted without proper authentication. To achieve 
this goal, both the proxy server and the 
authentication server were given an asymmetric key 
pair and the information required to access the 
DBMS was divided between them as follows: 

• The proxy server possesses the user 
credentials, encrypted using the symmetric 
key C which is unique for each user, and 
requires them to establish the connection to 
the DBMS. It does not store the symmetric 
key C. 

• The authentication server possesses the 
symmetric key C for each user and can open 
endpoints to the DBMS. It does not store the 
credentials to the database. 

• The client application possesses no relevant 
information for authentication. This means 
that the user must know the credentials to 
connect to the authentication server and 
continue the process. It does possess dummy 
credentials to a database.  

Table 2: Stored sensitive data per protocol participant. 

Client 
Application 

Proxy  
Server 

Authentication 
Server 

Dummy 
database 
credentials. 

Encrypted user 
database 
credentials. 

Open database 
connection 
endpoints. 

  Symmetric keys C. 

Table 2 shows a summary of this information. 
The dummy credentials stored in the client 
application must have connection permissions to the 
database. This comes from a shortcoming in the 
database connectivity tools used. In the case of 
JDBC, a connection object is only instantiated if a 
valid connection is made to a DBMS, and a 
connection object is required to be able to use JDBC 
on the client. Nevertheless, a separate DBMS with 
no data or an account stripped of permissions may 
be used for this purpose, making the credentials 
stored in the client application effectively useless to 
access the data. 

In this scenario, the user must first authenticate 
with the authentication server to obtain the server 
generated token and present it to the proxy server. 
The proxy server uses this token to authenticate the 
user and establish a valid connection to the DBMS 
endpoint.  

3.2 Deployment Assumptions 

Let us consider what happens when each party in 
this exchange is compromised and what other 
security technologies are assumed to be deployed. 
During the SPDC design, there were a few security 
assumptions that were made. Thus, they are 
important to be considered when creating security 
attack scenarios. 

First, it is assumed that the communication 
between all parties is protected to prevent the data 
from circulating in clear text, either using TLS or 
some other mechanism. 

Second, access to the network where the 
database and authentication server are deployed is 
assumed to be restricted, for example by a firewall, 
allowing access to the database to be controlled and 
monitored.  

Third, the credentials used to authenticate with 

SPDC: Secure Proxied Database Connectivity

59



 

the authentication server to obtain the token T are 
assumed to not be stored anywhere in the client. If 
the user cannot be trusted with a password, a 
solution based on one-time passwords, for example, 
should be used. 

Finally, the proxy server is assumed to be trusted 
by all the parties to not eavesdrop on data and to 
keep the database credentials protected. If this is not 
a possible scenario, the entity in charge of the 
database server should provide a proxy server on a 
distinct network with the same security requirements 
to access the database. It is also assumed that the 
asymmetric keys of the proxy and authentication 
servers are heavily secured and cannot be obtained 
easily by breaching the applications running on 
them. 

3.3 Attack Scenarios 

In this section, different attack scenarios that target 
distinct parts of the proposed solution are detailed 
and discussed. 

Following the information shown in Table 2, if 
the proxy server is breached, then a malicious user 
would be in possession of the following data: 

• The encrypted user credentials, which are a 
known function of the symmetric key C with 
the user username and password. Without the 
symmetric key C to decrypt them only a brute 
force attack is available. 

However, the following data is not in the 
malicious user possession: 

• An open database endpoint to connect to, 
which can be random for every access 
attempt. This prevents the malicious user from 
attempting online attacks. 

• The user symmetric key C, which is different 
for every user and that only the authentication 
server stores and provides inside each token T. 
This prevents the malicious user from 
decrypting the credentials. 

Attempting to impersonate the proxy server is 
impossible without stealing the proxy server 
asymmetric private key, since token T passed by the 
legitimate user was encrypted using the public key. 
Without it, the token T cannot be decrypted to 
retrieve the symmetric key C and the connection 
endpoint. Therefore, the connection to the database 
is impossible to be established, which also alerts the 
legitimate user that an attack could have occurred, 

If the authentication server is compromised, 
then a malicious user would be in possession of the 
following data: 

• The open database endpoints to connect to, 
which are only open when an access attempt is 
made. This could allow the malicious user to 
attempt online attacks on the database. 

• The user symmetric keys C, which is different 
for every user. Without the encrypted 
credentials stored on the proxy server they are 
useless. 

However, the following data is not in the 
malicious user possession: 

• The encrypted user credentials, which are a 
known function of the symmetric key C with 
the user username and password. Therefore, 
the credentials are still safe. 

Impersonating an authentication server is useless 
to the malicious user since the legitimate users do 
not provide the database credentials for 
authentication. Since the users do not have to know 
the database credentials, these should be randomly 
generated for each one of them. 

If the client application is compromised, the 
malicious user is not capable of obtaining any 
relevant information to authenticate with the DBMS, 
since the credentials were pushed to the proxy 
server. Note again that the credentials used to obtain 
the token T are not meant to be stored on the client 
application, but to be known by the user of said 
application or using another authentication scheme 
such as one-time passwords. 

3.4 Database Connection Proxying 

In this section, a proposal to secure access to 
databases while allowing the usage of standard 
database connectivity tools are shown. This is 
achieved by separating the authentication material 
between the authentication and a proxy server, 
which relays the connection to the database. 
Unfortunately, most database connectivity tools do 
not allow the usage of proxy servers or custom 
sockets to communicate with the DBMS, requiring 
the usage of alternatives such as reflection 
mechanisms to achieve it.  

To setup the proxy server on the client 
application, it must first create a connection object to 
communicate with the database, such as a JDBC 
connection object, and then modify it so that it 
connects to the proxy server instead. Furthermore, 
the proxy server is required to relay the 
communication between client application 
connection and the connection it established to the 
DBMS. This setup allows the client application to 
communicate with a database directly using a 

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

60



 

database connectivity tool while keeping the real 
database credentials unknown to the user. 

In short, setting an existing generic 
communication socket to the proxy server to be used 
by a database connectivity tool connection will 
generally require the following steps: 

1. Create a generic communication channel to 
connect the client application and the proxy.  

2. Obtain a token T from the authentication 
server and pass it on to the proxy server. 

3. Have the proxy server connect to the DBMS 
using the information on the token T provided 
by the client and start relaying the data 
between them. 

4. The client application creates a connection 
object from the database connectivity tool of 
choice, using a DBMS account without 
privileges if required. 

5. The client application sets the socket to be 
used by the database connectivity tool to the 
pre-existing generic communication socket 
with the proxy server. The database 
connectivity tool can now be used as normal. 

This is implemented in the proof-of-concept 
using reflection mechanisms, in which the SQL 
Server DBMS and JDBC are used to implement this 
solution. The authentication server must ensure 
that an endpoint is open so the proxy server can 
connect. 

3.5 Deployment Considerations 

Implementing the concept discussed so far allows 
for a functional system to be implemented, but it is 
not enough to make it secure given the assumptions 
made in section 3.2. It must be ensured that all the 
connections are made over secure connections, such 
as TLS, and that the database cannot be accessed 
using information stored on the client application, 
proxy server or authentication server individually.  

This would force a malicious user to compromise 
both the proxy server and authentication server to be 
able to access the data, unless the database can be 
exploited using the unprivileged account. For this 
reason, a separate DBMS instance can be used for 
this purpose. SPDC also allows to set arbitrarily 
complex passwords on the database accounts, since 
the clients are not meant to know them. 

Hence, SPDC has a few limitations that should 
be taken into consideration when deploying.  

First, it does not protect the network 
communications, depending on existing protocols, 
such as TLS, to provide that protection. Its purpose 

is just to protect access to a database without 
disrupting existing database access APIs.  

Second, if a malicious user were to be able to 
compromise the proxy server with an online attack 
to a point where the decrypted token is leaked from 
memory, then the user credentials could be obtained, 
as well as an endpoint to access the database. For 
this reason, the proxy server software must be robust 
to prevent memory from leaking.  

Furthermore, the proxy server must be trusted or 
provided by the database server for the simple 
reason that, due to the proxying procedure, the proxy 
server would be able to eavesdrop on the 
communication. Finally, if a user chooses a poor 
password to authenticate with the authentication 
server, the client application was modified by an 
attacker, or the communication between the client 
application and the authentication server is not 
protected, then it would be possible to impersonate 
the user.  

SPDC can be enhanced with other security 
mechanisms and protocols, such as one-time 
passwords, to address this last issue to some degree. 

Finally, the solution has a whole has an increased 
cost in the architecture, since it requires a proxy and 
an authentication server, and should be considered 
against the security level required for a use case. 

4 PROOF OF CONCEPT 

In this chapter the SPDC implementation details and 
how the client can connect to the database with 
credentials that grant them no read/write permissions 
on the database is presented. For the proof-of-
concept, Java was used as the programming 
language, SQLServer 2012 as the RDBMS with the 
Northwind sample database and JDBC to connect to 
it. The JDBC driver used was the SQL Server 
official release for JDBC version 4. 

As mentioned, our previous work relied on data 
structures that communicated with the DBMS to 
execute operations and retrieve data. However, the 
client application’s credentials were statically 
defined in the application’s source code, allowing 
any user to retrieve those using mechanisms like 
reflection. This was a big security vulnerability, 
since the user had access to the credentials used to 
connect to the database with the sensitive data. This 
allowed him to bypass the security components 
completely and connect directly to the DBMS 
outside the application. Not only that, but the 
sensitive information was transmitted through the 

SPDC: Secure Proxied Database Connectivity

61



 

network in clear text, so any eavesdropper could see 
the information. 

To implement SPDC using JDBC, the following 
structures/mechanisms were implemented: 

1. The token T, generated by the database side 
authentication service when the client 
application authenticates. 

2. The JDBC connection object modification to 
use a custom communication socket so that 
the client application can use it while having 
the communication relayed through the proxy 
server. 

3. The relaying mechanism between the 
database and the client application. 

4. A mechanism to open endpoints to access the 
database on the database server side. 

For the first point, a JSON (JavaScript Object 
Notation) object was used to encode the token. It is 
comprised of two main parts: the token_data and the 
token_sig. The token_data is another JSON object 
that contains the fields necessary for the proxy 
server to establish a database connection. In this 
proof-of-concept the token_data contains the 
following fields: 
• username: The username of the user 

attempting to connect. This is an encrypted 
field. 

• database: The name of the database being 
requested access. This is an encrypted field. 

• created: The timestamp of the token creation. 
• expires: A timestamp of the instant the token 

expires and can no longer be used. 
• nounce: A random 32-bit integer. 
• endpoint: The IP address and port to which the 

proxy must connect. This is an encrypted field.  
• C: The symmetric key associated to the user, 

required to decrypt the credentials stored by the 
proxy server. This is an encrypted field. 

All encrypted fields are encrypted using the 
proxy public key, previously shared with the 
authentication server. The symmetric key C is first 
generated when the user is given an account for the 
database. The associated credentials are then 
encrypted with it and sent to the proxy server 
securely. Since the proxy server must decrypt the 
credentials to establish a database connection, it may 
be possible to update the symmetric key periodically 
by providing both the old and the new symmetric 
keys on the token T.  

The second half of the token, the field token_sig, 
contains a signature of the hash of the token_data 
field, signed using the authentication server private 
key so that the proxy server can validate it. 

Considering the second point presented, some 
problems were found when trying to implement it. 
As discussed in section 3, the JDBC implementation 
does not allow an existing socket to be used to 
connect to the database. Using a connection string 
and successfully connecting to the database is the 
only option available to get the connection object 
instantiated, which is required to make requests to 
the database. The problem is that this connection 
object is connected to a DBMS directly and not the 
proxy server. 

It so happens that to create a connection object, 
the real credentials are not required, just the 
credentials to an account that has no permissions to 
execute queries, i.e. an unprivileged public account, 
provides the client with the necessary connection 
object. To have the connection object communicate 
with the proxy server and not the DBMS, the client 
application can utilize reflection mechanisms. Using 
reflection, the internal socket and input/output 
streams can be set to those of the socket used to 
communicate with the proxy server using the generic 
communication channel. The usage of reflection 
mechanisms to achieve this has the downside of 
making the proof-of-concept work only for the 
Microsoft SQLServer driver. Other drivers may use 
other internal structures for the connection object, 
requiring a deep analysis of them to make them 
work with SPDC as it stands. 

The connection class implementation of JDBC 
for SQL Server has several variables, but one is of 
particular interest: a variable named tdsChannel. 
This is the variable that holds the socket, named 
channelSocket, two identical input streams, named 
inputStream and tcpInputStream, and finally two 
identical output streams, named outputStream and 
tcpOutputStream. When it is said that they are 
identical, it is meant that they hold the same 
reference when the driver is used normally. The 
input/output streams are the streams used by the 
socket to read and write data. 

With this information, it is easy to understand 
how the communication to the database can the 
transmitted through the socket that is connected to 
 

 

Figure 2: Sequence implementation diagram of the 
solution. 

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

62



 

Table 3: Protocol messages between the client application 
and database server running the authentication server. 

# 
Client 
Application 

Network 
Authentication 
Server 

1 u, p → (u, p)  
2 u, p ← (OK|NOK) u, p, auth(u, p) 

3 u, p ← (T) 
u, p,  
T = genToken(u) 

4 u, p, T   

the proxy instead of the database itself. All that is 
needed is to set the proxy socket and its input/output 
stream object references as the new values for the 
variables mentioned. 

For the third point, the relaying between the 
client and the database performed by the proxy 
server is achieved using two worker threads, one for 
each communication direction, and the Apache 
Commons IO library for copying the data between 
the socket streams. With this setup, the client can 
continue to use the original connection object that 
was created to communicate with the database 
without ever knowing the real account credentials.  

For the final point, simple firewall commands 
can be used to open and close ports to access the 
database by the authentication server. 

To summarize, Figure 2 shows a diagram of the 
SPDC implementation, which is comprised of five 
main steps:  

1. The client application instantiates the JDBC 
Connection object, using an unprivileged 
account on the database to achieve it. 

2. The client application connects to the 
authentication server using the credentials 
given by the user. The server then generates 
and sends to the client application a security 
token T with the necessary information for 
the proxy server to be able to connect to the 
database. An access endpoint is also created. 

3. The client application connects to the proxy 
server, presents the token T, waits for the 
token validation and modifies the JDBC 
Connection object as described. The proxy 
server decrypts the token T when it is 
received and validates the signature before 
replying to the application if the token is 
valid or not. 

4. Using the symmetric key C within the token 
T, the proxy decrypts the credentials stored 
for that user and establishes a connection to 
the database using the endpoint indicated in 
the token. 

5. The proxy server relays the data between the 
client application and the database. 

Table 3 and Table 4 show the network protocol 
implemented in the proof-of-concept is shown.  

Table 3 shows the network messages between the 
client application and the authentication server that 
runs on the database machine. It starts (1) with the 
client application presenting a username u and 
password p pair to the authentication server, which 
authenticates (2) using its own password database. 
The authentication result is sent back to the client 
application with a successful message ("OK") or not 
successful ("NOK"). If the authentication is not 
successful, the communication is terminated and 
additional security measures may be taken to prevent 
online password attacks. If the authentication is 
successful, then the authentication server generates a 
token T and (3) sends it back to the client 
application. This completes the communication 
between the client application and the authentication 
server (4). 

Table 4 shows the network messages between the 
client application and the proxy server. It starts (1) 
with the client application presenting the token T it 
obtained from the authentication server beforehand 
and connecting to the database using the public 
account. The proxy server decodes and validates the 
received token T (2), replying to the user with a 
validation successful message ("OK") or not 
successful ("NOK"). Again, if the authentication is 
not successful, the communication is terminated and 
additional security measures may be taken to prevent 
online attacks to crack the authentication server 
private key. If the token T is valid, then the proxy 
server connects to the database using the information 
stored within the token T and the credentials stored 
in its own credentials database (3). This process also 
includes retrieving the stored encrypted credentials 
and decrypting them using the symmetric key C in 
the token T. At the same time, the client application 
sets the connection object it has with the database to 
 

Table 4: Protocol messages between the client application and proxy server. 

# Client Application Network Proxy Server 
1 T, O = connectToDatabase() → (T)  
2 O ← (OK|NOK) T, validateToken(T) 
3 O, useProxySocket(O)  T, connectToDatabase(T) 
4 O, applicationCode(O)  relay() 

SPDC: Secure Proxied Database Connectivity

63



use the network socket connected to the proxy 
server. Finally, the proxy server begins relaying the 
communication between the client application and 
the database while the client application executes the 
application code (4). 

All unnecessary variables and attributes are 
removed from memory to minimize the possibility 
that they may be leaked. This is most evident with 
the token T, which the client application only stores 
until it is sent to the proxy server. Furthermore, the 
proxy server only keeps the token T in memory until 
the database connection is established. 
Other more complete authentication protocols can be 
used to authenticate the user, such as Kerberos 
(Neuman and Ts’o, 1994) or RADIUS (IETF, 2000b) 
and even implementing the GSSAPI (IETF, 2000a) 
to support a wide variety of protocols, since SPDC is 
not concerned with the way users are authenticated. 
SPDC is only concerned with the proxy server 
obtaining the information required to establish a 
database connection and relay the communication to 
the client, which is why this proof-of-concept uses a 
basic authentication protocol. 

5 PERFORMANCE ASSESSMENT 

In this section the performance assessment made to 
test the solution is presented. This performance 
assessment includes a comparison between the 
network traffic generated by a VPN and the solution 
proposed in this paper. However, the performance in 
terms of delay is not included because everything is 
done during connection time. 

The network traffic tests between the relay 
method herein described and using a direct 
connection through a VPN were made by 
establishing the initial connection and then issuing 
an aggregation query to the SQLServer Northwind 
sample database that calculates the total amount of 
money per order, sorting by the total. 

 

Figure 3: Test deployments, the top case using SPDC and 
the bottom using a VPN. 

The machines used to carry these tests are 
specified on and the traffic was captured using 
Wireshark v2.2.2. 

The direct approach using a VPN is trivial and 
was conducted by instantiating a JDBC connection 
object and then executing an aggregation query over 
Northwind’s Orders table which contains 1000 rows. 
A third-party VPN server, supported by OpenVPN, 
was used to establish the VPN connection. The 
network traffic was captured by the client 
application to measure the amount of data sent 
through the VPN. The SPDC solution uses TLS to 
secure the connections described in this paper and 
was deployed on two machines: machine A and 
machine B. Both test cases, using a VPN and SPDC, 
are illustrated in Figure 3, which also shows which 
role each machine had. 

To reiterate, after the client application 
authenticates with the authentication server, it waits 
for the authentication server to reply with the token 
T as described on section 3. The authentication 
server also opens an endpoint on the firewall, so the 
proxy server can connect using the details provided 
in the token. The client application (machine A) then 
connects to the proxy server (machine B), and sends 
the token it received from the authentication server. 
At the same time, it connects to a DBMS instance 
using the account that holds no privileges to 
 

Table 5: Testing machines specification. 

Machine A B 
OS Windows 10 Home Windows 7 Ultimate 
Architecture x86_64 x86_64 
Motherboard LENOVO Lancer 5A2 (U3E1) Gigabyte H87-HD3 
CPU Intel Core i7 4510U @2.00GHz Intel Core i5 4670K @3.40GHz 
Memory 8.00GB DDR3 @797MHz 8.00GB DDR3 @665MHz 
Hard Drive 465GB SSHD-8GB 1863GB SATA 
RDBMS Microsoft SQL Server 2012 - 
Other Programs Netbeans IDE, Wireshark Netbeans IDE, Wireshark 

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

64



instantiate a JDBC connection object. When the 
proxy server acknowledges that the token is valid, 
the client application exchanges the socket on the 
JDBC connection object to the socket it used to 
connect to the proxy server. At the same time, the 
proxy server creates the actual JDBC connection 
object to the database, using the user credentials that 
it decrypted with the symmetric key C from the 
token, and begins relaying the communication 
between the client application and the database. 

The query execution made by the client is the 
same as in the VPN approach, since it now possesses 
a JDBC connection object with permission to access 
the data on the database. From this point on, SPDC 
adds no further traffic overhead to the connection, 
meaning that it has no further impact after the 
connection is established.  

On Table 6 a summary of the results obtained 
when capturing the traffic generated by each 
solution can be seen. On both solutions, the network 
traffic was captured by the client application and the 
packets were filtered to only the relevant ones. To 
ensure no unwanted traffic was captured on the VPN 
solution, the VPN server was configured to only 
allow connections made to the database server 
through.  

Table 6. Traffic overhead results. 

Solution #Packets Bytes Transmitted 
Connection: VPN 177 31409 
Connection: SPDC 48 19303 
100 Queries: VPN 2356 1480972 
100 Queries: SPDC 1649 1316834 

It is possible to see that overall, SPDC using TLS 
to secure the connections is better than a VPN based 
solution in regards to network traffic. During 
connection, SPDC used around 73% less packets 
than the VPN counterpart, needing only 48 packets 
compared to the 177 used by the VPN. Further-
more, SPDC transmitted about 39% less data, 
needing only about 19KB compared to the 31KB 
used by the VPN. This is expected since VPN also 
must transmit information regarding routes and other 
network related information needed so the client can 
setup the VPN. 

Considering the applicational data transmission 
with the database queries, the SPDC transmitted 
30% less packets, using 1649 packets when the VPN 
solution used 2356. This can be explained due to the 
fact that SPDC, after the connection is established, 
has no other traffic overhead. Thus, the overhead in 
the SPDC solution is added just by the TLS protocol 
itself. The same reason can be applied to explain the 

data transmitted, since SPDC was able to serve 100 
database queries while transmitting 11% less data 
than the VPN solution, needing about 1.26MB 
compared to the 1.41MB needed by the VPN. 

It is important to note that it is possible to have 
the proxy server establish a VPN connection to the 
database server before connecting to the database. In 
this case, the network traffic overhead is expected to 
be the same as if only a VPN was being used, since 
SPDC adds no overhead once the connection is 
established. 

6 CONCLUSION 

This paper presented SPDC, a mechanism to secure 
access to databases using a proxy server while 
allowing client applications to access data in 
databases using standard database connectivity tools. 
Furthermore, it splits the information needed to 
access the database between the proxy server and the 
authentication server, as well as removing the hard-
coded database credentials from client applications.  

This way, a malicious user with access to the 
client application is not able to obtain database 
credentials just by looking at the source code. By 
having the proxy server connect to the database 
using the credentials associated with the client and 
relaying the communication between the client and 
the database, it is possible for the client to connect to 
the database using database connectivity tools 
without any useful credentials. Since neither the 
proxy server or the authentication server possess all 
the information needed to access the database, a 
malicious user must compromise both servers to be 
able to gain access. 

However, several aspects of this solution must be 
taken into consideration. The cost of the architecture 
is greater than that of a VPN solution, for example, 
since it requires a proxy server and an authentication 
server, in contrast to only one additional server in 
the case of a VPN. Furthermore, the proxy server 
must be carefully monitored to avoid eavesdropping, 
given the nature of proxy servers the data must be 
taken from one secure channel to another. This data 
should not remain in memory or cached. 
Additionally, and while it is not a very hard 
adaptation to make, JDBC drivers other than SQL 
Server’s must have a procedure created to modify 
the communication sockets. 

Concerning performance, it was shown that 
connecting to the database using the proposed SPDC 
mechanism can be better than using a VPN solution 
in terms of network traffic overhead, both in terms 

SPDC: Secure Proxied Database Connectivity

65



 

of connection and applicational data transmission.  
One last possible concern with the use of a proxy 

server could be raised regarding scaling, since a 
server-side application must relay the communica-
tion between the client and the DBMS in the SPDC 
presented in this article. However, there is no issue 
in having several of these proxy servers to process 
the client’s requests to connect to the database since 
they are inherently stateless. They establish a 
connection given a token, and once the connection 
terminates a new connection can only be made by 
presenting another token. 

Finally, in terms of future work it would be 
interesting to address the eavesdropping issue on the 
proxy server. This could be achieved by adding a 
layer on top of the database that accepts connections 
and all data is encrypted using, for example, the 
authentication server password of the user. The 
implications of such alteration must be carefully 
studied and tested. 

ACKNOWLEDGEMENTS 

This work is funded by National Funds through  
FCT - Fundação para a Ciência e a Tecnologia under 
the project UID/EEA/50008/2013 and 
SFRH/BD/109911/2015. 

REFERENCES 

Abramov, J. et al., 2012. A methodology for integrating 
access control policies within database development. 
Computers {&} Security, 31(3), pp.299–314.  

Bauer, C. & King, G., 2005. Hibernate in Action. 
Ferraro, P., HA-JDBC: High-Availability JDBC. 

Available at: https://ha-jdbc.github.io [Accessed 
September 13, 2016]. 

Gessert, F. et al., 2014. Towards a scalable and unified 
REST API for cloud data stores. Lecture Notes in 
Informatics (LNI), Proceedings - Series of the 
Gesellschaft fur Informatik (GI), P-232, pp.723–734. 

IETF, 2000a. RFC 2743: Generic Security Service 
Application Program Interface Version 2, Update 1. 

IETF, 2000b. RFC 2865: Remote Authentication Dial In 
User Service (RADIUS). 

IETF, 2008. RFC 5246: The Transport Layer Security 
(TLS) Protocol - Version 1.2. 

Lavarene, J. de, 2010. SSL With Oracle JDBC Thin 
Driver. Available at: http://www.oracle.com/ 
technetwork/topics/wp-oracle-jdbc-thin-ssl-
130128.pdf. 

Microsoft, SQL Server Security Modes. Available at: 
https://msdn.microsoft.com/en-

us/library/aa266913(v=vs.60).aspx [Accessed 
September 13, 2016]. 

Naylor, D. et al., 2015. Multi-Context TLS (mcTLS). 
ACM SIGCOMM Computer Communication Review, 
45(5), pp.199–212. 

Neuman, C.B. & Ts’o, T., 1994. Kerberos: An 
Authentication Service for Computer Networks. IEEE 
Communications Magazine, 32(9), pp.33–38. 

Oppliger, R., Hauser, R. & Basin, D., 2006. SSL/TLS 
session-aware user authentication - Or how to 
effectively thwart the man-in-the-middle. Computer 
Communications, 29(12), pp.2238–2246. 

Oppliger, R., Hauser, R. & Basin, D., 2008. SSL/TLS 
session-aware user authentication revisited. Computers 
and Security, 27, pp.64–70. 

Oracle, Authentication Using Third-Party Services. 
Available at: https://docs.oracle.com/cd/B19306_01/ 
network.102/b14266/authmeth.htm#i1009853 
[Accessed August 13, 2016]. 

Oracle, 1997. JDBC Introduction. Available at: 
http://docs.oracle.com/javase/tutorial/jdbc/overview/in
dex.html [Accessed March 3, 2014]. 

Pereira, O.M., Regateiro, D.D. & Aguiar, R.L., 2014. 
Role-Based Access control mechanisms. In 2014 IEEE 
Symposium on Computers and Communications 
(ISCC). Vancouver, BC, Canada: IEEE, pp. 1–7.  

Pereira, Ó.M., Regateiro, D.D. & Aguiar, R.L., 2015. 
Secure, dynamic and distributed access control stack 
for database applications. International Journal of 
Software Engineering and Knowledge Engineering, 
25(9–10), pp.1703–1708. 

Regateiro, D.D., Pereira, Ó.M. & Aguiar, R.L., 2014. A 
secure, distributed and dynamic RBAC for relational 
applications. University of Aveiro. 

Shay, R. et al., 2016. Designing Password Policies for 
Strength and Usability. ACM Transactions on 
Information and System Security, 18(4), pp.1–34.  

Villager, C. & Dittmann, J., 2008. Biometrics for User 
Authentication. In Encyclopedia of Multimedia. 
Boston, MA: Springer US, pp. 48–55. 

Yang, X.L. et al., 2016. What Security Questions Do 
Developers Ask? A Large-Scale Study of Stack 
Overflow Posts. Journal of Computer Science and 
Technology, 31(5), pp.910–924. 

Zarnett, J., Tripunitara, M. & Lam, P., 2010. Role-based 
access control (RBAC) in Java via proxy objects using 
annotations. Proceeding of the 15th ACM symposium 
on Access control models and technologies - SACMAT 
’10, p.79. 

Zimmerman, M., 2003. Biometrics and User 
Authentication. Available at: https://www.sans.org/ 
reading-room/whitepapers/authentication/biometrics-
user-authentication-122. 

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

66


