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Abstract: Identifying the order in which the application classes have to be tested during the integration testing of object-
oriented software systems is essential for reducing the testing effort. The Class Integration Test Order (CITO)
problem refers to determining the test class order that minimizes stub creation cost, and subsequently testing
effort. The goal of this paper is to propose an efficient approach for class integration test order optimization
using a genetic algorithm with stochastic acceptance. The main goal of the class integration test order problem
is to minimize the stubbing effort needed during the class-based integration testing. In our proposal, the com-
plexity of creating a stub is estimated by assigning weights to different types of dependencies in the software
system’s Object Relation Diagram. The experimental evaluation is performed on two synthetic examples and
five software systems often used in the literature for the class integration test ordering. The results obtained
using our approach are better than the results of the existing related work which provide experimental results
on the case studies considered in this paper.

1 INTRODUCTION

Class-based integration testing is a systematic test-
ing technique applied when the application classes
of a software are integrated in the final software sys-
tem. The classes are integrated sequentially and after
adding each class the obtained system is tested. If no
errors have been found during testing at some point in
the integration, then the next application class will be
integrated. An important problem during integration
testing of object-oriented software systems is the one
of deciding the order in which the application classes
should be integrated in the final software, called the
class integration test order (CITO) problem (Briand
et al., 2002b).

In most situations, there is a dependency relation
between the application classes, namely a class may
require another class to be available before it can be
tested. In cases when dependency cycles exist among
the application classes from a software system, the
dependency has to be broken and a stub for emulating
the behavior of the required class has to be created
(Assunção et al., 2011). If, at a particular step during
class-based integration testing, one adds a class which
depends on another application class that has not been
integrated yet, a simulation of that class is necessary.
This is done by creating a stub for the required class,
more precisely a dummy class that replaces the re-

quired one and simulates its behavior. Stubs are those
parts of a software system that are built for simulating
components of the software which are not developed
or unit tested yet, but are needed to test classes that
depend on them (Briand et al., 2002b). There is a
difference between specific and generic stubs. A spe-
cific stub replicates only the class functionalities for a
specific client class, while the generic (realistic) stubs
reproduce all functionalities that the original class can
provide. Therefore when a class is used by many
client classes we will need only one generic stub, but
as many specific stubs as the number of client classes.
Since stub creation increases the cost of the integra-
tion testing process, it is essential to reduce stubbing
cost by determining a class order for integration test-
ing that minimizes the overall stubbing effort.

The CITO problem does not cover aspects related
to the actual creation of stubs nor does it approach
the problem of test case effectiveness. The main ob-
jective of the CITO problem is to reduce the number
of stubs needed, not to increase early bug detection.
Software developers are still responsible for creating
stub classes that closely model the effective class to
be stubbed.

There are numerous strategies proposed in the lit-
erature for solving the CITO problem with the aim of
minimizing the stubbing effort required during the in-
tegration process. The stubbing effort estimates the
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cost for creating the stubs needed during the integra-
tion testing. It can be computed either as the num-
ber of needed stubs or considering measures related
to coupling, number of attributes and methods or the
complexity of the methods that need to be replicated.
Most of the solutions existing in the literature for
the CITO problem can be divided in two categories:
graph based approaches and genetic algorithm based
approaches (Bansal et al., 2009). The graph-based ap-
proaches consider the Object Relation Diagram which
represents the classes and the relationship between
them in object-oriented software systems.

In this paper we are approaching the CITO prob-
lem as a combinatorial optimization problem, with the
goal of determining the order in which the applica-
tion classes should be tested for minimizing the total
cost of stubbing. We consider the stubbing cost as
the effort for creating the specific stubs needed during
the class-based integration testing. The complexity of
creating a stub is estimated by assigning weights to
different types of dependencies (i.e., aggregation, as-
sociation, inheritance) in the software system’s Object
Relation Diagram (ORD).

The main contributions of this paper can be sum-
marized as follows.

• We propose an efficient approach for class inte-
gration test order optimization using a genetic
algorithm with stochastic acceptance based on
a static analysis of object-oriented software sys-
tems. Our proposal improves the existing strate-
gies based on genetic algorithms for finding a
solution for the CITO problem and provides a
more general theoretical model that can be applied
for generic stubs and specific stubs with different
weighting strategies.

• We experimentally evaluate our approach on 7
case studies often used in the literature for the
class integration test ordering. The obtained re-
sults outperform existing related work which pro-
vide experimental results on the case studies con-
sidered in this paper.

The paper is organized as follows. We start by
reviewing in Section 2 existing approaches which
provide solutions for the CITO problem considering
weighted stubs and give experimental results on the
case studies that are considered in this paper. Our
approach based on a genetic algorithm with stochas-
tic acceptance for solving the CITO problem is intro-
duced in the Section 3. Section 4 describes the case
studies used for evaluation and also provides the ex-
perimental settings and results. In Section 5 we com-
pare the results obtained by our proposal with some
state-of-the-art techniques. Our conclusions as well

as several future research directions are presented in
Section 6.

2 RELATED WORK

In this section we will present a short overview of
existing approaches for the CITO problem, focusing
mainly on the ones that, like our approach, consider
that not every stub has the same complexity. Most of
these approaches build a graph, called Object Rela-
tion Diagram (ORD), where nodes represent the ap-
plication classes and directed edges represent the re-
lationships between these classes. Edges often have
labels that represent the type of the relationship be-
tween the two classes. The number of relationships
can be different from one approach to another, but the
most frequently used relations are inheritance, aggre-
gation and association.

If the ORD contains no cycles then a simple topo-
logical sorting can give the integration order. For
such systems, a bottom-up integration strategy can
be used, and no stubs are needed. But in most soft-
ware systems there are cyclic dependencies between
the classes in the ORD as shown by Melton and Tem-
pero in (Melton and Tempero, 2007) where a study
was conducted on 78 Java software systems with dif-
ferent sizes (from 17 to 11644 classes). The authors
concluded that almost all systems contained cycles,
moreover, about 85% of them contained strongly con-
nected components of at least 10 classes.

The first paper that considered the CITO problem
was written by Kung et al. (Kung et al., 1995). They
consider an ORD with inheritance, aggregation and
association relations. The first step of their approach
is to transform it into an acyclic one, by first replacing
clusters of mutually reachable nodes with one single
node. A topological sorting of this acyclic graph will
give the major level of nodes. For finding the minor
level of nodes, the order inside the clusters, associa-
tion relations are removed, since every cycle has to
contain at least one association edge.

Major and minor level numbers are used by Tai
and Daniels as well (Tai and Daniels, 1997), but they
are computed differently. For assigning major level
numbers, only the inheritance and aggregation rela-
tions of the ORD are considered and a Depth First
Search (DFS) is performed. Minor levels are assigned
to nodes that have the same major level. Strongly
Connected Components (SCC) are identified for the
nodes belonging to the same major level, and to each
association edge e a weight is assigned as the sum
of the number of incoming edges to the source node
of e and the number of outgoing edges from the tar-
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get node of e. The edge with the highest weight is
removed, because it has a higher chance of breaking
many cycles. This process is repeated until no cycles
are left.

Hanh et al. use Test Dependency Graph (TDG),
which is more detailed than an ORD, because it can
contain method-to-class and method-to-method rela-
tions as well. They present in (Hanh et al., 2001) two
integration strategies, a graph-based one and a genetic
algorithm (GA) based one. For the graph-based ap-
proach, called Triskell, they find the node that partic-
ipates in the maximum number of cycles and remove
it (consider that it will be stubbed). This produces
one generic stub, and a specific stub for each incom-
ing edge into the node. Relation types are considered
only if two nodes participate in the same number of
cycles, in this case the node with more association re-
lations participating in cycles is removed. They repeat
the process until no cycles are left. The GA approach
considers only the number of stubs, no relations are
considered.

In (Briand et al., 2002b) Briand et al. propose a
graph-based approach, which identifies SCC in the
graph, and for each association edge in each SCC
computes a weight which is similar to the weight
computed by Tai and Daniels, but instead of taking the
sum, for an edge they take the product of the number
of incoming edges to the source node and the number
of outgoing edges from the target node. They remove
the edge with the highest weight and continue until
no cycles are left. In (Briand et al., 2002a) Briand
et al. proposed a Genetic Algorithm based approach
as well. They use constraints to make sure that in-
heritance and aggregation relations will not be broken
(they specify partial ordering of nodes based on these
relations) and compute weights for association edges.
The weight of an association relation depends on the
complexity of the class represented by the target node,
and this complexity depends on the number of meth-
ods and/or number of attributes of the class.

While previous approaches considered weights
mainly just for association edges (since inheritance
and aggregation edges are never removed), the ap-
proach presented by Malloy et al. in (Malloy et al.,
2003) considers weights for 6 different relations:
association, composition, dependency, inheritance,
ownedElement, polymorphic. They use the ORD and
find SCC in it. For each SCC they compute the weight
of the edges and remove the edge with the minimum
weight. For the experimental evaluation they use 7
case studies of different sizes and two different sets of
weights. The only difference between the two sets of
weights was the weight assigned to inheritance edges.
In the first set of weights, inheritance has weight 2,

which is a low value, making it probable that inher-
itance edges will be removed. In the second set, in-
heritance has a weight of 100 which makes removal of
inheritance edges very unlikely. They conclude that in
the situations when no inheritance edges are removed,
approximately twice as much stubs are needed.

Another graph-based approach is the one pre-
sented by Abdurazik and Offutt (Abdurazik and Of-
futt, 2009). The novelty in their approach is that they
consider weights for both edges and nodes in the ORD
(though the weights for the nodes are computed con-
sidering the weights for the edges). They consider 9
different relations between classes and compute the
weight of an edge based on several measures of cou-
pling. Their algorithm computes for each edge a Cy-
cle to Weight Ratio, which considers both the number
of cycles that include that edge and the weight of the
edge. The edge with the maximum CWR is removed,
and the process is repeated until no cycles are left.

Bansal et al. present an approach which is based
on the approach presented by Malloy, but they in-
troduce two new relation types specific for C++ ap-
plications: friend coupling and exception coupling
and define weights to them: 25 and 5 (Bansal et al.,
2009). They also present an overview of existing
graph-based and genetic algorithm-based approaches.

3 METHODOLOGY

In this section we introduce our proposal for optimiz-
ing class integration test order using a genetic algo-
rithm (GA) with stochastic acceptance. GAs are used
due to their flexibility and applicability in successful
solving of a large variety of optimization problems.

Our approach is based on a static analysis of
object-oriented software systems and on computing
the stubbing effort as the cost of creating the specific
stubs needed during the integration testing. Depend-
ing on the type of dependency between classes, cre-
ating a stub requires different cost (effort). We are
considering weighted stubs, thus the complexity of
creating a stub is computed by assigning weights to
different types of dependencies between the applica-
tion classes.

We start by describing in Section 3.1 how the class
relationships are considered in the literature for stub-
bing, followed by the dependencies and weighting
scheme considered in our approach. We present in
Section 3.2 the main characteristics of genetic algo-
rithms. Section 3.3 introduces the genetic algorithm
model proposed for the CITO problem.

An Improved Approach for Class Test Ordering Optimization using Genetic Algorithms

29



3.1 Stubbing Relationships

Kung et al. (Kung et al., 1995) show that if there are
no dependency cycles among classes in the ORD of a
software system, the integration order can be simply
obtained by performing a reverse topological ordering
of classes based on their dependencies (Briand et al.,
2002b). But if cyclic dependencies among classes can
be found, most existing strategies propose to broke
some dependencies for obtaining an acyclic graph and
then to apply a topological sorting on it. Breaking a
dependency requires that the target class needs to be
stubbed when integrating and testing the source class
(Briand et al., 2002b).

Three types of dependencies between application
classes in the ORD are considered by Kung et al.
(Kung et al., 1995): Association/Usage (As), Aggre-
gation (Ag) and Inheritance (I). In order to obtain an
acyclic graph, the authors propose the removal of as-
sociation relationships. They consider that an associ-
ation relationship exists in each directed cycle of an
ORD and this type of relation is the weakest one be-
tween related classes.

A literature review (Kung et al., 1995), (Tai and
Daniels, 1997), (Abdurazik and Offutt, 2006) re-
veals that by removing association relationships sim-
pler stubs are created compared to those obtained
by selecting aggregation or inheritance relationships.
Traon et al. (Traon et al., 2000) proposes a strategy al-
lowing to break aggregation or inheritance relations,
which may conduct to complex stubs. The results ob-
tained by Malloy et al. (Malloy et al., 2003) revealed
that the removal of inheritance relationships is more
effective for cycles breaking.

In our proposal we are considering a Weighted
ORD, in which each relationship (As, Ag and I) has
an associated weight. We consider the inheritance (I)
relationship as the strongest relationship between the
application classes, followed by the aggregation (Ag)
and then by the association (As) relationship which is
viewed as the weakest relation between the classes. A
stub class is a controllable replacement for an existing
dependency in the system, the main factor that influ-
ences the effort needed for creating a stub is the type
of the dependency.

Based on the existing results in the literature we
assign the largest weight to the inheritance relation,
the smallest weight to the association relation and an
intermediate weight to the aggregation relation. This
weighting scheme reflects the relative effort needed to
implement a stub class for a particular client class that
has a dependency on the stubbed class.

3.2 Genetic Algorithms

Genetic Algorithms (GAs) represent a machine learn-
ing model which is inspired from the processes of
evolution in nature. They are specific type of meta-
heuristic optimization techniques from the computa-
tional intelligence domain used for solving search and
optimization problems. Even if there is no guarantee
that the GAs will converge to the global minimum,
since they are based on heuristics, they are able to pre-
vent the search from falling into local minima (Whit-
ley, 2001).

GAs are population based approaches and artifi-
cial models for the biological processes of natural se-
lection and evolution. The main idea behind GAs is
that a population of individuals adapts to environmen-
tal changes over multiple generations, and the fittest
individuals of the population are those who survive
longer (Melanie, 1999).

GAs start with a population of noInd candidate
solutions, also called individuals or chromosomes,
usually randomly generated. Each individual from
the population is characterized by a numerical value
called its fitness, which indicates how “good” is that
individual for solving the considered problem. Over a
number of iterations (generations) or until acceptable
solutions are found, the population is evolved using
genetic operators as follows. A pair of chromosomes
is selected (using a selection strategy), then we cross-
over (with probability pc) the selected pair and form
two offspring and lastly we mutate the two offsprings
(with probability pm) and add the obtained individuals
in the new population. At the end of the iterative pro-
cess, the individual with the maximum fitness from
the current population is reported as a solution.

Figure 1 describes the skeleton of a simple GA.

3.3 The Proposed GA Model

Let us consider that the analyzed software system S
is composed by a set of classes C1,C2, . . . ,Cn. Start-
ing from the ORD graph built for the software sys-
tem and based on a static analysis of it, we aim to
identify an appropriate order in which the applica-
tion classes should be integrated (and tested) in the
final software. The solution is viewed as a permu-
tation of the classes representing the integration or-
der that needs the minimum stubbing effort. Conse-
quently, the optimal solution for the CITO problem
is viewed as a permutation τ of {1,2, . . . ,n} which
minimizes the total cost for creating the stubs needed
when the classes are integrated and tested in the order
τ: Cτ = (Cτ1 ,Cτ2 , . . . ,Cτn) (n > 1). The stubbing effort
required for the integration testing of a sequence of
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Algorithm GA is:
Input: noInd - the number of individuals from the population

pm- the probability for mutation
pc- the probability for crossover

Output: best - the best individual (solution)
Begin

//a population of noInd individuals is initialized (usually randomly)
P← initializePopulation();
//repeat until a termination criterion is met (number of generations, fitness, etc)
While not TERMINATION do
//the fitness of the individuals from the current population is computed
computeFitness(P);
//the new population is initialized
P′← /0;
//repeat until noInd individuals are created
While |P′|< noInd do

//the survivors from the current population are preserved
P′← survive(P);
@ Select from P a pair (c1, c2) of chromosomes for crossover
@ With probability pc cross-over the pair (c1, c2) and form two offsprings
@ With probability pm mutate the offsprings and add the new individuals in P′

EndWhile;
//the current population is replaced with the new population
P← P′;

EndWhile
//the individual with the maximum fitness from the current population is reported
best← maxFitness(P);

End GA
Figure 1: The skeleton of a GA.

classes Cτ = (Cτ1 ,Cτ2 , . . . ,Cτn) is denoted by CostCτ
and is defined as in Formula (1):

Cost(Cτ) =
n

∑
i=1

stub(Cτi ,Cτi−1 , . . . ,Cτ1) (1)

where stub(Cτi ,Cτi−1 , . . . ,Cτ1) represents the cost
for creating the weighted stubs for integrating the
class Cτi to the system formed by the classes
{Cτi−1 ,Cτi−2 , . . . ,Cτ1}. This cost is computed by sum-
ming the weights associated with the relationships be-
tween class Cτi and all its neighboring classes from
the Weighted ORD which were not already integrated.

An individual from the GA population is an
integer-valued vector whose length is equal to the
number of application classes from the analyzed
software system and represents a possible order
for integrating the classes during the integration
testing. Thus, a candidate solution to the CITO
problem is encoded in an individual (chromosome)
ind = (ind1, ind2 . . . indn) representing a permutation
of {1,2, . . . ,n} (1 ≤ indi ≤ n ∀i ∈ {1,2 . . .n} and
indi 6= ind j ∀1≤ i, j ≤ n, i 6= j).

We define the value of the fitness function for a
given individual ind as in Formula (2).

f itness(ind) = Max−Cost(Cind) (2)

where Max represents a large positive constant. Con-
sidering the definition of the fitness given in Formula
(2), maximizing the fitness of a chromosome ind will
be equivalent with minimizing the stubbing cost re-
quired when the classes are integrated and tested in
the order Cind . Accordingly, the components of the
fittest individual reported by the GA will give us the
class integration test order.

The improvements we propose to the classical
GA model are described in the following. In order
to assure a proper exploration of the search space
the initial population is generated using the follow-
ing heuristic. Given the fact that every chromosome
represents a permutation, the dimension of the search
space is n! where n is the number of classes in the
system. In order to evenly divide the search space
we will generate the k-combinations for the set of
classes, where k is chosen based on the size of the
initial population. For example if we have the set
of classes {A,B,C,D,E,F,G,H} we can generate 2-
combinations: {A,B},{A,C}, . . . in total 28 different
sets with 2 elements. We use the k-sets when gener-
ating the initial population by creating chromosomes
that start with genes according to the generated k-
combinations followed by randomly generated genes.
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The GA model we propose for solving the CITO
problem also considers a selection operator based
on the stochastic acceptance technique (Lipowski
and Lipowska, 2012). In this algorithm, the widely
used roulette-wheel selection operator used in the
population for reproduction is replaced with the
following one: an individual ind is randomly se-
lected and this selection is accepted with probability
f itness(ind)/ f itness(M), where M is the fittest indi-
vidual (has the highest fitness value). Through the
stochastic acceptance based selection operator, the
fittest individual will always be accepted if selected.
Several studies in the literature indicate that the selec-
tion based on stochastic acceptance performs consid-
erably better than versions based on linear or binary
search (Lipowski and Lipowska, 2012).

In our proposed GA we used a variant of the Order
Crossover 1 operator, known as C1, which is specific
for using GAs for permutation problems (Whitley and
wook Yoo, 1995). Basically, a sequence of consecu-
tive genes is removed from the first parent and is di-
rectly copied to the child. The remaining genes are
placed in the offspring in the order in which they ap-
pear in the second parent. From the time performance
viewpoint, C1 is the fastest crossover operator that
generates valid chromosomes (preserves the ordering
constrains).

The mutation operator is a variant of the swap mu-
tation, but we swap a randomly generated gene with
its adjacent gene.

We have also used elitism in our GA, which means
that the next generation will always contain a small
proportion (Pelitism) of the fittest individuals from the
current population.

4 COMPUTATIONAL
EXPERIMENTS

We provide in this section an experimental evalua-
tion of our GA approach presented in Section 3.3 for
solving the CITO problem on seven case studies often
used in the literature: two synthetic examples and five
real-life case studies.

For the GA model proposed in Section 3.3 we
used our own implementation, without any third party
libraries. The following parameter setting will be
used for all experiments: the constant Max used in
the fitness computation was set to 10000; the num-
ber of individuals from the GA population noInd is
2 ·C2

n ; the mutation and crossover probabilities are
pm = 0.3 and pc = 0.3; the proportion Pelitism used for
the elitism parameter was considered 0.1 (10% of the
population survives from one generation to another).

As a termination condition for our GA we used a pre-
defined number of trials depending on the number of
application classes, 50 ·n. Regarding the parameters,
we tried different values, but no significant difference
was observed in the obtained results.

The experiments are conducted in two directions,
considering different weighting schemes for the stubs
in computing the stubbing effort.

1. Differential Weighting. We used the following
weights for the relationships between the applica-
tion classes: 30 for an Inheritance relation, 5 for
an Association relation and 20 for an Aggregation
relation. These values for the weights were se-
lected after analyzing the similar literature which
assigns weights for the stubs (Malloy et al., 2003),
as well as our software development experience.
The proposed weighting scheme reflects the effort
needed to implement a stub class for a particular
client class that has a dependency on the stubbed
class (see Section 3.1).

2. Equal Weighting. In this scheme, equal weights
(e.g. 1) are assigned for all stubs, independent of
the type of relationship between a client class and
the application class to be stubbed. Such a weight-
ing method allows us to determine non-weighted
specific stubs.

4.1 Case Studies

For our experiments, we have selected two synthetic
case studies and five software systems often used in
the CITO literature.

A description of the case studies is given in Ta-
ble 1, where the second column depicts the number
of classes and the third column presents the number
of dependencies between the application classes. For
each case study, the existing number of cycles be-
tween the application classes is given in the fourth
column. The number of cycles indicates the complex-
ity of the stubbing process, since a larger number of
cycles leads to a larger number of stubs needed in the
integration process.

In order to mitigate some threats to external va-
lidity issues, in our experiments we chose software
systems of various size, complexity and domain (as
shown in Table 1). Even if an industrial software
system would probably have more classes, for those
systems integration testing would be performed on
component-level, instead of class-level. Integration
of classes from one component should be done on the
class-level (Briand et al., 2002b).

The first synthetic example consists of 8 classes,
and is presented in Figure 2. This case study was
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considered for evaluation in several papers approach-
ing the CITO problem (Hewett and Kijsanayothin,
2009), (Briand et al., 2002b), (Abdurazik and Of-
futt, 2009), (Borner and Paech, 2009), (Bansal et al.,
2009). Our second synthetic example consists of 8-
classes as well, and its Object Relation Diagram is
depicted in Figure 3. This example was previously
used in the CITO literature for weighted stubs (Hanh
et al., 2001).

Figure 2: ORD for the first simple 8-class example.

Figure 3: ORD for the second simple 8-class example.

The other five case studies used in our experiments
are taken from the Briand benchmark (Briand et al.,
2002a) and used in different papers from the CITO
literature (Briand et al., 2002b), (Cabral et al., 2012).
The systems from this benchmark are the following:
ATM (automated teller machine simulation), Ant (a
Java-based build tool for maintaining, updating and
regenerating related programs and files according to
their dependencies), SPM (Security Patrol Monitor-
ing, a project developed by a graduate student at Car-
leton University), BCEL (Byte Code Engineering Li-
brary, a tool for analyzing, creating and manipulating
binary Java files) and DNS (a Java implementation of
the Domain Naming System). For all these systems,
we have used the Object Relation Diagram from the
Appendix provided by Briand et al. (Briand et al.,
2002a).

We have applied our GA-based approach for the
case studies presented in Table 1. Due to some ran-
domness in the execution, the GA was ran 20 times.
We found that, in every case, the solution reported is
the same, except for the Ant case study with equal

weighting. For this case study we have run our GA
100 times out of which in 85 cases it reported 9 stubs,
while in the other 15 cases it reported 10 stubs. In
Table 2 we give the most frequent number of stubs,
which is 9. Thus, under the considered parameter
setting, our GA with stochastic acceptance has a de-
terministic behavior for differential weighting for all
case studies. The number of specific weighted stubs
obtained by the proposed GA is shown in Table 2.

5 DISCUSSION AND
COMPARISON TO RELATED
WORK

Considering the results from Table 2 we can observe
that for the Ant and BCEL case studies there is a dif-
ference between the number of stubs needed in case
of differential and equal weighting. For both systems
we need less stubs if we do not take into consideration
the relation between the classes (i.e., we use equal
weighting). If we differentiate between the types of
relationships we need slightly more stubs but, for our
case studies, only association relations will be broken
(this can be seen by the fitness of the best individual,
which is not reported in Table 2). This shows that dif-
ferential weighting can improve the total complexity
of the stubs needed to be created. Unfortunately, for
the other case studies this difference is not visible, but
this might be related to their size or to the distribution
of relations between classes (generally more than half
of the relations are associations). In the future we in-
tend to test our approach on larger systems as well to
further analyze the difference between the number of
stubs for the two weighting schemes.

For Table 2 we can observe that for each case
study, for the differential weighting scheme, the GA
provided the same number of stubs for all the 20 runs
of the algorithm. For the equal weighting scheme for
the Ant case study we had two different solutions (but
the solution with the less number of stubs is the most
frequently reported one). This suggests that using dif-
ferent weights might contribute to making the GA de-
terministic. In order to test this assumption we will
extend the experimental evaluation.

Regarding the selection of the weights for differ-
ent relations between classes, in the literature there
are different perspectives: it is commonly accepted
that association relations are the easiest to stub, but
there is no clear agreement regarding the difficulty for
stubbing aggregations and inheritance. There are ap-
proaches which consider that only associations can be
broken (for ex. (Briand et al., 2002a)). Malloy et al.
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Table 1: Description of the case studies.

Case study # of classes # of dependencies # of cycles
8-class first example 8 17 11

(Hewett and Kijsanayothin, 2009)
8-class second example 8 15 7

(Hanh et al., 2001)
ATM (Briand et al., 2002b) 21 67 30
Ant (Briand et al., 2002b) 25 83 654

SPM (Briand et al., 2002b) 19 72 1178
BCEL (Briand et al., 2002b) 45 294 416091
DNS (Briand et al., 2002b) 61 276 16

in (Malloy et al., 2003) show through an example why
inheritance relations are complicated to be stubbed.
However, there might be situations, when stubbing a
base class is easier than breaking other relations (e.g.
if the base class is not abstract). Moreover, it is possi-
ble that by breaking inheritance relationships a lower
number of total stubs is required (Malloy et al., 2003).
This is why, a different approach for the CITO prob-
lem assigns weights for the classes from the ORD
instead of the relationships. Weights assigned for
classes can be determined based on the complexity
of the class: number of attributes, number of meth-
ods, etc. In the future we intend to investigate this
direction as well.

In the following we provide a comparison of the
results obtained by the proposed GA approach to the
results reported in the literature for the case studies
considered for evaluation. The comparison is de-
picted in Table 3. For the simple case studies we
have also computed the optimal number of stubs us-
ing a brute force approach. For the larger software
systems, the brute force method is not feasible, due
to its exponential time complexity. The best result
obtained using a non-brute force approach (i.e., the
one which reports the minimum number of weighted
stubs) is highlighted. For each result we indicate the
paper where the result was taken from.

For the brute force approach we implemented a
parallel algorithm based on Heap’s algorithm for gen-
erating permutations and we run the experiment on a
server machine with 16 cores. The running times for
the larger systems are over 48h while the proposed
GA approach finds the optimal ordering in less than
3 minutes/run for every system (the genetic algorithm
is not parallel, it uses only a single core). For the two
smaller systems the required time is less than 30 sec-
onds.

For the 8-class examples, we found in the lit-
erature results reported considering the differential
weighting scheme and the same weights as consid-
ered in our experiments (Bansal et al., 2009). Unlike

Table 2: Number of stubs obtained by our GA approach for
the case studies and the considered weighting schemes.

Case study Weighting # of stubs
scheme

8-class first Differential 4
example Equal 4

8-class second Differential 2
example Equal 2

ATM Differential 7
Equal 7

Ant Differential 10
Equal 9

SPM Differential 16
Equal 16

BCEL Differential 60
Equal 58

DNS Differential 6
Equal 6

for the simple 8-class case studies, for the case stud-
ies from the Briand benchmark there are no results
reported in the literature considering weighted stubs
as in our approach (i.e. assigning different weights for
specific types of relationships between the application
classes). For these systems, only the results obtained
for generic and specific stubs are available. That is
why, for the case studies from the Briand benchmark
we applied our GA with stochastic acceptance under
the equal weighting scheme which is equivalent to ob-
taining the specific stubs.

The first line from Table 3 shows the results for
the first 8-class example from Figure 2. Bansal et
al. (Bansal et al., 2009) report the results obtained
by several approaches from the literature on this case
study. The approach from Le Traon et al. provides
multiple solutions with different number of stubs and
we included all of them in the table. The second line
of Table 3 contains the comparison of the results for
the second 8-class example from Figure 3. This case
study was previously used by Hanh et al. (Hanh et al.,
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Table 3: Comparison to related work considering weighted and specific stubs.

# Case study Weighting Approach # of
scheme stubs

8-class first example Differential Our GA solution 4
1 Brute force 4

weighting Tai et al. (Bansal et al., 2009) 5
Le Traon et al. (Bansal et al., 2009) 5
Le Traon et al. (Bansal et al., 2009) 6
Le Traon et al. (Bansal et al., 2009) 4
Briand et al. (Bansal et al., 2009) 4
Malloy et al. (Bansal et al., 2009) 6

Abdurazik et al. (Bansal et al., 2009) 4

8-class second example Differential Our GA solution 2
2 Brute force 2

weighting Kung et al. (Hanh et al., 2001) 4
Tai and Daniels (Hanh et al., 2001) 2

Hanh et al. - Triskell strategy(Hanh et al., 2001) 2
Hanh et al. - Genetic algorithm (Hanh et al., 2001) 3

3

Ant
Equal Our GA solution 9 or 10

Briand et al. (Briand et al., 2002b) 11
weighting Tai and Daniels (Briand et al., 2002b) 28

Le Traon et al. (Briand et al., 2002b) 19
4

ATM
Equal Our GA solution 7

Briand et al. (Briand et al., 2002b) 7
weighting Tai and Daniels (Briand et al., 2002b) 8

Le Traon et al. (Briand et al., 2002b) 7
5

SPM
Equal Our GA solution 16

Briand et al. (Briand et al., 2002b) 17
weighting Tai and Daniels (Briand et al., 2002b) 20

Le Traon et al. (Briand et al., 2002b) 27
6

BCEL
Equal Our GA solution 58

Briand et al. (Briand et al., 2002b) 70
weighting Tai and Daniels (Briand et al., 2002b) 128

Le Traon et al. (Briand et al., 2002b) 67
7

DNS
Equal Our GA solution 6

Briand et al. (Briand et al., 2002b) 6
weighting Tai and Daniels (Briand et al., 2002b) 27

Le Traon et al. (Briand et al., 2002b) 10

2001), where the result of several approaches are re-
ported for it. The next lines from Table 3 depicts the
comparison of the results obtained using our GA with
those provided by Briand et al. (Briand et al., 2002b)
on Ant, ATM, SPM, BCEL and DNS systems.

Table 3 show that the results provided by our GA
approach are better than or at least equal to the ap-
proaches existing in the literature considering the case
studies we used in our experiments. In 8 cases, the
number of weighted stubs obtained is the same as the
one from the related work, while in 18 situations a
smaller number of weighted stubs was obtained by
our approach. The comparison to the related work

is graphically illustrated in Figure 4. For each case
study we represent the average number of weighted
stubs reported in the literature and through the dashed
bars the number of weighted stubs reported by our GA
solution.

6 CONCLUSIONS AND FUTURE
WORK

We have approached in this paper the problem of class
integration test ordering and we proposed a genetic
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Figure 4: GA performance compared to the average perfor-
mance of the related work on the considered data sets.

algorithm with stochastic acceptance for defining an
integration test order strategy for object-oriented sys-
tems. The goal is to identify, based on a static analysis
of object-oriented software systems, the test order re-
quiring a minimum stubbing effort. We considered a
weighted cost for creating the specific stubs needed
for testing. Seven case studies were considered in
our experimental evaluation, both synthetic examples
and systems used in the literature for the CITO prob-
lem. The results obtained using our approach outper-
formed those of existing similar work.

We plan to extend the experimental evaluation of
the proposed GA technique for real software sys-
tems and to consider a parallel implementation of
the GA, in order to test its scalability to larger sys-
tems. We will also investigate new dependencies be-
tween application classes for computing the stubbing
effort. Another possible direction to improve our pro-
posal would be to identify (possibly through machine
learning) appropriate values for the weights associ-
ated with the dependencies between the classes from
the software systems.
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