
Incorporating Situation Awareness into Recommender Systems

Jeremias Dötterl, Ralf Bruns and Jürgen Dunkel
Hannover University of Applied Sciences and Arts, Ricklinger Stadtweg 120, 30459 Hannover, Germany

Keywords: Situation Awareness, Context Awareness, Decision Support, Recommender Systems, Semantic Web Tech-
nologies, Complex Event Processing.

Abstract: Nowadays, smartphones and sensor devices can provide a variety of information about a user’s current situa-
tion. So far, many recommender systems neglect this kind of information and thus cannot provide situation-
specific recommendations. Situation-aware recommender systems adapt to changes in the user’s environment
and therefore are able to offer recommendations that are more appropriate for the current situation. In this
paper, we present a software architecture that enables situation awareness for arbitrary recommendation tech-
niques. The proposed system considers both (semi-)static user profiles and volatile situational knowledge to
obtain meaningful recommendations. Furthermore, the implementation of the architecture in a museum of
natural history is presented, which uses Complex Event Processing to achieve situation awareness.

1 INTRODUCTION

Recommender systems provide users with personal-
ized recommendations to simplify and improve their
decision making. Today’s smartphones and sensor de-
vices can offer valuable information about a user’s
situation. Unfortunately, conventional recommender
systems do not consider this kind of context informa-
tion and therefore cannot compute situation-specific
recommendations. This lack of situation awareness
might reduce the users’ satisfaction as the usefulness
of recommendations is often affected by temporary
factors such as the users’ locations, intentions, or the
current weather. When users are at work, they might
not appreciate recommendations to visit the cinema to
see the latest blockbuster and when it is raining, they
might not appreciate recommendations for outside ac-
tivities like going to the beach.

In this paper, we propose a software architecture
that enhances arbitrary recommendation techniques
with situation awareness. The envisioned system of-
fers recommendations that are not only adapted to the
user’s personal interests but also to the current cir-
cumstances within the user’s environment. The sys-
tem processes situational knowledge in real-time and
connects it with domain knowledge to obtain mean-
ingful recommendations. User locations can be con-
sidered as a special type of real-time context. A real-
world scenario presented in the paper will show how
users’ indoor location can be derived by using Com-
plex Event Processing and iBeacon technology.

The remainder of the paper is organized as fol-
lows. Section 2 introduces recommender systems and
situation awareness. In section 3, we present our ar-
chitectural approach. Section 4 discusses the imple-
mentation of our approach in a museum of natural
history, which demonstrates the feasibility of our pro-
posal. Section 5 explores related work in the research
area of situation-aware recommender systems. Fi-
nally, in section 6 we draw conclusions and suggest
possible future work.

2 RECOMMENDER SYSTEMS
AND SITUATION AWARENESS

For the computation of recommendations, Content-
Based Filtering (CBF) and Collaborative Filtering
(CF) constitute the two major techniques. The char-
acteristics of these recommendation techniques are
well explored (Lops et al., 2011; Su and Khoshgof-
taar, 2009) and implementations are readily available
(e.g., Apache Mahout (Schelter and Owen, 2012)).
Because CBF and CF conceptually operate on a user-
items matrix, recommender systems using these tech-
niques are sometimes referred to as two-dimensional
(2D) (Adomavicius and Tuzhilin, 2008). Unfortu-
nately, 2D recommender systems do not incorporate
real-time context data and therefore cannot directly
consider the user’s current situation (Adomavicius
and Tuzhilin, 2005).

676
Dötterl, J., Bruns, R. and Dunkel, J.
Incorporating Situation Awareness into Recommender Systems.
DOI: 10.5220/0006385106760683
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 2, pages 676-683
ISBN: 978-989-758-248-6
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Figure 1: High-Level Architecture of a Situation-Aware
Recommender System.

Situation-aware recommender systems, on the
other hand, also take real-time context information
into account. This way, recommendations can be
provided that consider the user’s current situation.
To achieve situation awareness, context data has to
be gathered and interpreted in real-time. Situation-
related context data includes GPS data, time, temper-
ature, calendar entries, noise, velocity, etc. For ex-
ample, if GPS data shows that the user is at his work
place and his phone is muted, this might indicate that
he is in a meeting. Or if the user receives multiple
text messages within a short time interval, he is prob-
ably engaged in a conversation with another person
via text messages. A situation is typically on a higher
abstraction level than the individual pieces of context
it is inferred from and is characterized by a potentially
short life span.

Figure 1 shows the high-level architecture of a
situation-aware recommender system that acquires
context data from mobile devices. In this architec-
ture, mobile devices interpret low-level data obtained
from their built-in sensors to infer high-level situa-
tions. The mobile devices provide the infrastructure,
which is responsible for the detection of situations.
Each mobile device sends the detected situations to
the recommender system, which gathers the situations
it receives from the different devices. Via the user in-
terface of the mobile device, the user can interact with
the recommender system. When the user requests a
recommendation, the recommender system uses the
collected situations to compute situation-aware rec-
ommendations and sends them back to the mobile de-
vice where they are displayed to the user.

While conventional recommender systems have
been exploiting the strengths of CBF and CF for many
years, situation-aware recommender systems cannot
use CBF and CF out of the box. In this paper, we pro-
pose a technology-independent approach to incorpo-
rate situation awareness into arbitrary recommenda-
tion techniques. For instance, 2D recommender sys-
tems can be used off-the-shelf, thus allowing the use
of mature and established recommendation libraries.

An adaptation of the libraries’ source code is not re-
quired.

3 SITUATION-AWARE
ARCHITECTURE FOR
RECOMMENDER SYSTEMS

Our architectural approach for situation-aware recom-
mender systems is shown in Fig. 2. The recommender
system receives a continuous stream of situations and
it accepts recommendation requests at arbitrary points
of time. The advent of a recommendation request trig-
gers the following recommendation process.

1. Situation Selection: Situations are filtered to en-
sure recommendations guided by current and rel-
evant situations.

2. Request Refinement: Recommendation requests
are enriched with constraints and hints which are
derived from the selected situations and which
control the subsequent pre- and post-filtering
steps.

3. Pre-Filtering: To the set of items available for rec-
ommendation, a filtering step is applied to discard
items that are unsuitable considering the selected
situations.

4. Recommendation Computation: A list of recom-
mendations is computed using established recom-
mendation techniques like CBF and CF, or alter-
native approaches such as Semantic Rules (Her-
moso et al., 2016).

5. Post-Filtering: To the list of recommendations, a
post processing step is applied which adjusts the
list to foster recommendations that are especially
well suited considering the selected situations.

To illustrate our approach, we will consider a rec-
ommendation system for a museum of natural history,
which is described in some more detail in section 4.

Imagine a user called Alice who is visiting the mu-
seum. In particular, Alice is interested in reptiles and
dinosaurs. Right now, it is 11:45a.m. and her usual
lunch time starts at 12:00a.m., which means she is al-
ready starting to feel hungry.

She is currently located in one of the exhibition
rooms and has time for visiting one more room be-
fore she intends to eat lunch in the museum’s restau-
rant. On her mobile phone, the recommender sys-
tem’s client app is running, which knows the begin-
ning of Alice’s usual lunch time in the near future
from her calendar. Alice requests a recommendation
and the recommendation process is triggered.

Incorporating Situation Awareness into Recommender Systems

677

Figure 2: Architecture for Recommender Systems That Enables Situation Awareness for Conventional Recommendation
Techniques.

Let S = {s0,s1, ...,sn} denote the set of situations
available to the recommender system, and ru the rec-
ommendation request issued by the the client of user
u on his or her behalf. Initially, S and ru are processed
by the Situation Selection component.

3.1 Situation Selection

When a recommendation request arrives, the Situa-
tion Selection component selects the subset of situa-
tions that should influence the recommendation com-
putation. This step is required to filter out stale situa-
tions and to limit the number of situations the recom-
mender system has to process. Situations can become
stale because they are pushed into the recommender
system as soon as they are detected and the recom-
mender system keeps them in memory until they are
outdated.

Based on the input data S and ru, the Situation
Selection component creates a situation tuple s =
〈ru,S′〉, where S′ denotes the set of situations selected
for ru.

S′ is constructed from S applying temporal and
spatial criteria. Only situations are selected that have
appeared recently and near user u or that directly con-
cern u like his intentions or state (movement, mood,
etc.).

In our scenario, only situations are selected that
happened recently in rooms near Alice’s location, and
that concern Alice directly. This includes her current
location and her intention to eat lunch soon. Tuple s=
〈rAlice,{ “Alice is located in room 4”, “Alice’s lunch
time starts in 15 minutes” , ...}〉 is forwarded to the
Request Refinement component1.

1In practice, the situations are encoded in a machine-
readable format.

3.2 Request Refinement

The Request Refinement component accepts the sit-
uation tuple s and constructs a new tuple t =
〈ru,S′,C,H〉, where C is a set of constraints and H
is a set of hints.

• Set C = {c0,c1, ...,c j} contains conditions that
items must fulfill to be considered for recommen-
dation. Items that do not fulfill all constraints
c ∈ C should be ignored as they are not a good
match for the current state of affairs S′.

• Set H = {h0,h1, ...,hk} contains conditions that
items should fulfill to achieve high recommen-
dation scores. Items that match at least one hint
h ∈ H are a good match considering S′ and thus
should have a higher chance to be recommended
to the user.

The sets C and H are directly derived from S′. The
creation of C and H is controlled by domain-specific
rules.

In our example, the following constraint and hint
are created.

• c0 = { “Exhibit is not located in room 3” } be-
cause room 3 is currently overcrowded and thus
exhibits located in this room should not be rec-
ommended to further visitors.

• h0 = { “Exhibit is located near the restaurant” }
because visiting a room near the restaurant would
be convenient for Alice as it keeps her walking
distance short.

Tuple t = 〈rAlice,S′,{c0},{h0}〉 is forwarded to the
Pre-Filtering component.

3.3 Pre-Filtering

The Pre-Filtering component accepts tuple t as its in-
put.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

678

Via the Data Provider, the Pre-Filtering compo-
nent has access to all items (here the museum ex-
hibits) available for recommendation. The set of ex-
isting items is denoted as I. Furthermore, the Pre-
Filtering component has access to the Data Provider’s
knowledge K, which includes user profiles (e.g. their
interests, if known) and domain knowledge. Infor-
mation about user interests can be obtained with ex-
plicit approaches (user interrogation) or implicit ap-
proaches (observing user behavior) (Hanani et al.,
2001). The domain knowledge is provided by domain
experts.

Given I, C and K, the Pre-Filtering component
constructs the candidate item set I′.

I′ = {i | i ∈ I∧∀c(c ∈C∧ i satis f ies c)}

Whether an item i satisfies a given c ∈ C can be
checked by consulting K.

In our scenario, all items that are not located in
room 3 are members of I′. Tuple t and I′ are passed
to the 2D-Recommender.

3.4 2D-Recommender

The 2D-Recommender computes personalized rec-
ommendations for u using conventional recommen-
dation techniques like CBF and CF. Only items from
candidate set I′ are considered.

The 2D-Recommender computes a set of recom-
mendations, denoted as Σ. A recommendation σ is
defined as a tuple σ = 〈i, f 〉 with i ∈ I′ and f ∈ R,
where i is the item that is being recommended and f
its assigned recommendation score expressed as a real
number.

To compute recommendations for u, the recom-
mendation techniques require the user’s ID, which is
contained in ru to access the user’s preferences, which
are contained in the knowledge base K. Note that the
2D-Recommender does not make use of S′, C, and H.
Situation awareness is enabled by the pre- and post-
filtering steps, but not the 2D-Recommender. This
way, techniques that are not situation-aware by de-
fault, like CBF and CF, can be used without modifi-
cation, which is a crucial benefit of our approach.

The 2D-Recommender passes t and the recom-
mendations Σ to the Post-Filtering component.

3.5 Post-Filtering

The Post-Filtering component accepts t and Σ and cre-
ates a modified recommendation set Σ′. The Post-
Filtering component applies two types of modifica-
tions to the set Σ to construct set Σ′.

1. The scores of items are increased according to the
number of matching hints in H, as those items
fit the current set of situations S′ especially well.
Again, whether item i satisfies h ∈ H can be
checked by consulting K.

2. If the size of set Σ, denoted as |Σ|, exceeds a cer-
tain threshold ω, the items with the lowest scores
are dropped such that |Σ′| ≤ω. This is required to
limit the number of recommendations that have
to be processed by subsequent components and
to limit the number of recommendations that are
eventually displayed to the user.

Let us assume Σ contains two recommendations
σ0 = 〈“tyrannosaur in room 2”,0.85〉 and σ1 =
〈“local aquatic birds in room 1”,0.80〉. Let us fur-
ther assume room 1 is located next to the museum’s
restaurant, whereas room 2 is not. As declared above,
hint h0 states that the recommended item should be
located near the restaurant. In this scenario, σ1 satis-
fies h0, while σ0 does not. Consequently, the recom-
mendation score of σ1 is increased while the score of
σ0 remains unchanged. Depending on the used algo-
rithm, the ranking might change in favor of the local
birds in room 1 (σ1), which are conveniently located
on Alice’s way to the restaurant.

The newly created set Σ′ is transmitted to the mo-
bile device that requested the recommendations and is
displayed to the user.

4 CASE STUDY:
RECOMMENDATIONS IN A
MUSEUM SCENARIO

A prototype of our system is currently developed in
cooperation with the Landesmuseum Hannover (mu-
seum of natural history) to ensure the feasibility of our
approach. Figure 3 illustrates the set-up in the mu-
seum, which provides the required technical infras-
tructure.

Figure 3: Technical Infrastructure in the Museum.

• Beacons: The dots on the museum’s floor plan
show the positions of the beacons, each of them
marking a Point-of-Interest (POI) such as an ex-
hibit in the museum. Beacon hardware and pro-

Incorporating Situation Awareness into Recommender Systems

679

tocols (such as iBeacons2 and Eddystone3) have
recently been introduced to enable proximity ser-
vices. A beacon device uses Bluetooth LE to send
in a configurable frequency a unique ID that can
be read by any smartphone.

• Smartphones: The personal smartphones of users
serve as readers of the beacon signals. As soon
as a user approaches a beacon within its signal
range, the smartphone triggers an event carry-
ing the unique beacon ID. These beacon events
can be exploited to derive a user’s indoor posi-
tion. The smartphones serve as the user interface:
they show information about an exhibit, which is
adapted to the user’s interest and capabilities (age,
language skills, interests). Furthermore, they dis-
play the recommendations given by the system.

• Recommender System: This component is run-
ning on a server and receives user requests, user
interests, and situations from the smartphones.
Thereby our implementation focuses on user loca-
tion as a particularly important piece of situation
data. The Recommender System implements the
core of the recommendation process as described
in section 3.

Situation Selection can be realized with Complex
Event Processing (CEP) (Luckham, 2001). CEP is
a software technology to process a stream of events
in real-time. A core concept of CEP is a declarative
event processing language (EPL) to express patterns
in the data streams: So-called event processing rules
(CEP rules) are formulated for specifying event pat-
terns that discover situations of interest.

Common EPLs contain the boolean operators ∧
and ∨, the sequence operator→, and time and length
windows. The following event pattern, for exam-
ple, detects all occurrences of an event of type A
followed by either an event of type B or C, but
only considers occurrences of the last 60 seconds:
(A → (B ∨ C))[win:time:60s]

With these building blocks, Situation Selection
rules can be expressed.

In the given scenario, Situation Selection rules
work on the event model as shown in Fig. 4. The ab-
stract type Event serves as a common supertype for
all other types. The type RecommendationRequest
is used for events that represent requests sent by the
user’s mobile device. The type TechnicalEvent is
the abstract supertype for low-level technical events
like the sensing of a beacon signal (BeaconEvent).
The type Situation serves as an abstract super-
type for all types that characterize concrete situations.

2https://developer.apple.com/ibeacon/
3https://developers.google.com/beacons/

Concrete situations like the user’s location are de-
tected by the user’s mobile device and transmitted to
the recommender system.

Figure 4: Event Model.

Location Inference Rule: The following CEP rule
is running on the smartphones and performs a sensor
fusion step and infers the new position of its user.

CONDITION: BeaconEvent AS b [win:time: 5 seconds]

∧ b.RSSI = max(RSSI)

ACTION: create UserLocation(userID , b.beaconID)

This rule collects all beacon events that have been
read within a small time window. (Here: every
5 seconds a new window is started.) That beacon
event with the maximum signal strength (RSSI) cor-
responds to the beacon next to the user, and a new
UserLocation event with its beaconID is created.
From the beaconID, the system can infer the room
the user is currently located in.

Situation Selection Rule: The next CEP rule of the
Recommender Component selects all situations of the
last 5 minutes that occurred in the area of the user that
issued the request.

CONDITION: (UserLocation AS ul

∧ Situation AS sit)[win:time: 5 minutes] AS s

→ RecommendationRequest AS req

∧ ul.userID = req.userID

∧ isNear(sit.location , ul.beaconId)

ACTION: forward(req, s)

The rule triggers when the event stream contains a
RecommendationRequest event req that is preceded
by a UserLocation event ul that contains the loca-
tion of the user that issued the request. Furthermore,
the rule selects all Situation events (and sub types
thereof), referred to as s, that occurred near the user’s
location ul during the last 5 minutes. When such a
pattern occurs in the event stream, the selected situa-
tions s are, together with the request req, forwarded
to the Request Refinement component.

The collection of selected CEP events s is the set
S′ of our architectural concept and contains Alice’s
location and intention to eat lunch soon.

Request Refinement can be realized with Jena
Rules4. Via the Data Provider, refinement rules have
access to domain knowledge.

4https://jena.apache.org

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

680

Domain knowledge is modeled as an OWL on-
tology (Hitzler et al., 2009) and contains informa-
tion about the museum’s different rooms and exhibits.
The OWL ontology is the technical realization of the
knowledge base K and the item set I.

:restaurant rdf:type :Restaurant .

:room1 rdf:type :Room ;

:nextTo :restaurant .

:crocodile rdf:type :Item ;

rdf:type :Reptile ;

:in :room1 .

:brontosaurus rdf:type :Item ;

rdf:type :Dinosaur ;

:in :room2 .

:tyrannosaur rdf:type :Item ;

rdf:type :Dinosaur ;

:in :room3 .

Before entering the Request Refinement compo-
nent, the selected situations are translated into RDF
triples (World Wide Web Consortium, 2014), which
allows the refinement rules to operate on both (rather
static) domain knowledge and (volatile) situational
knowledge. In RDF, the set of selected situations S′

related to Alice at a certain point of time may look as
follows.5

:alice :isLocatedIn :room4 .

:alice :isReadyForLunch true .

:room3 :isOccupied true .

Refinement Rule 1: The following refinement rule
declares that recommended items must not be located
in a room that is occupied.

[(?room rdf:type :Room), (?room :isOccupied true)

-> mustNot(:in, ?room)]

If a binding for the variable ?room exists such that
the two triples on the left hand side of the arrow
are present in the knowledge base, the rule fires and
the functor on the right hand side of the arrow is
invoked. As shown above, room 3 is currently oc-
cupied. Therefore, the functor mustNot is invoked,
which constructs a constraint object that represents
the fact that items located in room 3 should be ex-
cluded from recommendation.

Refinement Rule 2: A second refinement rule
checks whether the current user is ready for lunch. In
this case a hint is created declaring that recommended
items should be located in a room next to a restaurant.

[currentUser(?u), (?u :isReadyForLunch true),

(?room :nextTo ?res), (?res rdf:type :Restaurant)

-> should(:in, ?room)]

5Note that the situation ’a certain room is occupied’ can
be derived by an appropriate CEP rule that counts the num-
ber of users located in that room.

The invocation of the currentUser functor binds Al-
ice’s user ID (which is contained in the recommenda-
tion request) to the variable ?u. Because a triple ex-
ists that states that Alice is ready for lunch and a room
exists that is located next to a restaurant, the rule fires
and the should functor is invoked. The invocation of
the should functor creates a hint that states that rec-
ommended items should ideally be located in room 1,
the only room directly located next to the museum’s
restaurant.

The collection of constraints and the collection of
hints, which resemble the sets C and H, are passed to
the Pre-Filtering component.

Pre-Filtering uses the constraints to select the
items that will be considered for recommendation. As
the items are stored in a RDF knowledge base, they
can be queried with SPARQL (Harris et al., 2013).
From the given constraints, a SPARQL query can al-
gorithmically be constructed that selects all items that
match the given constraints.

Pre-Filtering Query: The following query selects
all items that are not located in the occupied room 3.

SELECT ?item WHERE {

?item rdf:type :Item .

MINUS { ?item :in :room3 . }

}

Executed on the knowledge base, the query returns
:crocodile and :brontosaurus, which are located
in room 1 and 2 respectively, but not :tyrannosaur,
which is located in room 3. Together, the se-
lected items constitute the set I′ = { :crocodile,
:brontosaurus}.

The 2D-Recommender assigns recommendation
scores to the selected items I′ to obtain the recommen-
dation set Σ. For this task, any 2D recommendation li-
brary can be used, e.g., Apache Mahout6, which pro-
vides an implementation of CF. CF operates on item
identifiers and user preferences, which are provided
by the Data Provider. The 2D-Recommender ex-
plicitly does not use situations, constraints, and hints
as this allows to easily exploit recommendation li-
braries that do not consider situational knowledge. In
our scenario, the 2D-Recommender constructs Σ = {〈
:crocodile,0.80〉,〈 :brontosaurus,0.85〉}.

Post-Filtering can be realized – similarily to the
Pre-Filtering step – with SPARQL. From the given
hints, SPARQL queries are constructed that check
which items i ∈ I′ match the given hints. For each
hint an item matches, the item’s score is increased.

Post-Filtering Query: The following SPARQL
query selects all items that satisfy the earlier con-
structed hint.

6https://mahout.apache.org

Incorporating Situation Awareness into Recommender Systems

681

SELECT ?item WHERE {

?item :in :room1 .

}

Because the museum’s area about crocodile is
located in room 1 (and therefore on Alice’s way
to the restaurant), it is selected by the query and
its recommendation score is increased accordingly.
For the brontosaurus, on the other hand, the hint
is not satisfied and the recommendation score keeps
unchanged. Therefore: Σ′ = {〈 :crocodile,0.90〉,〈
:brontosaurus,0.85〉}

An impression about the implemented app gives
Fig. 5. For a more detailed description of the pre-
sented approach, please refer to (Dötterl, 2016).

Figure 5: Museum Recommender App.

5 RELATED WORK

A large number of different approaches exist to in-
fer situations from given context data, which in-
clude techniques like fuzzy logic, bayesian networks,
or complex event processing (Renners et al., 2012;
Rizou et al., 2010; Ye et al., 2012). To add
situation awareness to recommender systems, of-
ten knowledge-based solutions are employed where
recommendations are computed via domain-specific
rules operating on ontologies (Bouzeghoub et al.,
2009; Ciaramella et al., 2009; Hermoso et al., 2016).
In these approaches, the two major recommendation
techniques CBF and CF are generally neglected. Our
architecture combines both worlds: ontology-based
situation awareness and the recommendation tech-
niques CBF and CF are merged into a single solution.

There also exist different proposals that aim to in-
corporate situation awareness into conventional rec-
ommendation techniques (Chen, 2005; Karatzoglou
et al., 2010). However, these approaches modify the
algorithms themselves and thus cannot be applied to
third-party recommendation libraries without modi-
fication of the libraries’ source code. In our archi-
tecture, conventional recommendation techniques are
encapsulated in the 2D-Recommender component,
which can be perceived as a black box.

To consider contextual information in recom-
mender systems without modifying the recommen-
dation algorithms themselves, Adomavicius and
Tuzhilin (Adomavicius and Tuzhilin, 2008) suggest
the use of pre- and post-filtering. In our architecture,
pre- and post-filtering is controlled by constraints and
hints that are determined by the request refinement
step. Constraints and hints represent characteristics
of items that are suitable and relevant for the given set
of situations. Furthermore, we added a particular sit-
uation selection step, which is required to handle the
incoming live data in form of temporary situations.

The strengths of combining knowledge-based rec-
ommendations with CBF and CF have been exploited
by researchers in the past, mainly with the goal to re-
duce the so-called cold start problems CBF and CF
suffer from. Different hybridization methods exist
to integrate knowledge-based recommendation tech-
niques with CBF and CF (Burke, 2002). In a sense,
our architecture can be perceived as an application of
the Cascade Method: Pre-Filter, 2D-Recommender,
and Post-Filter form a cascade in which the subse-
quent component refines the recommendations com-
puted by the previous component.

6 CONCLUSION

In this paper, we have presented a software architec-
ture for recommender systems that enhances arbitrary
2D recommendation techniques with situation aware-
ness. We put forward a technology-independent rec-
ommendation process that yields recommendations
adapted to both the user’s preferences and current sit-
uation.

Our approach has several benefits. It provides
context and situation awareness: domain knowledge
and situational knowledge is used to prevent unsuit-
able recommendations (pre-filtering) and to foster
recommendations that fit the current situation espe-
cially well (post-filtering). Furthermore, established
and mature recommendation libraries can be used out
of the box. Because our approach explicitly refrains
from modifying recommendation techniques such as
CBF and CF themselves, these libraries can be used
without adapting their source code. This way, imple-
mentation costs can be reduced.

Moreover, we described a real-world case study
that uses CEP and Semantic Web Technologies to im-
plement the proposed architecture. The use of RDF,
Jena Rules, and SPARQL results in a flexible applica-
tion that can be adapted and extended easily by main-
taining the domain ontology and refinement rules.

User feedback allows recommender systems to

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

682

understand a user’s personal preferences. Stor-
ing the situations in which the user expressed
his (dis-)satisfaction with a certain recommendation
could allow the system to learn in which situations
this specific recommendation is appropriate. Future
research efforts should investigate how our approach
can be extended to recommend items to the current
user that other users in similar situations have liked.
Extensions of our architecture should adhere to the
current black box approach and not require a reim-
plementation or modification of existing recommen-
dation algorithms.

REFERENCES

Adomavicius, G. and Tuzhilin, A. (2005). Toward the next
generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE Trans.
on Knowl. and Data Eng., 17(6):734–749.

Adomavicius, G. and Tuzhilin, A. (2008). Context-aware
recommender systems. In Proceedings of the 2008
ACM Conference on Recommender Systems, RecSys
’08, pages 335–336, New York, NY, USA. ACM.

Bouzeghoub, A., Do, K. N., and Wives, L. K. (2009).
Situation-aware adaptive recommendation to assist
mobile users in a campus environment. In 2009 In-
ternational Conference on Advanced Information Net-
working and Applications, pages 503–509.

Burke, R. (2002). Hybrid recommender systems: Survey
and experiments. User Modeling and User-Adapted
Interaction, 12(4):331–370.

Chen, A. (2005). Context-aware collaborative filtering sys-
tem: Predicting the user’s preference in the ubiquitous
computing environment. In Proceedings of the First
International Conference on Location- and Context-
Awareness, LoCA’05, pages 244–253, Berlin, Heidel-
berg. Springer-Verlag.

Ciaramella, A., Cimino, M. G. C. A., Lazzerini, B., and
Marcelloni, F. (2009). Situation-aware mobile service
recommendation with fuzzy logic and semantic web.
In 2009 Ninth International Conference on Intelligent
Systems Design and Applications, pages 1037–1042.

Dötterl, J. (2016). Situation-aware recommender systems.
Master thesis, Hannover University of Applied Sci-
ences and Arts, Germany.

Hanani, U., Shapira, B., and Shoval, P. (2001). Informa-
tion filtering: Overview of issues, research and sys-
tems. User Modeling and User-Adapted Interaction,
11(3):203–259.

Harris, S., Seaborne, A., and Prud’hommeaux, E. (2013).
Sparql 1.1 query language. W3C Recommendation,
21.

Hermoso, R., Dunkel, J., and Krause, J. (2016). Situation
Awareness for Push-Based Recommendations in Mo-
bile Devices, pages 117–129. Springer International
Publishing, Cham.

Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F.,

and Rudolph, S. (2009). Owl 2 web ontology language
primer. W3C Recommendation.

Karatzoglou, A., Amatriain, X., Baltrunas, L., and
Oliver, N. (2010). Multiverse recommendation: N-
dimensional tensor factorization for context-aware
collaborative filtering. In Proceedings of the Fourth
ACM Conference on Recommender Systems, RecSys
’10, pages 79–86, New York, NY, USA. ACM.

Lops, P., de Gemmis, M., and Semeraro, G. (2011).
Content-based Recommender Systems: State of the
Art and Trends, pages 73–105. Springer US, Boston,
MA.

Luckham, D. C. (2001). The Power of Events: An Intro-
duction to Complex Event Processing in Distributed
Enterprise Systems. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA.

Renners, L., Bruns, R., and Dunkel, J. (2012). Situation-
aware energy control by combining simple sensors
and complex event processing. In Proceedings of the
Workshop on AI Problems and Approaches for Intel-
ligent Environments (AI@IE 2012 in conjunction with
ECAI 2012), Montpellier, France, CEUR-WS.org, vol-
ume 907, pages 29–34.

Rizou, S., Häussermann, K., Dürr, F., Cipriani, N., and
Rothermel, K. (2010). A system for distributed con-
text reasoning. In 2010 Sixth International Conference
on Autonomic and Autonomous Systems, pages 84–89.

Schelter, S. and Owen, S. (2012). Collaborative filtering
with apache mahout. Proc. of ACM RecSys Challenge.

Su, X. and Khoshgoftaar, T. M. (2009). A survey of col-
laborative filtering techniques. Adv. in Artif. Intell.,
2009:4:2–4:2.

World Wide Web Consortium (2014). Rdf 1.1 primer.
Ye, J., Dobson, S., and McKeever, S. (2012). Situation

identification techniques in pervasive computing: A
review. Pervasive Mob. Comput., 8(1):36–66.

Incorporating Situation Awareness into Recommender Systems

683

