
Joint Usage of Frames and the Topological Functioning Model for
Domain Knowledge Presentation and Analysis

Vladislavs Nazaruks and Jānis Osis
Department of Applied Computer Science, Riga Technical University, Sētas iela 1, LV-1048, Riga, Latvia

Keywords: System Modelling, Frames, Knowledge Base, Topological Functioning Model.

Abstract: Joint usage of frames and Topological Functioning Model (TFM) provides proper analysis of knowledge in
the domain under study. The main issue in domain knowledge analysis is completeness of discovered
knowledge. Formal representation of the knowledge in frames allows automated construction and validation
of the TFM, thus allowing to discover white places in knowledge. Analysing TFM metamodels, the structure
of the frame system for generation of the TFM is proposed. The frame system leads to highlighting structural
knowledge, while validation of the generated TFM shows white places in behavioural knowledge. Validation
of the TFM does not guarantee the complete identity of obtained knowledge to the domain, since the
knowledge is based on expert opinions. Thus, analysis of the problem domain is shifted from the separate
investigation of dynamic and structural aspects of the system to holistic understanding of domain phenomena.
The presented results should be refined if other derived models are added.

1 INTRODUCTION

Complex business domain logic that is necessary for
software development can be and must be discovered
during systems analysis and specified by models as
accurate as possible. The goal of systems analysis is
not only to discover some limited knowledge about
the domain and requirements to the software, but also
to make implicit domain knowledge clear and
unambiguous, thus raising the probability of its
completeness.

The more formal is a model, the higher is its
accuracy. The suggested technique uses formal
models for knowledge representation, modelling and
analysis, namely a Topological Functioning Model
(TFM) and knowledge frames. But the question is
how both these formal means can be jointly used to
lead to the more complete discovering of knowledge.

There are many formats for knowledge
representation, e. g. knowledge frames, ontology,
product rules, first-order predicate logic, high-order
predicate logic, fuzzy logic, modal logic, etc. Every
format has its own limitations and benefits (Okafor &
Osuagwu 2007). Some of them (e. g. ontology, logic-
based structures) are dedicated to representation of
declarative domain knowledge, while other (e. g.

product rules) are dedicated to representation of
procedural domain knowledge.

Due to evolution of web technologies, the
ontology has gained the greater popularity. There are
many domain ontologies, knowledge of which can be
used, and can enhance other knowledge bases.

From one point of view, the ontology can
supplement the TFM well, since the model is focused
more on the functionality and domain object
participation in it than on the structural relationships
among objects. However, the construction of the
TFM requires analysis of domain information and
extraction of both (procedural and declarative)
knowledge, but here the functional view on the
system is the primary one. During transformation of
the TFM into software analysis and design models,
this view must be changed. The functional view on
the system must be assigned to the structural view on
the system. The ontology, compared to the knowledge
frames, cannot hold procedural knowledge together
with the declarative one. Therefore, the proposed
approach foresees the use of the knowledge frames.
However, it does not mean that it cannot use
ontologies for some specific tasks.

The research describes the related work (Section
2), the common vision of the proposed technique
(Section 3) of a joint use of the frame system and the
TFM (Section 4), and illustrates it by a small example

Nazaruks, V. and Osis, J.
Joint Usage of Frames and the Topological Functioning Model for Domain Knowledge Presentation and Analysis.
DOI: 10.5220/0006388903790390
In Proceedings of the 12th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2017), pages 379-390
ISBN: 978-989-758-250-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

379

(Section 5). Conclusions (Section 6) highlight some
benefits and limitations of the proposition.

2 RELATED WORK

The most common way of entering knowledge into
the frame system is manual, i. e. a knowledge
engineer enters facts and assertions about the domain
based on results of interviews with domain experts
and other information about the domain (Beltrán-
Ferruz et al. 2004; Shiue et al. 2008; Bimba et al.
2016; Detwiler et al. 2016). Only in case of text
analysers automated entering is applied, but the
amount of human participation in this process is not
clear (Grigorova & Nikolov 2007; Xue et al. 2010;
Xue et al. 2012; Corcoglioniti et al. 2016).

Frame-based representation of declarative and
procedural knowledge has a wide application, but the
last decade tendency is health care and biomedicine
(mostly for ontologies of terms) (Beltrán-Ferruz et al.
2004; Bimba et al. 2016), forecasting (Kim et al.
2008; Bimba et al. 2016) and text/natural language
processing (Kramer & Kaindl 2004; Marinov 2004;
Marinov 2008; Gennari et al. 2005; Tettamanzi 2006;
Grigorova & Nikolov 2007; Xue et al. 2010; Xue et
al. 2012; Rector 2013; Sim & Brouse 2014; Bimba et
al. 2016; Al-Saqqar et al. 2016).

Limitations mentioned by authors are inadequate
representation of knowledge (Kramer & Kaindl
2004), greater expressiveness that can lead pure
ontologies to the loss of information in case of
transformation into them (Gennari et al. 2005; Bimba
et al. 2016; Detwiler et al. 2016), necessity to work
with the completely known characteristics and static
knowledge domain (Grigorova & Nikolov 2007),
representation of the procedural knowledge as
programming code inside frames (Grigorova &
Nikolov 2007), and the fact that complex structures
can decrease the performance of the system inference
and execution (Shiue et al. 2008; Xue et al. 2010).

There could be integration with other knowledge
representation systems such as product rules and
business constraints (Hernández & Serrano 2001),
OWL (Hernández & Serrano 2001; Corcoglioniti et
al. 2016; Detwiler et al. 2016), fuzzy logic
(Tettamanzi 2006), and modal logic (Al-Saqqar et al.
2016).

The related work illustrates that frame systems are
still in use. There are made optimistic attempts to
adapt this knowledge representation format to new
technologies, which allows integrating frame-based

knowledge systems with already existing ontologies
and other knowledge representation techniques.

This means that frame systems can be applied also
for our purpose considering enumerated limitations
and possibilities.

3 JOINT USAGE OF FRAMES
AND TFM

The TFM is a formal model which describes the
functioning of a system. Its fundamentals are
published in (Osis 1969). The TFM can be specified
as a topological space ሺܺ, Θሻ, where ܺ is a finite set
of functional features of the system under
consideration, and Θ is a topology on ܺ. A functional
feature is “a characteristic of the system (in its general
sense) that is designed [for] and necessary to achieve
some system’s goal” (Osis & Asnina 2011). It can be
specified by a unique tuple
,ܣ〉 ܴ, ܱ, ,݀݊ܥݎܲ ,݀݊ܥݐݏܲ ,ݎܲ :where ,〈ݔܧ

 ܣ is an action linked with an object,
 ܴ is a result of the action ܣ,
 ܱ is an object (objects) that gets the result of

the action or an object (objects) that is used
in this action,

 ܲ݀݊ܥݎ is a set of preconditions or atomic
business rules,

 ܲ݀݊ܥݐݏ is a set of postconditions or
atomic business rules,

 ܲݎ is a set of responsible entities (systems or
subsystems) that provide or suggest an
action with a set of certain objects,

 ݔܧ is a set of responsible entities (systems or
subsystems) that enact a concrete action
(Osis & Asnina 2011), (Nazaruka et al.
2016).

A TFM is valid when it satisfies topological and
functioning properties (Osis & Asnina 2011). The
topological properties are: connectedness,
neighbourhood, closure and continuous mapping.
The functioning properties are: cause-and-effect
relations, cycle structure, inputs and outputs. The
possibility of validation of the TFM using execution
model simulation is discussed in (Ovchinnikova &
Nazaruka 2016), where decision making is based on
results presented in (Asnina & Ovchinnikova 2015).

In this research, three approaches for complex
system modelling are considered, namely
TFM4MDA, TopUML and IDM.

MDI4SE 2017 - Special Session on Model-Driven Innovations for Software Engineering

380

Figure 1: General vision of joint usage of TFM and frame system.

The Topological Functioning Modelling for
Model Driven Architecture (TFM4MDA) approach
defined in (Osis & Asnina 2008b) is intended for
problem domain analysis and modelling in the
context of MDA. It makes possible to use a formal
TFM as a Computation Independent Model (CIM).

The TopUML approach proposed in (Donins
2012) combines TFM and its formalism with
elements and diagrams of the TopUML modelling
language, which is a specially developed profile of
the Unified Modelling Language (UML). The
TopUML modelling method “covers modelling and
specification of systems in computation independent
and platform independent viewpoints” (Donins
2012).

The Integrated Domain Modelling (IDM)
approach is proposed in (Slihte 2015); the goal of this
approach is “to provide an efficient way to acquire a
domain model based on declarative and procedural
domain knowledge”. The approach “suggests using
common system analysis and artificial intelligence
practices to capture the domain knowledge and then
transform these into a corresponding domain model”
(Slihte 2015).

Figure 1 illustrates the general vision of how the
TFM and frame-based knowledge base can be used
for software development. The main idea is to
represent knowledge of the domain under study as a
knowledge frame system. The system holds also
knowledge that is specific to the TFM, such as causal
dependencies, cycles, inputs, and outputs. Using this
knowledge base, the TFM can be generated
automatically. The TFM itself and other knowledge
in the frame system serve as a source for constructing
a design model in TopUML. The TopUML model is
planned to be transformed to the source code of the
software. Reverse engineering from UML sequence
diagrams to the TFM is considered in (Ovchinnikova
& Asnina 2015).

The presence of the knowledge base lets store the
knowledge in a structured and formal manner, while
allowing to check it for inconsistencies.

The closure of the topological space over a set of
system’s inner functional features, as well as the TFM
representation as a graph, could allow a modeller to

find these inconsistencies. The joint use of the frame
system and the TFM for this purpose is illustrated in
Figure 2.

Business
description

Fill in frames

Generate the
topological space

Is the
topological
space valid?

Indicate system’s
inner functional

features

Generate the TFM

Is the TFM valid?

The TFM of
the system

under
research

[yes]

[yes]

[no]

[no]

Figure 2: The process of checking the inconsistencies.

The idea is that generation and further validation
of the TFM in compliance with its metamodel would
allow seeing places where the business knowledge is
implicit. The valid topological space is a requirement
for generating the TFM. However, it does not
guarantee that the generated TFM will be valid. For
example, let us consider the situation shown in Figure

Joint Usage of Frames and the Topological Functioning Model for Domain Knowledge Presentation and Analysis

381

3. Here, the topological space is valid (Figure 3, part
A): all functional features are connected, and it does
have a cycle, inputs and outputs. After the closure of
the set of system’s inner functional features (vertices
labelled with S), the TFM has been separated into two
parts. This indicates lost cause and effect relations
between system’s functional features. The graphical
representation allows seeing the possibly related
functional features (Figure 3, bold-lined vertices in
part B).

(a)

(b)

Figure 3: The invalid abstract TFM generated from the
valid topological space.

4 DOMAIN KNOWLEDGE
PRESENTATION

To understand what knowledge is to be kept in frame
system, let us consider what is needed for
construction of the TFM. First, let us compare
knowledge units that are kept in TFM from its
metamodel perspective, and then from viewpoint of
functional feature definitions.

4.1 Comparison of TFM Metamodels

At the present, there are three TFM metamodels, each
developed for a concrete TFM application:
TFM4MDA (Asnina 2006; Osis et al. 2007),
TopUML (Osis & Donins 2010b; Donins 2012) and

IDM approach (Osis et al. 2012; Slihte 2015). The
analysis of them showed the following common
elements (Table 1): the topological functioning model
(row 1), the functional feature (row 2), the cycle (row
4), the actor (row 9), the logical relationship (row 21),
and the topological relationship (row 22), as well as
two enumerations “Subordination” (row 14) for
functional feature subordination within the system
and “LogicalOperation (row 20) for specification of
logical operation on the set of topological
relationships. Other elements are specific for each
approach. In case of TFM4MDA they are required for
transformation from TFM to use case specifications
(rows 9–13), in case of TopUML for transformation
to TopUML diagrams (rows 15–19), and in case of
IDM approach the TFM is a target of the
transformation (therefore, the metamodel of use
cases, the source of the transformation, is not
considered here).

The frame system suggested here is based on (but
not limited to) the elements necessary to generate the
TFM without logical operations among cause-and-
effect relationships. It represents domain ontology but
does not specify scripts for frame instance generation.

4.2 Comparison of Functional Feature
Definitions

The definition of a functional feature of the TFM in
the form of a n-ple has been introduced and
elaborated by several authors, its historical aspects
are discussed in more detail in (Solomencevs 2016).
Here we want to understand what knowledge and for
what artefacts functional feature’s n-ple may contain.
The results of this analysis will be applied to the
frame system to separate knowledge that are
necessary to the pure TFM, and knowledge that can
be related to the previous one to infer some additional
knowledge, e. g. necessary for generating software
analytical diagrams, or for checking software
functional requirements for incompleteness.

Table 2 illustrates elements of n-ples and
corresponding artefacts. Elements that are necessary
for the pure TFM are A, R, O, PrCond, E, PostCond,
S, Pr; and will be presented in the suggested frame
system. The bold font indicates sets of elements.
Other elements may be generated from these.
Artefacts such as the TDM and analytical diagrams
use all the elements presented.

MDI4SE 2017 - Special Session on Model-Driven Innovations for Software Engineering

382

Table 1: Comparison of metaclasses and datatypes of the three TFM metamodels (Asnina 2006; Donins 2012; Slihte 2015),
where domains are denoted as P for the problem domain and S for the solution domain, as well as artefacts are TFM for the
topological functioning model, REQ for functional requirements, and APL for application analytical diagrams.

N. TFM4MDA metamodel 2006 TFM metamodel 2012 TFM metamodel
2015

Domain Artefacts

1 TFMTopologicalFunctioningModel TopologicalFunctioningModel TFM P, S TFM
2 TFMFunctionalFeature FunctionalFeature FunctionalFeature P, S TFM
3 TFMFunctionalFeatureSet P, S TFM
4 TFMCycle TopologicalCycle Cycle P, S TFM
5 TFMCorrespondence P, S TFM,

REQ
6 TFMUserGoal S REQ
7 TFMUserSystemGoal S REQ
8 TFMUserBusinessGoal S REQ
9 TFMUserRole Actor Actor P, S TFM,

REQ
10 TFMBusinessActor S REQ
11 TFMBusinessWorker S REQ
12 TFMFunctionalRequirement S REQ
13 Enumeration “Benefit” S REQ
14 Enumeration “Subordination” Enumeration “Subordination” Enumeration

“Subordination”
P, S TFM

15 ActionResult S APL
16 Class S APL
17 State S APL
18 Condition S APL
19 TopologicalOperation S TFM,

APL
20 Enumeration “RelationType” Enumeration

“LogicalOperation”
P, S TFM

21 LogicalRelationship LogicalRelationship P, S TFM
22 TopologicalRelationship Topological

Relationship
P, S TFM

Object O has the responsibility to execute action

A to get the outcome — result R. Therefore, there is
a single object type that could represent also a set of
objects (e.g. a collection).

Result R of action A can be defined as “a thing
that is caused or produced by something else; a
consequence or outcome” (Oxford University Press
2013), “expressed in client-valued terms” (Luca
2002). Therefore, in the frame system, the result can
be represented by any type. This statement is not in
contradiction with the assumption that the result can
be an attribute of a class or another class made in
(Donins 2012). Thus, topological operation Op of
class Cl (equals to object O) should be named as a
union of names of action A and result R. For example,
in case of functional feature “Calculating the
maximum per year for sales”, the topological
operation of object collection Sales will be
Sales::calculateMaximumPerYear() and result R will
be derived attribute Sales::/maximumPerYear of
some numerical type.

Creating explicit assignments between frames of
functional features and objects gives the possibility to
look at the functionality of the system from the
structural viewpoint, as well as to consider causal
dependencies among objects from the functioning
viewpoint.

4.3 The Frame System

According to the information defined in previous
sections, the following frame classes have been
developed:
 CauseAndEffectRelation (Table 3) — for

knowledge on cause-and-effect relations
generated from instances of frame
FunctionalFeature;

 FunctionalFeature (Table 4) — for facts about
the functional features;

 Object (Table 5) — for objects that participate
in the functional feature execution;

Joint Usage of Frames and the Topological Functioning Model for Domain Knowledge Presentation and Analysis

383

Table 2: Use of elements of n-ples of a functional feature for artefacts that are denoted as TFM for topological functioning
models, TCD for topological class diagrams, SD for state diagrams, CD for communication diagrams, SeD for sequence
diagrams, AD for activity diagrams, TUCD for topological use case diagram.

N. Element Description References Artefacts
1 A The action (Osis & Asnina 2008b;

Osis & Donins 2010a;
Donins et al. 2012; Slihte
2015)

TFM, AD, SD
*necessary to

TCD

2 R The result of action A (Osis & Asnina 2008b;
Osis & Donins 2010a;
Donins et al. 2012; Slihte
2015)

TFM, TCD

3 O The object that gets result R or that is used in action
A

(Osis & Asnina 2008b;
Osis & Donins 2010a;
Donins et al. 2012; Slihte
2015)

TFM
*necessary to

TCD

4 PrCond The set of preconditions or atomic business rules (Osis & Asnina 2008b;
Osis & Donins 2010a;
Donins et al. 2012; Slihte
2015)

TFM, AD, SD

5 E The entity that is responsible for execution of action
A

(Osis & Asnina 2008b;
Osis & Donins 2010a;
Donins et al. 2012; Slihte
2015)

TFM, TUCD

6 PostCond The set of postconditions (Osis & Asnina 2008a;
Osis & Donins 2010a;
Donins et al. 2012; Slihte
2015)

TFM

7 S Subordination of the functional feature, i.e. its
location in relation to the system under the study:
inner or external

(Osis & Asnina 2008a;
Donins et al. 2012; Slihte
2015)

TFM

8 Cl The class which will represent object O in static
viewpoint of the system

(Osis & Donins 2010a;
Donins et al. 2012)

TCD, CD, SeD
*is equal to

object O
9 Op The operation of the class Cl (Osis & Donins 2010a;

Donins et al. 2012)
TCD, CD, SeD

*is equal to
action A with

its result R
10 St The new state of object O after execution of action A (Donins et al. 2012) SD
11 Es The indicator that execution of action A can be

automated
(Donins et al. 2012) SD

13 Pr A set of responsible entities that provide or suggest
action A with or for object O

(Osis & Asnina 2011) TFM

 Property (Table 6) — for domain object

properties;
 TopologicalOperation (Table 7) — for

knowledge about the operations that will
implement actions of the functional features;
the instances of this frame class are to be
generated based on the values of frame
FunctionalFeature values;

 TopologicalCycle (Table 8) — for holding
facts about functional feature participation in
cycles of functionality.

Each frame class is identified by its name, it
contains slots, fillers and facets. Now, frame classes

hold only static knowledge on the domain, i. e.
ontology. Further, integration with the product
(business) rules must be implemented.

There are several frame classes which slot values
must be set and updated automatically. The first one
is CauseAndEffectRelation, which slot values are
generated based on the facts that the cause is
predefined by using a precondition, while the effect is
specified by using a postcondition (Donins 2012). So,
the frame instance is created and filled in when there
is a case of the equal precondition and a
postcondition.

MDI4SE 2017 - Special Session on Model-Driven Innovations for Software Engineering

384

Table 3: Frame class for cause-and-effect relations
(generated).

Class: CauseAndEffectRelation

identifier
causeFeature FunctionalFeature
effectFeature FunctionalFeature
preCondition
postCondition

Table 4: Frame class for functional features (filled in).

Class: FunctionalFeature

identifier
action
result anyType
object Object
preConditionSet
postConditionSet
provider Object

(role=provider)
executorSet collection of

Object
(role=executor
OR actor)

subordination {inner,
external}

Table 5: Frame class for objects (filled in and generated).

Class: Object

identifier
name
role {none, executor,

actor, provider}
state enumeration
currentState
properties Collection of Property
topologicalOperations Collection of

TopologicalOperation

Table 6: Frame class for properties (filled in).

Class: Property

name
type anyType
value

Table 7: Frame class for topological operations (generated).

Class: TopologicalOperation

name
owner Object
returnType anyType

Table 8: Frame class for topological cycles (filled in and
partially generated).

Class: TopologicalCycle

identifier
isMain
order
functionalFeatures collection of 2 and more

FunctionalFeature instances

The second one is frame TopologicalOperation,
where the name must be set as a union of values of
slots action and result of FunctionalFeature. The slot
owner gets his value based on the value of slot object
in FunctionalFeature frame, but the slot returnType
by a type of the value of slot result.

Frames whose slot values are partially generated
are Object (the value of slot topologicalOperation),
and TopologicalCycle (the value of slot
functionalFeatures). The latter is possible since in all
the metamodels the topological cycle is represented
as a set of functional features that are involved in
some closed path.

Identifiers in all frames are to be also
automatically generated.

This frame system represents only facts about the
domain, not scripts or daemons.

5 ILLUSTRATIVE EXAMPLE

Description of the business domain is as follows. “A
criminal case is initiated by an investigator when a
criminal act is stated. The criminal act may be stated
when a criminal person has committed a criminal act
and it was discovered or a victim or witness has
submitted a claim about it. After the criminal case
was initiated, the investigator conducts investigative
actions. As the result of this, the indicted person is
found. After the investigation is completed, the
criminal case is sent to a prosecutor. If the criminal
act is misdemeanour, the prosecutor can draw up a
penal order. If the indicted person agrees with the
accusation presented and the penalty the prosecutor
offered, then the criminal case is terminated and the
convicted person serves the punishment. Otherwise,
the prosecutor sends the case to the court. The
criminal case is terminated when the court adjudicates
in the case. The Chief of Department assigns an
investigator to a stated criminal act, and then the
investigator initiates a new criminal case. The
decision is based on the availability of investigators,
since each investigator informs Chief when the
criminal case is sent to the prosecutor.”

Joint Usage of Frames and the Topological Functioning Model for Domain Knowledge Presentation and Analysis

385

Having this knowledge about the system, a
modeler can fill in frame instances for functional
features and objects (see Table 9 and Table 10). The
corresponding generated topological space of the
system functional features is shown in Figure 4. The
topological space is valid, it contains no isolated
vertices, has inputs, outputs, and a cycle structure.

Figure 4. The topological space obtained from the facts in
the frame system.

Figure 5. The TFM obtained after closuring.

The next step is to indicate system’s inner
functional features. Let us imagine that we need to
generate the TFM of the investigator work. Then the
inner functional features are 1, 6, 7, and 13. The value
of slot “subordination” of frame instances of them
should be set to “inner”. After the closuring, the
corresponding TFM (Figure 5) is obtained.

Though the model is small, it is valid, namely, it
does contain input (functional feature 5), output
(functional feature 14), the functioning cycle (1-6-13-
7-16-1), and has no isolated functional features.

6 CONCLUSIONS

In this paper, three existing TFM metamodels were
compared with each other, and common elements
were discovered. At the present, the frame system
contains only static information; some frame
instances can be filled in with fully or partially
generated knowledge. This structure is sufficient to
generate TFM from it; however, the generated TFM
does not represent any logical operations on cause-

and-effect relations, since now the suggested frame
system does not hold the required constructs.

A joint use of the knowledge frame system and the
TFM has the following benefits. First, the nature of
the knowledge frame system as a closed system does
not allow infering ambiguous statements, i. e. if
something is not stated as true in the system, then this
means that it is false. In case if this proposition does
not correspond to the real phenomena, it would lead
to further investigation of the domain phenomena and
rules. Second, the structure of the frame system is
similar to the object-oriented way of thinking. This
allows software developers to operate with elements
of the frame system in the known way. Third,
principles that lie in the topological functioning
modelling lead to the more complete discovering of
knowledge. The sequential validation of the
topological space and the topological model of the
system functioning could help in discovering
potential “holes” in the presented knowledge. Fourth,
The TFM supplemented with the declarative and
procedural knowledge from the frame system serves
as the formal root view on the system at the very
beginning of the development.

However, there are limitations, too. One of the
difficulties in development of frame instances of
functional features is to define the proper client-
valued result of the action and the corresponding
object. Another one is handling business rules and
logical operators on cause-and-effect relations. The
third one is the implementation of the frame system
and a use of proper inference engine. The fourth,
integration with already existing ontologies that use
an open world paradigm, thus allowing to infer
potentially untrue statements.

The future research will be related to extending
the frame system with procedural knowledge, i. e.
logical operations on cause-and-effect relations,
scripts that will set and update values of the
corresponding slots with facts about the domain, and
business rules definitions separately from the frame
classes to provide its greater flexibility and
maintainability.

MDI4SE 2017 - Special Session on Model-Driven Innovations for Software Engineering

386

Table 9: Frame instances for FunctionalFeatures.

ident
ifier

action result object preConditionSet postConditionSet provider executor-
Set

1. Initiating [new] Criminal
Case

a criminal act is stated AND
an investigator is assigned

a criminal case is
initiated

State Police Investigator

2. Committing [new] Criminal
Act

a criminal act is
committed

Criminal-
Person

3. Discovering [new] Criminal
Act

a criminal act is committed a criminal act is
discovered

State Police

4. Submitting [new] ClaimOn
Criminal
Act

a criminal act is committed a claim about a
criminal act is
submitted

State Police victim,
witness

5. Stating [new] Criminal
Act

a criminal act is committed
AND (a criminal act is
discovered OR a claim about
a criminal act is submitted)

a criminal act is
stated

6. Conducting inves-
tigative
Acti-
ons

Criminal
Case

a criminal case is initiated an indicted person
is found

State Police

7. Sending toPro-
secutor

Criminal
Case

an investigation is completed a criminal case is
sent to prosecutor

State Police Investigator

8. Drawing up penal-
Order

Criminal
Case

a criminal act is
misdemeanour OR a criminal
act is average gravity

a penal order is
drawn

Prosecution
Office

Prosecutor

9. Terminating Criminal
Case

an indicted person agrees
with the penal order

a criminal case is
terminated

Prosecution
Office

Prosecutor

10. Serving Punish-
ment

a criminal case is terminated Prisons
Administra-
tion

Convicted-
Person

11. Sending to the-
Court

Criminal
Case

NOT(an indicted person
agrees with the penal order)
OR a criminal act is grave

NOT (a criminal
case is
terminated) AND
a criminal case is
sent to the court

Prosecution
Office

Prosecutor

12. Adjudicating Criminal
Case

NOT (a criminal case is
terminated) AND a criminal
case is sent to the court

a criminal case is
terminated

Court

13. Completing inves-
tigative
Acti-
ons

Criminal
Case

an indicted person is found an investigation is
complete

State Police Investigator

14. Assessing gravety Criminal
Act

a criminal case is sent to
prosecutor

a criminal act is
misdemeanour
OR a criminal act
is average gravity
OR a criminal act
is grave

Prosecution
Office

Prosecutor

15. Signing agree-
ment

Penal-
Order

a penal order is drawn an indicted person
agrees with the
penal order OR
NOT(an indicted
person agrees
with the penal
order)

Prosecution
Office

Indicted-
Person

16. Assigning investi-
gator

Criminal
Case

a criminal case is sent to
prosecutor OR a criminal act
is stated

an investigator is
assigned

State Police Chef of
Department

Joint Usage of Frames and the Topological Functioning Model for Domain Knowledge Presentation and Analysis

387

Table 10: Frame instances for Object.

identif
ier

name role state currentState properties topologicalOperations

 1 CriminalCase none isInitiated,
isTermina-
ted

initiate[new]();
conductInvestigative-
Actions();
sendToProsecutor();
drawUpPenalOrder();
terminate();
sendToCourt();
adjudicate();
assignInvestigator()

2 Investigator executor/actor

3 CriminalAct none isStated,
isCommit-
ted,
isMisde-
meanour

gravety =
{misdemeanour,
average, grave}

commitNew();
discoverNew();
stateNew();
assessGravity()

4 CriminalPerson executor/actor
5 ClaimOnCriminalAct none isSubmitted submitNew()
6 InvestigativeActions none
7 Investigation none isComple-

ted
8 Prosecutor executor/actor
9 Victim executor/actor

10 Witness executor/actor
11 IndictedPerson none
12 PenalOrder none isDrawn accusation,

penalty
signAgreement()

13 Accusation isPresented
14 Penalty isOffered
13 Punishment none serve()
14 ConvictedPerson executor/actor
15 Court none
16 ChefOfDepartment executor/actor

REFERENCES

Al-Saqqar, F., Bentahar, J. & Sultan, K., 2016. On the
soundness, completeness and applicability of the logic
of knowledge and communicative commitments in
multi-agent systems. Expert Systems with Applications,
43, pp.223–236. Available at: http://dl.acm.org/
citation.cfm?id=2840535 [Accessed December 17,
2016].

Asnina, E., 2006. Formalization of Problem Domain
Modeling within Model Driven Architecture. Riga
Technical University.

Asnina, E. & Ovchinnikova, V., 2015. Specification of
decision-making and control flow branching in
Topological Functioning Models of systems. In ENASE
2015 - Proceedings of the 10th International
Conference on Evaluation of Novel Approaches to
Software Engineering. Lisbon: SciTePress, pp. 364–
373. Available at: https://www.scopus.com/inward
/record.uri?eid=2-s2.0-
84933575203&partnerID=40&md5=8d49b05925e036
2f60cb6f1528714891.

Beltrán-Ferruz, P.J., González-Calero, P.A. & Gervás, P.,
2004. Converting Mikrokosmos frames into description
logics. Proceeedings of the Workshop on NLP and XML

(NLPXML-2004): RDF/RDFS and OWL in Language
Technology, pp.35–42.

Bimba, A.T. et al., 2016. Towards knowledge modeling and
manipulation technologies: A survey. International
Journal of Information Management, 36(6), pp.857–
871. Available at: http://linkinghub.elsevier.com/
retrieve/pii/S026840121630336X [Accessed December
17, 2016].

Corcoglioniti, F., Rospocher, M. & Aprosio, A.P., 2016. A
2-phase frame-based knowledge extraction framework.
In Proceedings of the 31st Annual ACM Symposium on
Applied Computing - SAC ’16. New York, New York,
USA: ACM Press, pp. 354–361. Available at:
http://dl.acm.org/citation.cfm?doid=2851613.2851845
[Accessed December 17, 2016].

Detwiler, L.T., Mejino, J.L.V. & Brinkley, J.F., 2016. From
frames to OWL2: Converting the Foundational Model
of Anatomy. Artificial Intelligence in Medicine, 69,
pp.12–21. Available at: http://www.aiimjournal.com
/article/S0933-3657(16)30152-X/abstract [Accessed
December 17, 2016].

Donins, U., 2012. Topological Unified Modeling
Language: Development and Application. Riga
Technical University.

MDI4SE 2017 - Special Session on Model-Driven Innovations for Software Engineering

388

Donins, U. et al., 2012. Using functional characteristics to
analyze state changes of objects. In CEUR Workshop
Proceedings. Databases and Information Systems.
Tenth International Baltic Conference on Databases
and Information Systems: Local Proceedings,
Materials of Doctoral Consortium. Vilnius: Žara, pp.
94–106.

Gennari, J.H., Mork, P. & Li, H., 2005. Knowledge
transformations between frame systems and RDB
systems. In Proceedings of the 3rd international
conference on Knowledge capture - K-CAP ’05. New
York, New York, USA: ACM Press, p. 197. Available
at:
http://portal.acm.org/citation.cfm?doid=1088622.1088
666 [Accessed December 17, 2016].

Grigorova, D. & Nikolov, N., 2007. Knowledge
representation in systems with natural language
interface. In Proceedings of the 2007 international
conference on Computer systems and technologies -
CompSysTech ’07. New York, New York, USA: ACM
Press, p. 1. Available at:
http://portal.acm.org/citation.cfm?doid=1330598.1330
670 [Accessed December 17, 2016].

Hernández, J.Z. & Serrano, J.M., 2001. Knowledge-based
models for emergency management systems. Expert
Systems with Applications, 20(2), pp.173–186.
Available at:
http://linkinghub.elsevier.com/retrieve/pii/S09574174
00000579 [Accessed December 17, 2016].

Kim, K. et al., 2008. A frame-based probabilistic
framework for spoken dialog management using dialog
examples. In Proceedings of the 9th SIGdial Workshop
on Discourse and Dialogue. Columbus, Ohio:
Association for Computational Linguistics,
Stroudsburg, PA, USA, pp. 120–127.

Kramer, S. & Kaindl, H., 2004. Coupling and cohesion
metrics for knowledge-based systems using frames and
rules. ACM Transactions on Software Engineering and
Methodology, 13(3), pp.332–358. Available at:
http://portal.acm.org/citation.cfm?doid=1027092.1027
094 [Accessed December 17, 2016].

Luca, J. De, 2002. Feature Driven Development. Feature
Driven Development Processes. Available at:
http://www.featuredrivendevelopment.com/node/449
[Accessed January 8, 2017].

Marinov, M., 2008. Using frames for knowledge
representation in a CORBA-based distributed
environment. Knowledge-Based Systems, 21(5),
pp.391–397. Available at: http://linkinghub.elsevier
.com/retrieve/pii/S0950705108000154 [Accessed
December 17, 2016].

Marinov, M., 2004. Using XML to represent knowledge by
frames. In Proceedings of the 5th international
conference on Computer systems and technologies -
CompSysTech ’04. New York, New York, USA: ACM
Press, p. 1. Available at:
http://portal.acm.org/citation.cfm?doid=1050330.1050
350 [Accessed December 17, 2016].

Nazaruka, E. et al., 2016. Verification of BPMN Model
Functional Completeness by using the Topological

Functioning Model. In Proceedings of the 11th
International Conference on Evaluation of Novel
Software Approaches to Software Engineering.
Portugal: SCITEPRESS - Science and and Technology
Publications, pp. 349–358. Available at:
http://www.scitepress.org/DigitalLibrary/Link.aspx?do
i=10.5220/0005930903490358 [Accessed February 20,
2017].

Okafor, E.C. & Osuagwu, C.C., 2007. Issues in Structuring
the Knowledge-base of Expert Systems. Journal of
Knowledge Management, 5(3), pp.313–322.

Osis, J., 1969. Topological Model of System Functioning
(in Russian). Automatics and Computer Science, J. of
Academia of Siences, (6), pp.44–50.

Osis, J. & Asnina, E., 2008a. A Business Model to Make
Software Development Less Intuitive. In 2008
International Conference on Computational
Intelligence for Modelling Control & Automation.
IEEE, pp. 1240–1245. Available at: http://ieeexplore
.ieee.org/document/5172803/.

Osis, J. & Asnina, E., 2008b. Enterprise Modeling for
Information System Development within MDA. In
Proceedings of the 41st Annual Hawaii International
Conference on System Sciences (HICSS 2008).
Waikoloa, USA: IEEE, pp. 490–490. Available at:
http://ieeexplore.ieee.org/document/4439190/.

Osis, J. & Asnina, E., 2011. Topological Modeling for
Model-Driven Domain Analysis and Software
Development : Functions and Architectures. In Model-
Driven Domain Analysis and Software Development.
Hershey, PA: IGI Global, pp. 15–39.

Osis, J., Asnina, E. & Grave, A., 2007. Formal computation
independent model of the problem domain within the
MDA. In CEUR Workshop Proceedings.

Osis, J. & Donins, U., 2010a. Formalization of the UML
Class Diagrams. In Evaluation of Novel Approaches to
Software Engineering. 3rd and 4th International
Conferences, ENASE 2008/2009, Funchal, Madeira,
Portugal, May 4-7, 2008 / Milan, Italy, May 9-10, 2009.
Revised Selected Papers. Springer Berlin Heidelberg,
pp. 180–192. Available at: http://link.springer
.com/10.1007/978-3-642-14819-4_13 [Accessed
January 8, 2017].

Osis, J. & Donins, U., 2010b. Platform Independent Model
Development by Means of Topological Class
Diagrams. In Model-Driven Architecture and Modeling
Theory-Driven Development : Proceedings of the 2nd
International Workshop on Model-Driven Architecture
and Modeling Theory-Driven Development (MDA &
MTDD 2010). Lisbon: SciTePress, pp. 13–22.

Osis, J., Slihte, A. & Jansone, A., 2012. Using Use Cases
for Domain Modeling. In Proceedings of the 7th
International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE 2012),
Poland, Wrocław, 29-30 June. Lisbon: SciTePress, pp.
224–231.

Ovchinnikova, V. & Asnina, E., 2015. The algorithm of
transformation from UML sequence diagrams to the
Topological Functioning Model. In ENASE 2015 -
Proceedings of the 10th International Conference on

Joint Usage of Frames and the Topological Functioning Model for Domain Knowledge Presentation and Analysis

389

Evaluation of Novel Approaches to Software
Engineering. Lisbon: SciTePress, pp. 377–384.

Ovchinnikova, V. & Nazaruka, E., 2016. The Validation
Possibility of Topological Functioning Model using the
Cameo Simulation Toolkit. In Proceedings of the 11th
International Conference on Evaluation of Novel
Software Approaches to Software Engineering.
SCITEPRESS - Science and and Technology
Publications, pp. 327–336. Available at: http://www
.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/
0005926003270336 [Accessed February 22, 2017].

Oxford University Press, 2013. Oxford Dictionaries.
Oxford Dictionaries. Available at: https://en.
oxforddictionaries.com/definition/result [Accessed
January 8, 2017].

Rector, A., 2013. Axioms and templates: distinctions and
transformations amongst ontologies, frames, and
information models. In Proceedings of the seventh
international conference on Knowledge capture - K-
CAP ’13. New York, New York, USA: ACM Press, p.
73. Available at: http://dl.acm.org/citation.cfm?
doid=2479832.2479840 [Accessed December 17,
2016].

Shiue, W., Li, S.-T. & Chen, K.-J., 2008. A frame
knowledge system for managing financial decision
knowledge. Expert Systems with Applications, 35(3),
pp.1068–1079. Available at: http://linkinghub.elsevier
.com/retrieve/pii/S0957417407003247 [Accessed
December 17, 2016].

Sim, W.W. & Brouse, P., 2014. Towards an Ontology-
based Persona-driven Requirements and Knowledge
Engineering. Procedia Computer Science, 36, pp.314–
321. Available at: http://www.sciencedirect.com/
science/article/pii/S1877050914013489 [Accessed
October 7, 2016].

Slihte, A., 2015. The Integrated Domain Modeling: an
Approach & Toolset for Acquiring a Topological
Functioning Model. Riga Technical University.

Solomencevs, A., 2016. Topological Functioning Model for
Software Development within MDA (Survey). In
Proceedings of the 11th International Conference on
Evaluation of Novel Approaches to Software
Engineering (ENASE 2016). SciTePress, pp. 315–326.

Tettamanzi, A.G.B., 2006. A Fuzzy Frame-Based
Knowledge Representation Formalism. In Di Gesú V.,
Masulli F., Petrosino A. (eds) Fuzzy Logic and
Applications. WILF 2003. Lecture Notes in Computer
Science, vol 2955. Springer Berlin Heidelberg, pp. 55–
62. Available at: http://link.springer.com/10.1007
/10983652_8 [Accessed December 17, 2016].

Xue, Y., Ghenniwa, H.H. & Shen, W., 2010. A Frame-
based Ontological view Specification Language. In The
14th International Conference on Computer Supported
Cooperative Work in Design. IEEE, pp. 228–233.
Available at: http://ieeexplore.ieee.org/document
/5471972/ [Accessed December 17, 2016].

Xue, Y., Ghenniwa, H.H. & Shen, W., 2012. Frame-based
ontological view for semantic integration. Journal of
Network and Computer Applications, 35(1), pp.121–
131. Available at: http://linkinghub.elsevier.com/

retrieve/pii/S1084804511000488 [Accessed December
17, 2016].

MDI4SE 2017 - Special Session on Model-Driven Innovations for Software Engineering

390

