
Decentralized Content Trust for Docker Images

Quanqing Xu1, Chao Jin1, Mohamed Faruq Bin Mohamed Rasid2, Bharadwaj Veeravalli2
and Khin Mi Mi Aung1

1Data Storage Institute, A*STAR, Singapore
2Department of Electrical and Computer Engineering, National University of Singapore, Singapore

Keywords: Trust, Docker, Blockchain, BitTorrent, Decentralized System.

Abstract: Default Docker installation does not verify an image authenticity. Authentication is vital for users to trust
that the image is not malicious or tampered with. As Docker is currently a popular choice for developers,
tightening its security is a priority for system administrators and DevOps engineers. Docker recently deployed
Notary that is a solution to verify authenticity of their images. Notary is a viable solution, but it has some
drawbacks. This paper specifically addresses its vulnerability towards Denial-of-Service (DoS) attacks, the
repercussions, and discuss two potential solutions. The proposed solutions involve decentralising the trust via
either a BitTorrent-like protocol or a modified blockchain. The solutions greatly reduce the risk of DoS and at
the same time provide a trustless signature verification service for Docker. The solutions could also possibly
be repackaged for similar use cases on other technologies. We demonstrate the proposed blockchain-based
solution’s scalability and efficiency by conducting performance evaluation.

1 INTRODUCTION

Docker is an emerging container technology with the
goal to provide a solution to deploy an application
along with the dependencies automatically in a self-
contained environment called containers. The contai-
ners are isolated from each other and are given in-
dividual network interface. The isolation provides a
solution similar to virtual machines (VM) (Arumu-
gam et al., 2014) but without the overhead of running
the guest operating system on top of the host opera-
ting system. Docker minimal overhead is achieved
by sharing the kernel with the host operating system,
unlike VMs that run the guest operating system’s ker-
nel on a hypervisor. The containerization is realized
through Linux kernel namespaces and control groups
allowing processes to be isolated and resources to be
limited with negligible overhead. Processes running
in containers are made to believe that it is running in
a separate operating system than the host with its own
allocated resources, such as CPU and memory.

While Docker wins in terms of performance, VMs
are inherently more secure than Dockers since VMs
can provide true isolation (Bui, 2015). Shared ker-
nel translates to possibility of a container escaping
the isolation and gains privileged access through ker-
nel vulnerabilities. Since Docker and VM have some
overlapping use cases, both technologies are compe-
ting directly for market share when system adminis-

trators and DevOps evaluate solutions for their de-
ployments. Interest around Docker started increasing
around Q4 2013. In fact, Docker popularity has been
growing steadily since its 1.0 release, and Dockers are
replacing VMs in many use cases. In addition, deve-
lopers can rapidly build applications for the Internet
of Things (IoT) (Xu et al., 2016) by using Docker
containers to help them in many different ways.

Docker growth in popularity has helped it gain
wider visibility and receive more adoptions and sup-
ports from developer community and large organiza-
tions alike. Datadog reported that between May 2015
and May 2016, Docker market share grew by almost
30% (Datadog, 2016). As adoptions increased, fin-
ding vulnerabilities and exploiting them became in-
creasingly lucrative. Since Docker is used to deploy
production server applications, successfully exploi-
ting Docker containers would be synonymous to get-
ting full access to the organization’s web services that
can be used for malicious purposes like siphoning
data or impersonation. In the worst case scenario,
an attacker could possibly break out of the container
and gain access to the host OS via exploits like Dirty
COW (CVE-2016-5195) (Khandelwal, 2016). Such
an attack may cause catastrophic damage to both the
servers and the organization itself.

Besides namespaces and cgroups, Docker con-
tainers filesystem is provided by Advanced Multi-
layered Unification Filesystem (AuFS). AuFS, as a

Xu, Q., Jin, C., Rasid, M., Veeravalli, B. and Aung, K.
Decentralized Content Trust for Docker Images.
DOI: 10.5220/0006379404310437
In Proceedings of the 2nd International Conference on Internet of Things, Big Data and Security (IoTBDS 2017), pages 431-437
ISBN: 978-989-758-245-5
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

431

layered filesystem over one or more existing filesys-
tems, creates a file copy when a process needs to
modify the file. This process is called copy-on-
write (Merkel, 2014). This feature allows an image to
depend on another image (i.e., a base image), e.g., an
nginx application depending on a CentOS 5.11 base
image. Due to this dependency mechanism, if the
base image is not updated with the latest patched bi-
naries, any image depending on it will inherit the vul-
nerabilities if the publisher is not proactive at ensuring
the image is up to date. It is also theoretically possible
for an attacker to plant malwares and/or backdoors to
a base image. A compromised image might even be
used to gain privileged access to the host operating
system via exploits like the CVE mentioned above.
These issues are quite alarming given the worsening
security climate in recent years. Its effect could be
catastrophic to an organization who is being hacked.

This paper analyses Notary, a recently released
software that is integrated into Docker as the feature
called Docker Content Trust (DCT), to counter these
issues. We investigate two areas: 1) how DCT is a vi-
able solution, and 2) drawbacks of DCT. We propose
two alternative solutions to Notary: 1) BitTorrent-
like, and 2) blockchain-based decentralized distribu-
ted systems. As Docker is a new technology that is
still going through rapid changes, up-to-date literature
is usually in the form of online articles. To the best of
our knowledge, this paper is the first one to propose
decentralized content trust for Docker images.

The rest of the paper is organized as follows.
Section 2 introduces background and motivation. We
describe the drawbacks of Docker Content Trust in
Section 3. We propose two potential solutions in
Section 4. In Section 5 we present performance eva-
luation results. Section 6 describes related work. In
Section 7 we conclude this paper.

2 BACKGROUND AND
MOTIVATION

2.1 Decentralized Distributed System

The issues mentioned in the previous section are ac-
tually not unique to Docker Content Trust only. The
issues stem from the limitations of a centralized sy-
stem. In most simple centralized system designs, and
in the case of Notary, it has a single point of failure.
The solution to this issue is to build a decentralized
distributed system.

In a decentralized system, there is no central aut-
hority. The decisions are either made independently
by each node, or the nodes exists in a swarm with
a swarm leader. A decentralized system is resistant
to fault since if you take down a node, or a swarm,

the system will still function normally. In order to
take down the system, all the nodes have to be taken
down. Distributed systems on the other hand is de-
signed to withstand high workloads. Usually, there is
still a central authority in a distributed system making
decisions. For a DoS attack to be successful on such
systems, the attacker would usually need to match the
number of resources on the server side. Usually, the
attacker would employ Distributed Denial of Service
(DDoS) attacks in such scenarios.

2.2 Docker Content Trust

Docker is usually used together with a registry server
where images are stored. Docker Hub and Quay.io
are popular public registries. Although while pulling
images the user would need to specify the repository
to pull from, there is no built-in method to verify the
integrity and the publisher of the received data. As the
Internet is an untrusted medium of communication, it
is critical to check if the received data have been tam-
pered with. Responding to requests by community to
have strong cryptographic guarantees of the code and
versions being run in their infrastructure, Docker in-
troduced Docker Content Trust (DCT) in version 1.8
of the Docker Engine (Mnica, 2015). DCT allows
users to use the same Docker commands by seamles-
sly integrating signature verification to the workflow.

When a user interacts with an image through Doc-
ker commands in the first time, trust is established
automatically with the image publisher. Subsequent
interactions with the same publisher requires a valid
signature verification. This model is known as trust on
the first use, similar to SSH trust verification model.
The implementation of DCT is actually done by inte-
grating Notary into Docker Client and Engine. Notary
is a separate project by Docker security team with the
aim to make the Internet more secure by making it
easy for people to publish and verify content. While
the Notary project was started to add image integrity
protection for Docker, it was designed to be used and
integrated into other softwares.

2.3 The Update Framework (TUF)

Internally, Notary uses The Update Framework
(TUF), a flexible security framework that developers
can integrate with any software update system (TUF-
spec, 2017). TUF provides protection against for-
gery, serving of data over untrusted mirrors, pro-
tection against replay and downgrade attacks. Ho-
wever, its most notable one would be survivable key
compromise. This is in contrast to the design of most
software update systems where a compromise of a
single trusted key is fatal (Samuel et al., 2010). As
survivable key compromise is central to the design of

IoTBDS 2017 - 2nd International Conference on Internet of Things, Big Data and Security

432

the TUF specifications, instead of a single key for sig-
ning, multiple keys are used instead. To be more spe-
cific, the keys belongs to a single hierarchy under a
single root key which is kept offline. The other main
keys are the snapshot key, targets key and timestamp
key.

When used with Docker, the terminologies used
for the keys are slightly different although the usage
is conceptually the same. With Docker Content Trust,
the documentation identifies only two main keys: 1)
tagging key, which is used to sign data for individual
repositories, and 2) offline key, which is the root key
for all the tagging keys. These tagging key is synony-
mous to the targets/delegates key while the offline key
is the root key. Using TUF and the keys, DCT is able
to provide protection against some common forms of
attacks where an attacker is at a privileged network
position once the users permit opt-in DCT on their
Docker installations.

3 DRAWBACKS OF DCT

Docker Content Trust provides adequate protection
against some common attacks. However, there are
some limitations to its security design decisions. The
design decisions are influenced by the goals set by the
development team and the different beliefs on what is
to be prioritised when securing the system.

3.1 Limited Protection against Server
Compromise

When Docker pulls a signed image, it checks with a
Notary server to ensure the image’s integrity and to
verify the image’s publisher. In the event of failure to
verify these, the Docker command yields a hard fail.
However, it is important to note that by default DCT
adopts trust on the first use (mrled, 2017). Hence,
if the user pulls the image in the first time and it is
tampered and pointing to a different root metadata,
the command still succeeds. When an attacker can-
not tamper the file, another alternative attack he/she
may try out is to send a previously valid payload to
trick the clients not to update to the latest image that
has a patch for the known vulnerabilities. Likewise,
he/she may also attempt to downgrade the image to
an older version that contains the vulnerabilities. It is
mitigated with the timestamp key.

In Notary’s implementation, the Notary server is
in charge of signing the timestamp metadata file ge-
nerated every time. When a Docker image is pulled,
the verification of files’ integrity is requested. The
timestamp metadata contains an expiry field that in-
dicates till when is the metadata valid. As a result,
the attacker cannot replay a previously valid payload

as the data freshness is also verified on top of the in-
tegrity of the data files. Although key rotations are
possible, it is a mechanism for recovering from an at-
tack in the case of a server compromise as oppose to
protection against one. If the server is compromised,
while the users are protected if they already have the
root public key locally, new users attempting to esta-
blish connection to the server will successfully con-
nect, assuming the user did not turn off trust on the
first use, believing it to be trustable. The window
between a successful attack and the recovery might
still cause a large number of users to blindly trust and
accept the attacker’s rogue key and metadata. A pro-
perly coordinated targeted attack could still be fatal.

3.2 Potential DoS Attack

Docker yields a hard fail if the signature of an image
could not be verified (i.e., failed to contact the No-
tary server). This could also be leveraged by attac-
kers who are at a privileged position in the network to
block the Notary server or in the event of a DoS attack
on the Notary server itself. As a result, if the verifi-
cation fails, a system administrator might forego the
signature verification if he/she is under the pressure of
time. Although this is against the intended behavior
of the design (i.e. hard fail means do not continue at
all costs), organizational requirements and/or human
conditions would override this control.

4 DECENTRALISING THE
TRUST

In this section, we propose two potential decentrali-
zed solutions: BitTorrent-like and Blockchain-based
to Docker Content Trust. Ideally, we need to build
a decentralized distributed trust system with security
features similar to Notary’s use of multiple keys in a
hierarchy.

4.1 System Architecture

We present a system architecture as shown in Fi-
gure 1. Each user publishes his/her Docker image
to a DHT (Distributed Hash Table) network, similar
to content distribution (publishing) in the DHT net-
work (Xu et al., 2009). Each Docker image is a key-
value store, where key is a hash of Docker image, and
value is a combination of TUF metadata, tagging key
and offline key. The published Docker image is ve-
rified by its TUF, tagging key and offline key. If a
Docker image is not verified by its value, it cannot
be published to the DHT network. In addition, for a
Docker image without its TUF, tagging key and off-
line key, it is valid if it is found in the DHT network.

Decentralized Content Trust for Docker Images

433

Based on the system architecture, two decentralized
approaches are proposed as follows.

�

�

�

��

�

�

�

���

	
���
	
���

���� ����������
����

���� ����������
����

	
���

��
�����

����������������

���� ����������
����

��
�����

��
�����

��
�����

��
����� ��
�����

Figure 1: System Architecture.

4.2 BitTorrent-like Solution

The first approach uses a technology similar to Bit-
Torrent called InterPlanetary File System (IPFS), a
distributed file system that synthesizes successful
ideas from previous P2P systems, such as DHTs and
BitTorrent (Benet, 2014). IPFS can be viewed as a
single swarm BitTorrent or a global FTP server run-
ning on P2P network. It can protect data integrity
and availability by breaking it into pieces and share
it among peers. To achieve this, Merkle directed acy-
clic graph (DAG) is employed to ensure the pieces are
resistant to tampering (Benet, 2014). With IPFS, we
can publish a file or a whole folder with subdirectories
and files. However, the file or folder is only mirrored
when any peers request for data. The published file or
directory is given a hash that is its unique address for
users to access the data. When users want to access
this data, they can either issue “ipfs get < hash >”
command or access it through an IPFS gateway on
their browsers.

The gateway acts like a HTTP proxy that retrieves
the files via IPFS protocol and serves it over HTTP.
While the gateway is usually launched locally when
IPFS is ran as a daemon, IPFS official website hosts a
gateway for usability. It is important to note that files
on IPFS are immutable. There is no method to delete
or replace a file. We can only add files that will gene-
rate a new unique hash. This immutability property is
valuable in security context as files cannot be repla-
ced silently by the publisher. With this protocol, we
can push the TUF metadata of a Docker image onto
the network with the exception of timestamp metadata
as we no longer have an actor to sign the timestamp
since the files are decentralized. In other words, we
do not have a solution to guarantee the data freshness.
However, we can guarantee that the metadata are un-
changed ever since it was published, and the metadata
to verify the integrity and identity of the Docker ima-
ges is resistant to DoS.

A typical workflow after integrating this solution

would be: 1) Docker pull command is issued, 2)
image is downloaded to local storage, 3) download
metadata files for image through IPFS, and 4) verify
downloaded image with the metadata files. Docker
needs to be modified to automate steps 1) to 4). Ho-
wever, for a proof-of-concept, we could build a sepa-
rate tool to perform steps 3) and 4) and leave steps 1)
and 2) to built-in Docker functions. Currently there
are two issues with this approach. Firstly, Docker
images are uniquely identified by name and tag but
IPFS data are identified by hashes. Therefore, we
need to figure out a solution to map these two unique
IDs so that on the user’s end, he/she only needs the
Docker image unique identifier to verify the image.
Secondly, as already mentioned, we need to figure
out an alternative solution to guaranteeing the data
freshness.

4.3 Blockchain-based Solution

The second approach explores how to publish the me-
tadata files to an immutable ledger, the blockchain.
Currently, two most popular blockchains are Bitcoin’s
and Ethereum’s. While it is possible to store non-
transactional data on these blockchains, it is highly
not recommended for many reasons (Matzutt et al.,
2016). Therefore, this narrows the possibility of im-
plementing metadata storage on blockchain to two ap-
proaches: 1) start an entirely new blockchain that sup-
ports data storage, and 2) use blockchain to store the
pointer to data stored off-blockchain.

As mentioned in previous section, the strength
of blockchain comes from its “democratic” system.
Implementing a new blockchain, especially a private
one, dilutes the value proposition of a blockchain
being decentralized and distributed if it is controlled
by a single entity. The value proposition of a block-
chain grows with the number of nodes as this defines
how immutable the ledger is. Hence, implementing
a new blockchain is not a viable solution as without
the nodes, the miners, the financial transactions (pro-
viding incentive for miners) the blockchain is just a
complex implementation of a database. While it is
possible, at this point, implementing a new block-
chain as a solution is just not practical.

In the second approach, we explore using existing
blockchain as a Notary to back our off-blockchain
storage. For such implementation to work, the off-
blockchain storage must be designed in such a way
that the data are stored in a hash pointer data struc-
ture in order to produce a “chaining” effect. The re-
sultant benefit is resistant to mutability as to change
any data in the middle of the chain would require re-
writing the chain following the item being changed.
A Merkle-based tree or list is commonly employed
to achieve this. It is no coincidence that both block-
chains and IPFS all use Merkle-based data structure

IoTBDS 2017 - 2nd International Conference on Internet of Things, Big Data and Security

434

Table 1: Parameters used in experiments.

Parameters Setting
of Docker images 105, 2×105, · · · , 106

of servers 10, 20, · · · ,100
of bits of hash function 384

it is the reason the data is immutable. In our case, we
can store the metadata in the off-blockchain storage
and use an existing blockchain as a stamp or proof-
of-authenticity.

More research needs to be carried out in order to
design an architecture of the off-blockchain storage
possibly implementing a Merkle-based data structure.
For the solution to be complete, the off-blockchain
storage needs to also be decentralized. It might be
viable to use the BitTorrent-like solution as the off-
blockchain storage. Similar to the solution mentioned
in previous subsection, an alternative way would also
be needed to guarantee the freshness of data.

5 PERFORMANCE EVALUATION

In this section, we present performance evaluation
using detailed simulations based on synthetic data-
set. We have developed a detailed event-driven block-
chain simulator to validate and evaluate our design de-
cisions and choices. Note that due to space limit, we
do not present experimental results for the BitTorrent-
like solution. Parameters used in experiments are
shown in Table 1. All simulation experiments are con-
ducted on a Linux server with a Intel(R) Core(TM) 2
Duo E6750 2.66GHz processor and 32GB of RAM,
running 64-bit Ubuntu 14.04.

�

�����

�����

�����

�����

������

������

�
��
��
�
�
�
�
�
	�

�

�

�
�

�������������	
��������

��	
���

��
���

Figure 2: 10 servers with varying 105 to 106 Docker images.

Firstly, we present an experimental result for 10
servers with varying 105 to 106 Docker images, as
shown in Figure 2. We give a definition of Load
Factor as follows: LoadFactor = maxLoad

minLoad . From Fi-
gure 2, we can see that the average Load Factor is
1.05. The minimum Load Factor is only 1.04 when
there are 106 Docker images while the maximum
Load Factor is 1.06 when there are 105 Docker ima-

ges. Our blockchain-based solution is scalable for 10
servers with different scales of Docker images.

We second illustrate load distribution for 10 ser-
vers with 106 Docker images, as shown in Figure 3.
The Load Factor is only 1.04. We illustrate an expe-
rimental result for 10 - 100 servers with 106 Docker
images in Figure 4. As shown in Figure 4, the maxi-
mum Load Factor is only 1.08 when there are 70 ser-
vers, while the minimum Load Factor is 1.03 when
there are 20 servers. The average Load Factor is only
1.06. The blockchain-based approach is scalable for
10 - 100 servers with 106 Docker images.

�����

�����

�����

�����

������

������

������

������

� � � � 	
 � � � �

�
��
��
�
�
��
�
	�

�

�

�
�

����������	��

���

Figure 3: Load distribution for 10 servers with 106 Docker
images.

�

�����

�����

�����

�����

������

������

�� �� �� �� �� �� 	� ��
� ���

�
��
��
�
�
��
�
	�

�

�

�
�

������������

������

�������

Figure 4: 10 - 100 servers with 106 Docker images.

6 RELATED WORK

6.1 Decentralized Distributed Systems

BitTorrent (BT), a P2P file sharing platform is one
example of such a system. Traditionally, BT requi-
res a tracker to function. The tracker acts as a central
address book listing who have the file. However, in
“trackerless” BT, a DHT is employed to allow each
peer to act as a tracker. A DHT node is used to con-
tact another node to retrieve info of peers who has
the file a client requests. This effectively remove the
need for a central tracker as long as the client trying
to download the file can find peers who can provide
information to populate the DHT.

Another popular example of such a system is Bit-
coin. Bitcoin is a P2P platform to allow spending of

Decentralized Content Trust for Docker Images

435

the crypto-currency (BTC) without requiring a cen-
tral authority (e.g., a financial institution) to oversee
or validate the transaction (Nakamoto, 2008). In the
Bitcoin platform, a user can have one or more wallets
storing the BTC. Although in practical, there is no
actual storage of coins involved. This is due to how
Bitcoin is implemented.

6.2 Blockchain

Bitcoin is powered by the blockchain technology, a
public ledger of every transaction made on the plat-
form. A transaction is actually a transfer of coins
signed with the recipients public key. Each coin is
associated with an address and a transaction is sim-
ply a trade of coins from one address to another (Pil-
kington, 2016). A wallet on the other hand is actually
the cryptographic key-pair (private-public key). The-
refore, this key-pair can be used to trace how much
spending a wallet has made or how much money it
has received to derive the balance left in a wallet.

A blockchain with one node is basically a simple
linked list data structure. The ingenuity of blockchain
is when multiple nodes are involved to form a decen-
tralized distributed system. Every node in the system
has a copy of the entire blockchain. No central aut-
hority is needed to verify the authenticity of a copy
of the blockchain (Brito and Castillo, 2013). When a
transaction is made, it is broadcasted to the network,
where the mining nodes add them to the block they
are creating. The completed block will then be broad-
casted to the network where the network will agree to
add it to their copy of blockchain based on consensus.
Blockchains can be utilized as smart contracts, which
facilitate and enforce the negotiation of a contract in
the IoT (Xu et al., 2017).

7 CONCLUSION AND FUTURE
WORK

A TUF-based decentralized implementation carries
the benefit of protection against a single point of fai-
lure and DoS attacks. To a certain extent, it also re-
moves the need of a central authority to manage trust
and therefore the user would not need to trust a sin-
gle central authority but leave to a decentralized trus-
tless system in place to manage the trust. However,
such a solution as mentioned in this paper is not wit-
hout its own issues and more research is needed to
strengthen the idea and mitigate these issues. A final
solution is still in the process of being explored that
could either be BitTorrent-like or with combination
of a blockchain. The decentralized trustless system
if successfully implemented, could be used for more
than just for verifying Docker images, but on any ot-

her data types. By conducting performance evalua-
tion through extensive trace-driven simulations, expe-
rimental results illustrate the scalability and efficiency
of the blockchain-based solution.

REFERENCES

Arumugam, R. V., Xu, Q., Shi, H., Cai, Q., and Wen,
Y. (2014). Virt cache: Managing virtual disk per-
formance variation in distributed file systems for the
cloud. In CloudCom, pages 210–217.

Benet, J. (2014). Ipfs-content addressed, versioned, p2p file
system. arXiv preprint arXiv:1407.3561.

Brito, J. and Castillo, A. (2013). Bitcoin: A primer for poli-
cymakers. Mercatus Center at George Mason Univer-
sity.

Bui, T. (2015). Analysis of docker security. arXiv preprint
arXiv:1501.02967.

Datadog (2016). 8 surprising facts about real
docker adoption - datadog. Retrieved from
https://www.datadoghq.com/dockeradoption/.

Khandelwal, S. (2016). Dirty cow critical linux ker-
nel flaw being exploited in the wild. Retrieved
from http://thehackernews.com/2016/10/linux-kernel-
exploit.html.

Matzutt, R., Hohlfeld, O., Henze, M., Rawiel, R., Zie-
geldorf, J. H., and Wehrle, K. (2016). Poster: I
don’t want that content! on the risks of exploiting bit-
coin’s blockchain as a content store. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 1769–1771.

Merkel, D. (2014). Docker: lightweight linux containers for
consistent development and deployment. Linux Jour-
nal, 2014(239):2.

Mnica, D. (2015). Introducing docker content trust. Retrie-
ved from https://blog.docker.com/2015/08/content-
trust-docker-1-8/.

mrled (2017). No way to disable trust-on-first-use for ’doc-
ker pull’ with content trust #342. Retrieved from
https://github.com/docker/notary/issues/342.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic
cash system. URL: http://www.bitcoin.org/bitcoin.pdf.

Pilkington, M. (2016). Blockchain technology: princi-
ples and applications. Research Handbook on Digital
Transformations.

Samuel, J., Mathewson, N., Cappos, J., and Dingledine, R.
(2010). Survivable key compromise in software up-
date systems. In Proceedings of the 17th ACM confe-
rence on Computer and communications security, pa-
ges 61–72.

TUF-spec (2017). The update frame-
work specification. Retrieved from
https://raw.githubusercontent.com/theupdateframework-
/tuf/develop/docs/tuf-spec.txt.

Xu, Q., Aung, K. M. M., Zhu, Y., and Yong, K. L.
(2016). Building a large-scale object-based active
storage platform for data analytics in the internet of
things. The Journal of Supercomputing, 72(7):2796–
2814.

IoTBDS 2017 - 2nd International Conference on Internet of Things, Big Data and Security

436

Xu, Q., Aung, K. M. M., Zhu, Y., and Yong, K. L. (2017). A
Blockchain-based Storage System for Data Analytics
in the Internet of Things. To appear in “New Advances
in the Internet of Things”.

Xu, Q., Shen, H. T., Cui, B., Hou, X., and Dai, Y. (2009). A
novel content distribution mechanism in dht networks.
In International Conference on Research in Networ-
king, pages 742–755. Springer Berlin Heidelberg.

Decentralized Content Trust for Docker Images

437

