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Abstract: Scientific applications are typically data-intensive, which feature complex DAG-structured workflows 
comprised of tasks with intricate inter-task dependencies. Mobile cloud computing (MCC) provides 
significant opportunities in enhancing computation capability and saving energy of smart mobile devices 
(SMDs) by offloading computation-intensive and data-intensive tasks from resource limited SMDs onto the 
resource-rich cloud. However, finding a proper way to assist SMDs in executing such applications remains a 
crucial concern. In this paper, we offer three entry points for the problem solving: first, a cost model based on 
the pay-as-you-go manner of IaaS Cloud is proposed; then, we investigate the problem of mapping strategy 
of scientific workflows to minimize the monetary cost and energy consumption of SMDs simultaneously 
under deadline constraints; furthermore, we consider dataset placement issue during the offloading and 
mapping process of the workflows. A genetic algorithm (GA) based offloading method is proposed by 
carefully modifying parts of GA to suit the needs for the stated problem. Numerical results corroborate that 
the proposed algorithm can achieve near-optimal energy and monetary cost reduction with the application 
completion time and dataset placement constraint satisfied. 

1 INTRODUCTION 

Nowadays, smart mobile devices (SMD), e.g., 
smartphones and tablet-PCs, have been widely 
employed as a major computing platform due to their 
portability and compactness. As might be expected, 
SMDs are gaining enormous popularity for 
supporting computation intensive applications, such 
as interactive gaming, image/video processing, e-
commerce, and online social network services 
(Cohen, 2008), (Soyata, 2012). Those kinds of mobile 
applications are typically resource-hungry, while the 
computing capacity on mobile devices is often 
limited. Thus, the gap between the gravimetric energy 
density of rechargeable batteries and the power 
demand of mobile devices for executing complex 
tasks will continue to widen (Kumar, 2013), (Liu, 
2013).  

The elastic resource provisioning of cloud 
computing promises to close the gap between the 
limited resources of mobile devices and the growing 
resource demands of mobile services through 
offloading resource-intensive tasks. In mobile cloud 
environments, cloud-based resource provisioning 
extends beyond the public cloud. Thus, a valid 

approach is to offload computation intensive parts of 
applications to the cloud for execution. The basis of 
this method is that a mobile application in MCC needs 
to be decoupled into a series of tasks which can be 
executed on the mobile device or on the cloud.  

Although offloading such tasks can augment the 
computing capability of mobile devices, it does not 
always guarantee performance enhancement. On the 
one hand, computation-intensive and data-intensive 
applications may entail large data transfer between 
the cloud and the mobile device as well as among 
different VM nodes in cloud, which counteracts the 
potential computing performance benefits and incurs 
higher latency. On the other hand, when a mobile 
device’s battery is either full or not a concern, 
offloading mobile applications to the cloud will boost 
unnecessary spending. Furthermore, in extreme 
cases, the mobile device may be unable to afford the 
energy required for heavy data transfers. Therefore, 
to achieve better support for complex mobile 
applications, a trade-off between local execution and 
cloud execution for each task must be judiciously 
made. 

Another challenge is that obtaining offloading 
solutions in mobile cloud environment is the NP-
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complete problem, and hence it takes a long time to 
derive optimal solution for large-scale applications. 

This work goes deep into the infrastructure level 
of public cloud, takes the pay-as-you-go basis and 
concrete cost model of cloud platform into 
considerations, and further investigate the problem of 
mapping strategy of scientific workflows to minimize 
the monetary cost and energy consumption of SMDs 
under deadline and data placement constraints in 
MCC. 

The main results and contributions of this paper 
are as follows: 
 workflow mapping among virtual machine nodes 

and SMDs. The workflow mapping details on 
infrastructure level of public Cloud are considered 
when building models for MCC environment, 
which include the number of VM nodes leased, 
the differ bandwidths, different cost per use and 
different amount of available resources for each 
VM type. In addition, a combined scheme of task 
offloading between SMDs and Cloud as well as 
task mapping among VMs in the cloud is 
proposed to achieve better performance. 

 Concrete cost model. This approach further 
considers the monetary cost of leasing virtual 
machine nodes, which includes factors such as the 
number of VM nodes leased, different cost per use 
and different amount of available resources for 
each VM type. With specific designing method, 
the time cost model can be represented as a 
weighted linear combination of a set of non-linear 
functions of variables indicating the time units 
paid. Sound decisions are made on the number 
and types of required VMs. 

 Fix data placement constraint. It is unexpected to 
migrate some datasets involving user privacy to 
the public cloud. We address this issue during task 
offloading and mapping process by forcing such 
dataset-related tasks (fixed tasks) to be executed 
locally on the mobile device. 

 GA-based workflow mapping algorithm. By 
designing the encoding policy and genetic 
operators adaptively based on the MCC 
environment, we could simultaneously reduce the 
search space, accelerate the search speed, and 
enhance the search capacity.  

2 RELATED WORK 

Workflow scheduling for performance improvement 
of scientific applications running in cloud 
environment has been addressed in several research 
studies (Calheiros, 2014), (Liu, 2016), (Xu, 2016), 

(Wu, 2015). Zhu et al. (Zhu, 2016) propose FASTER 
algorithm for real time workflow scheduling in the 
virtualized cloud. Sahni et al. (Sahni, 2016) design 
WPA task clustering technique to achieve maximum 
possible parallelism among the tasks of a workflow 
while minimizing overheads and resource wastage of 
the system. Li et al. (Li, 2016) further consider 
security and cost aware problem for heterogeneous 
tasks of scientific workflow in clouds.  

However, those workflow scheduling 
methodologies cannot be directly applied to mobile 
cloud environment. Considering the needs of mobile 
cloud environment, there have been various studies 
investigating task offloading problem from mobile 
devices to the Cloud. Liang et al. (Liang, 2016) point 
out that the high price of data transmission between 
mobile devices and the remote cloud through cellular 
networks is the major challenge in MCC. Guo et al. 
(Guo, 2016) demonstrate that the maximum 
completion time of its immediate predecessors, the 
clock frequency and transmission power of the 
mobile device can also be crucial factors in making 
computation offloading selection. They then propose 
a dynamic offloading and resource scheduling policy 
to reduce energy consumption and shorten 
application completion time. However, this 
scheduling policy cannot guarantee an optimal result. 
Elgazzar et al. (Elgazzar, 2014) develop a cloud-
assisted mobile service provisioning framework in 
delivering reliable service. their framework performs 
well in maximizing the performance gain and the 
energy consumption on mobile system. Deng et al. 
(Deng, 2015) propose a fault-tolerance mechanism 
and use a modified GA algorithm to obtain a near-
optimal offloading strategy.  

The task offloading algorithms mentioned above 
focus on offloading computation-intensive tasks 
which considers the frequent interactions between 
users and devices. In such applications, data is mainly 
from the control information sent by users and the fed 
back information provided by the system, which are 
different from data-intensive scientific workflow 
applications. 

The field of data placement had been deeply 
studied. Yuan et al. (Yuan, 2010) use BEA algorithm 
(McCormick, 1972) to distribute the data 
dependencies into several data centres, where the 
partitions with fixed location datasets are placed in 
the proper data centres. Zhao et al. (Zhao, 2012) 
propose a GA based data placement strategy to reduce 
data movements between storage nodes and 
computing nodes to overcome the limitations of 
bandwidths between data centres. Deng et al. (Deng, 
2011) utilize data placement strategy to place datasets 
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and tasks onto appropriate places to minimize the 
total amount of data transfer between datacentres.  

The methods mentioned above try to find a proper 
data placement strategy in multi- data centres 
environment to either support the efficient execution 
of scientific workflows or improve the performance 
of data centres. Furthermore, the idea of data 
placement is also applicable for mobile cloud 
environment. In this work, the problem of fixed 
location data is solved by forcing such dataset-related 
tasks to be executed locally on the mobile device 
whilst considering the performance of mobile 
applications. 

In general, processing time, energy consumption, 
data placement and monetary cost are four typical 
concerns for workflow execution in mobile cloud 
environment. Given this motivation, we focus on 
developing an energy-aware and cost-aware scientific 
workflow task offloading strategy under deadline and 
data placement constraints in Mobile Cloud 
environments. 

3 MOBILE CLOUD COMPUTING 
MODEL 

3.1 Workflow 

This paper focuses on the general workflow 
representation which includes parallel and sequence 
control flow structure. Thus, a workflow application 
W ൌ ሺܶ, |ܶ| ሻ, whereܧ ൌ ݊ and |ܧ| ൌ ݁ is modelled as 
a Direct Acyclic Graph (DAG). ܶ ൌ ሼ ଵܶ, ଶܶ, ⋯ , ܶሽ is 
the set of tasks and ܧ ൌ ൛൫ ܶ, ܶ൯ห ܶ , ܶ ∈ ܶ	⋀	 ܶ ് ܶൟ is 
the set of data and control dependencies.  An edge ݁ 
of the form ൫ ܶ, ܶ൯ exists if there is a data or control 
dependency between ܶ   and ܶ , case in which ܶ  is 
said to be the predecessor of ܶ and ܶ is said to be the 
successor of ܶ . This relation indicates that the 
execution of task ܶ  can only start after the 
completion of task ܶ . The set of predecessors and 
successors of a task ܶ is represented by ݀݁ݎሺ ܶሻ and 
ሺܿܿݑݏ ܶሻ, respectively. 

Thus, ݀݁ݎሺ ܶሻ  and ܿܿݑݏሺ ܶሻ  are respectively 
formulated as  

ሺ݀݁ݎ        ܶሻ ൌ ൛ ܶห ܶ ∈ ܶ ∖ ሼ ܶሽ	⋀ 	൫ ܶ, ܶ൯ ∈         (1)		ൟܧ

ሺܿܿݑݏ        ܶሻ ൌ ൛ ܶห ܶ ∈ ܶ ∖ ሼ ܶሽ		⋀		ሺ ܶ , ܶሻ ∈  ൟ         (2)ܧ

For a given ܹ , ܶ௧௬  denotes an entry task 
satisfying 

൫݀݁ݎ                                 ܶ௧௬൯ ൌ ∅	                          (3) 

and ܶ௫௧ denotes an exit task satisfying 

ሺܿܿݑݏ                                   ܶ௫௧ሻ ൌ ∅                            (4) 

The weights assigned to the tasks represent their 
workload, and the weights attached to the edges 
represent the size of the data transferred between 
tasks. The workload of ܶ  is ݈݀ܽ݇ݎݓሺ ܶሻ  and the 
data transfer size from ܶ  to ܶ  is denoted as 
൫ܽݐܽ݀ ܶ, ܶ൯ . Furthermore, each workflow has a 
݈݀݁ܽ݀݅݊݁ and an execution ݉ܽ݇݁݊ܽݏ associated to it. 
A ݈݀݁ܽ݀݅݊݁ is defined as a time limit for the execution 
of a workflow. In other word, ݉ܽ݇݁݊ܽݏ  ݈݀݁ܽ݀݅݊݁ 
must be satisfied. 

Let ܵܶሺ ܶሻ and ܶܨሺ ܶሻ be start time and finish time 
of task ܶ , respectively. Thus, it can be obtained that 
ܵܶ൫ ܶ௧௬൯ ൌ 0 and ܶܨሺ ܶ௫௧ሻ ൌ  .݊ܽݏ݁݇ܽ݉

What’s more, an application with multiple entry 
or exit tasks can be converted to this model by adding 
a pseudo ܶ௧௬  and/or a pseudo ܶ௫௧  and their 
associated edge with zero weight to the DAG. 

3.2 IaaS Cloud Model 

The Cloud model consists of an IaaS service provider, 
which provides high-performance computational 
resources via virtual machines (VMs) over the 
Internet to execute large scale scientific workflows. 
Usually, IaaS platform provides a broad range of 
instance types comprising varying configurations of 
CPU, memory size and network bandwidth. Each 
configuration is associated with corresponding cost of 
per time interval. 

We thus define an IaaS Cloud service ܮܥ ൌ
ሺܫ, ܻሻ , where the infinite set ܫ ൌ ሼܫଵ, ⋯,ଶܫ ሽ 
describes all available VM instances in an IaaS 
platform. Each VM instance has a VM type ܻ 
associated to it. The set ܻ ൌ ሼ ଵܻ, ଶܻ, … , ܻሽ describes 
all the instance type where ݇ is the number of instance 
type in IaaS platform. Each VM type ܻ is defined by 
൫ܿሺ ܻሻ, ሺݓܾ ܻሻ, ܿሺ ܻሻ൯ , where ܿሺ ܻሻ  denotes the 
capabilities (number of cores) of VM type ܻ , cሺ ܻሻ 
represents the cost per time unit of VM type ܻ, and 
ሺݓܾ ܻሻ is the bandwidth of instance type ܻ. Different 
types of VM instances differ from each other in 
bandwidths, CPU capabilities and cost per use. 
Intuitively, bandwidths and CPU capabilities are 
proportional to the cost per use. 

3.3 Mobile Communication System 

To unify the representations in workflow mapping 
problem, we use ܶܯ ൌ ሺܫ, ܻ, ሻܵܤ  to represent the 
mobile communication system, where ܫ is the SMD 
instance, ܻ refers to the type of SMD, ܵܤ is a base 
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station. This work is based on the scenario that one 
SMD interacts with IaaS platform through a base 
station.  

A SMD is modelled as a 4-tuple ܻ ൌ
ሺܿሺ ܻሻ, ሺݓ ܻሻ, ,ݏݓ ሻݎݓ  where ܿሺ ܻሻ  is the CPU 
processing capability (in cores number) of a mobile 
device, ݓሺ ܲሻ is the power consumption of a mobile 
device when running tasks locally, / ݏݓ	ݎݓ is the 
power consumption of a SMD when transmits/ 
receives data.      

A base station is a radio receiver/transmitter that 
serves as the attachment point of the local wireless 
network; it is represented as a tuple ܾݏ ൌ ሺݎݎ，ݏݎሻ 
where rs / rr is its transmission rate (in Kbps) for data 
being uploaded/ downloaded to/from IaaS platform.  

Please note that the SMD cannot execute the task 
and send/ receive data at the same time, and pre-
emption is not allowed. 

3.4 MCC Task Offloading 

3.4.1 Local Execution 

Before a task ܶ  is run locally, all its immediate 
predecessors must have already been executed. The 
start time of task ܶ, denoted as ܵܶሺ ܶሻ is calculated as 

ܵܶሺ ܶሻ ൌ ݔܽ݉ ൜݈ܽ݅ܽݒ൫ܫሺ ܻሻ൯, max
்ೕ∈ௗሺ்ሻ

൫݁݉݅ݐ ܶ, ܶ൯ൠ.   (5) 

ሺܫ൫݈݅ܽݒܽ ܻሻ൯  is the available time of the SMD, 
which changes dynamically during workflow 
execution. ݁݉݅ݐ൫ ܶ, ܶ൯  is the finish time of data 
transmission between ܶ  and ܶ . Because we don’t 
consider the parallels between data transmission and 
task execution, after ܶ is decided to be executed on 
SMD, ݈ܽ݅ܽݒ൫ܫሺ ܻሻ൯  will be updated with the finish 
time of output data transmission of ܶ. To determine 
the value of ݁݉݅ݐ൫ ܶ, ܶ൯, The following two cases for 

ܶ’s immediate predecessor task ܶ (i.e. ܶ ∈ ሺ݀݁ݎ ܶሻ ) 
are considered: 
 If task ܶ has been executed locally,  

൫݁݉݅ݐ                              ܶ, ܶ൯ ൌ ൫ܶܨ ܶ൯.                         (6) 

other words, the transmission time between two 
consistent tasks in SMD is zero. This is because 
the data transfer time between tasks sequentially 
executed on the same machine is negligible 
compared with the data transfer time between 
tasks allocated on different machines.  

 If task ܶ has been offloaded onto the Cloud, 

൫݁݉݅ݐ        ܶ, ܶ൯ ൌ ൫ܶܨ ܶ൯  ܶ݅݉݁ௗ௪൫ ܶ, ܶ൯,         (7) 

where 

                   	ܶ݅݉݁ௗ௪൫ ܶ, ܶ൯ ൌ
ௗ௧൫்,்ೕ൯


.                (8) 

ܶ݅݉݁ௗ௪൫ ܶ, ܶ൯ is the time spent receiving output 
data of ܶ  from Cloud to the SMD. Usually, the 
bandwidths of VM instances is wider than 
wireless receiving channel. So, in this case, we 
use the data receiving rate of the wireless 
receiving channel ݎݎ  to compute data 
transmission time. 
The execution time of a workflow task depends on 

its workload and the CPU capability of SMD. Here 
we compute execution time for locally executed tasks 
as follow: 

              			ܶ݅݉݁
ሺ ܶሻ ൌ

௪ௗሺ்ሻ

ሺబሻ
，                  (9) 

where ݈݀ܽ݇ݎݓሺ ܶሻ  is the workload for the non-
offloaded task ܶ to be locally executed at a mobile 
device and ܿሺ ܲሻ  is the CPU capacity (cores) for 
SMD. If ܶ  is not executed locally, then 
ܶ݅݉݁

ሺ ܶሻ ൌ 0.  
Thus, the finish execution time of local task can 

be calculated as 

ሺܶܨ                   ܶሻ ൌ ܵܶሺ ܶሻ  ܶ݅݉݁
ሺ ܶሻ.          (10) 

The task execution on the SMD can bring about 
certain amount of energy consumption, which is 
proportional to the local execution time. Intuitively, 
given the power consumption ݓሺ ܻሻ  of mobile 
terminal, energy consumption of locally executed 
task ܶ is given by 

ሺݕ݃ݎ݁݊ܧ        ܶሻ ൌ ܶ݅݉݁
ሺ ܶሻ ൈ ሺݓ ܻሻ.    (11) 

3.4.2 Cloud Execution 

Suppose that task ܶ is to be offloaded onto the cloud. 
The start execution time of task ܶ, denoted by ܵܶሺ ܶሻ, 
is calculated as:	

	ܵܶሺ ܶሻ ൌ 

ݔܽ݉ ൜݈ܽ݅ܽݒ൫ݏ݊ܫሺ ܶሻ൯, max
்ೕ∈ௗሺ்ሻ

൫݁݉݅ݐ ܶ, ܶ൯ൠ.         (12) 

 , whichܫ ሻ is the available time of instanceܫሺ݈݅ܽݒܽ
is dynamically changed during workflow execution. 
Likewise, after ܶ is decided to run on the instance ܫ, 
ሻܫሺ݈݅ܽݒܽ  will be updated with the finish time of 
output data transmission of ܶ. Consider the several 
cases for ܶ’s immediate predecessor task ܶ (i.e. ܶ ∈
ሺ݀݁ݎ ܶሻ ): 
 If ܶ has been mapped to the same instance as ܶ, 

then 

൫݁݉݅ݐ                          ܶ, ܶ൯ ൌ ൫ܶܨ ܶ൯,                     (13) 
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which means the transmission time can be 
neglected. 

 If ܶ has been executed locally, then  

൫݁݉݅ݐ             ܶ, ܶ൯ ൌ ൫ܶܨ ܶ൯  ܶ݅݉݁௨൫ ܶ, ܶ൯,      (14) 

where 

            ܶ݅݉݁௨൫ ܶ, ܶ൯ ൌ
ௗ௧൫்,்ೕ൯

௦
.                   (15) 

 denotes the data sending rate of the wireless ݎݏ
sending channel. 

 If ܶ  has been mapped to another instance in 
Cloud, then 

൫݁݉݅ݐ          ܶ, ܶ൯ ൌ ൫ܶܨ ܶ൯  ܶ݅݉݁൫ ܶ, ܶ൯,     (16) 

where  

    ܶ݅݉݁൫ ܶ, ܶ൯ ൌ ቐ
ௗ௧൫்,்ೕ൯

୫୧୬൛௪൫൯,௪൫൯ൟ
			, ് ݍ

																				,0 ൌ ݍ
.  (17) 

 ܲ  and ܲ  are types of the instances to which ܶ 
and ܶ  are mapped, respectively. The 
communication bandwidths are usually differed 
for different VM instance types, and the fact that 
types with higher ܿ have higher bandwidths is 
intuitive. The bandwidths used in actual data 
transmission is limited by smaller one.  
In this work, all the tasks are assumed to be 

parallelizable so that the multi-core CPU can be well 
utilized. Therefore, the actual running time of ܶ 
offloaded to the cloud depends on its workloads 
ሺ݈݀ܽ݇ݎݓ ܶሻ and the CPU capabilities ܿ൫ ܻ൯ of VM 
instance ܻ. Thus, we have 

                    ܶ݅݉ ݁
ሺ ܶሻ ൌ

௪ௗሺ்ሻ

൫ೕ൯
.                (18) 

The finish execution time of this offloaded task 
can be calculated as 

ሺܶܨ                ܶሻ ൌ ܵܶሺ ܶሻ  ܶ݅݉ ݁
ሺ ܶሻ.             (19) 

For all the existing IaaS platforms, the basic 
pricing rule is the same—charging per-instance 
usage. VMs are charged per integer amount of time 
units, and partial utilization of a period incurs charge 
for the whole period. A typical example is Amazon 
EC2, customers need to pay for full instance-used 
hour even for few minutes’ lease. The initial start-up 
time for VMs is ignored in this work.  

It is assumed that the cost for executing a 
workflow is linearly correlated to the total of CPU 
cycles consumed. The time unit ߬  of VM in which the 
pay-per-use model based is a fix-size interval 
specified by the provider. Thus, the total spending of 
a workflow is the sum of costs of all the leased VMs. 

Based on the above analysis, we use c൫ ܻ൯ to represent 
the cost per time unit of VM type ܻ. The monetary 
cost of instance ܫ is given by:  

ሻܫሺݐݏܥ                      ൌ ቒ
௧௧்

ఛ
ቓ ൈ 	c൫ ܻ൯,             (20) 

where 

ሻܫሺ݈݁݉݅ܶܽݐݐ ൌ

							∑ ݔܽ݉
்∈ௗሺ்ሻ

ቀݎ݂݁ݏ݊ܽݎݐሺ ܶሻ ்∈்∧ூሺ்ሻୀூ∧ሺூሻୀೕ

ܶ݅݉ ݁
ሺ ܶሻቁ     

(21)

and 

ሺݎ݂݁ݏ݊ܽݎݐ							 ܶሻ ൌ

						ቐ
ܶ݅݉݁ሺ ܶ, ܶሻ,			ܫሺ ܶሻ ് ሺܫ⋀ܫ ܶሻ ് ܫ

ܶ݅݉݁௨ሺ ܶ, ܶሻ,			ܫሺ ܶሻ ൌ ܫ
ሺܫ			,0 ܶሻ ൌ ܫ

.      (22) 

A VM needs to stay in motion when receiving the 
input data of running tasks. Thus, the service time of 
a running task includes two parts: the actual execution 
time and the input data receipt time. When calculating 
input data receiving time, as is shown in Eq. (21), we 
should consider the instances where the predecessor 
tasks allocated to and derive their data transmission 
time accordingly. 

4 ALGORITHM DESIGN  

In this section, we illustrate the genetic algorithm 
based task offloading algorithm for scientific 
workflow applications in MCC environment. This 
algorithm runs on SMDs to achieve intelligence 
interactions between SMDs and Cloud. GA is proved 
to be an effective approach widely applied in 
optimizing problems. Due to the special nature of 
Mobile Cloud Computing, GA’s existing generic 
operators cannot be directly applied to the mobile 
cloud workflow mapping problem. From this base, a 
modified set of GA operators, including encoding 
strategy, initialization of population, mutation, and 
crossover, is presented.  

4.1 Task Offloading Problem 

A workflow ܹ ൌ ሺܶ, ሻܧ  models a scientific mobile 
application. Given a mobile communication system 
ܶܯ ൌ ሺܫ, ܻ, ܮܥ ሻ and an IaaS platformܵܤ ൌ ሺܫ, ܻሻ, a 
workflow mapping problem is to develop a solution 
ܵ ൌ ሺݏ݊ܫ,  are relationships ݁ݕܶ and ݏ݊ܫ ሻ where݁ݕܶ
which have tasks map to instances and instances map 
to instance types, as 
ܶ	:ݏ݊ܫ                         → ,ܫ ሺݏ݊ܫ ܶሻ ൌ  ,                     (23)ܫ
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ܫ	:݁ݕܶ                     → ܻ, ௦ሻܫሺ݁ݕܶ ൌ ௧ܻ,                  (24) 

where ܫ ൌ ܫ ∪ ሼܫሽ, ܻ ൌ ܻ ∪ ሼ ܻሽ. It is intuitively 
that ܶ݁ݕሺܫሻ ൌ ܻ. 
 

0											1											2										3										4										5												6												7

0 	1												2											3										4										5												6												7

0 1 2 3 4

Tasks:

Instances:

Types:

 
Figure 1: a valid mapping scheme for the DAG example. 

In this paper, we consider the problem that some 
tasks of an application can only be executed locally. 
For such task ܶ, its mapping relation is pre-defined 
from task to instance: 

ሺݏ݊ܫ                                  ܶሻ ൌ  .                                (25)ܫ

The set of such task can be denoted as 

݈݈ܽܿܶ                      ൌ ሼ ܶ|ݏ݊ܫሺ ܶሻ ൌ  ሽ.                    (26)ܫ

݈݈ܽܿܶ  should be determined before task 
offloading.  

We mainly focus on optimal mapping strategies to 
concurrently optimize the monetary cost and energy 
consumption for running mobile applications 
(workflows). To this end, the mapping strategy 
objective function is defined as a weighted sum of 
running application’s billing in IaaS cloud plus 
energy consumption of mobile device; The goals of 
the offloading problem ሺܹ, ܵሻ  for mobile 
communication system ܶܯ and IaaS Cloud platform 
 :are formulated as follows ܮܥ
ሺ݀ሻܨ		݁ݖ݅݉݅݊݅݉ ൌ ߱ௗ ൈ ݕ݃ݎ݁݊݁  ሺ1 െ ߱ௗሻ ൈ  ,ݐݏܿ

݊ܽݏ݁݇ܽ݉                           ݈݀݁ܽ݀݅݊݁,                     (27) 

where 

∗ܫ                   ൌ ሼܫ|∃ ܶ ∈ ܶ: ሺݏ݊ܫ ܶሻ ൌ  ሽ.                (28)ܫ

 denotes the set of VMs that needs to be leased ∗ܫ
during workflow execution. The weight coefficient 
߱ௗ , the range of which is from 0 to 1, is set based on 
the battery status of SMD and budgets of the user; 
e.g., when a mobile device’s battery is either full or 
not really matters, higher values of ߱ௗ will be afforded; 
lower values must be set when its energy drops below 
a threshold. This weight can however be adjusted 
based on specific users’ requirements if desired.  

 

4.2 Encoding 

As discussed in Section 4.1, a solution is a two-tuple 
containing two maps ݏ݊ܫ and ܶ݁ݕ. A chromosome is 
splatted into two strings to represent them 
respectively.  

The string ݏ2݅݊݇ݏܽݐ is a vector representation for 
the map ݏ݊ܫ, in which an index represents a task and 
its value represents the instance where this task will 
be executed. For example, ݏ2݅݊݇ݏܽݐሾ݅ሿ ൌ ݆  makes ܶ 
be assigned to the instance with index ݆ (represented 
as ܫ ). The string ݅݊݁ݕݐ2ݏ  is a map from instance 
indexes to their types, representing the mapping type. 
For example, ݅݊݁ݕݐ2ݏሾ݆ሿ ൌ ݈ indicates that the type 
of instance ܫ is ݈. 

Supposed that |ܫ∗| ൌ ݉  where ݉  is a positive 
integer. Because a task can only run on one instance 
in IaaS platform or on SMD however one VM 
instance can run multiple tasks sequentially, we have 
݉ ൏ ݊ . A heterogeneous environment can be 
constructed by ݉ ൈ ݇ instances in Cloud, where ݇ is 
the number of instance types. Therefore, for each task 
in the workflow, there is ݉ ൈ ݇ location choices for 
task execution. 

However, in the proposed algorithm, those tasks 
forced be executed locally on the SMD should be 
excluded before encoding, otherwise it will 
negatively affect the performance of genetic 
algorithm. 
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Figure 2: encoding strategy of chromosomes. 

Supposed that the number of tasks belonging to 
0) ݎ is ݈݈ܽܿܶ  ݎ  ݊), the number of tasks encoded 
should be ݊ െ  string, it ݁ݕݐ2ݏ݊݅ What’s more, for .ݎ
is pre-defined that ݅݊݁ݕݐ2ݏሾ0ሿ ൌ 0, so ݅݊݁ݕݐ2ݏሾ0ሿ is 
excluded from string ݅݊݁ݕݐ2ݏ (Fig. 2). As the fix-
length decimal encoding scheme is adopted, the 
length of strings ݏ2݅݊݇ݏܽݐ and ݅݊݁ݕݐ2ݏ is set to be 
݊ െ ݎ െ 1  and ݉	 respectively. In this way, it is 
possible to index all instances using integers from 0 
to ݊ െ ݎ െ 1 and all instance types using integers from 
0 to ݉ െ 1.  

4.3 Fitness Function 

A fitness function is used to evaluate a possible 
individual in finding the optimal solution. We use the 
objective function in Eq. (27) to calculate the fitness 
value of each chromosome. This objective function 
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consists of two parts: the total monetary cost and the 
total energy consumption for executing the whole 
mobile scientific workflow. Both parts are combined 
into one parameter with a user defined weighting 
factor. The user requirements for each workflow can 
be controlled through weights of the monetary cost 
and the energy consumption. 

However, it is necessary to consider the constraint 
݊ܽݏ݁݇ܽ݉  ݈݀݁ܽ݀݅݊݁ . For each iteration, GA 
generates new mapping schemes, and calculate the 
corresponding ܨሺ݀ሻ and application completion time 
 .݊ܽݏ݁݇ܽ݉

Taken together, the fitness value for individual ݅ 
in a population is given by 

ݏݏ݁݊ݐ݂݅ ൌ ߱ௗ ൈ ݕ݃ݎ݁݊݁  ሺ1 െ ߱ௗሻ ൈ
ݐݏܿ  ߤ ൈ													 ሺ݉ܽ݇݁݊ܽݏ െ ݈݀݁ܽ݀݅݊݁ሻ, (29)

where ߤ is a penalty factor taking an appropriate 
value to punish individuals who violate the deadline 
constraint. To further guarantee the advantage of 
valid individuals, we have ߤ ൌ 0 when ݉ܽ݇݁݊ܽݏ 
݈݀݁ܽ݀݅݊݁.   

Given a fitness function, GA would iteratively 
find a near optimal solution as follows. First, a set of 
population is initialized. Then, for each iteration, 
chromosomes are selected, recombined by mutation 
and crossover operations, then copied to the new 
population for the next iteration. This procedure is 
repeated until one of the following two terminating 
conditions is satisfied: i) the maximum number of 
iterations is reached, and ii) fitness value of the best 
chromosome in consecutive populations does not 
improve anymore. 

4.4 Genetic Operators 

4.4.1 Crossover 

In the crossover phase, Chromosomes are recombined 
for generating the next population. The selection is 
based on a roulette-wheel method. The probability of 
selecting a chromosome for recombination is related 
to its fitness value ݂݅ݏݏ݁݊ݐ  and is calculated as 
follows: 

ݐ݈ܿ݁݁ݏ                      ൌ
௧௦௦

ᇲ

∑ ௧௦௦ೕ
ᇲಿ

ೕసభ
,                             (30) 

where 

ݏݏ݁݊ݐ݂݅              
ᇱ ൌ ௫ݏݏ݁݊ݐ݂݅ െ                (31)ݏݏ݁݊ݐ݂݅

and ܰ is the size of current population. 

Parent	1:
Task2ins:	ሾ2,	5,	0,	1,	2,	6,	4ሿ
Ins2type:	ሾ2,	1,	1,	3,	2,	4ሿ

Parent	2:
Task2ins:	ሾ1,	6,	2,	0,	4,	3,	0ሿ
Ins2type:	ሾ3,	1,	4,	3,	4,	2ሿ
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Ins2type:	ሾ3,	1,	4,	3,	2,	2ሿ

Child	2:
Task2ins:	ሾ1,	6,	0,	1,	4,	6,	0ሿ
Ins2type:	ሾ2,	1,	1,	3,	4,	4ሿ

 

Figure 3: mask-based crossover operation. 

As is shown in Fig. 3, the uniform crossover 
operation is done separately for string ݏ2݅݊݇ݏܽݐ and 
݁ݕݐ2ݏ݊݅ . In this way the contradictions between 
mapping ܶ → ܫ and mapping ܫ → ܻ can be eliminated. 

Take the crossover operator for the ݏ2݅݊݇ݏܽݐ 
strings as an example. First, the operator randomly 
generates a bit string of 0’s and 1’s of chromosome 
length ݊ െ ݎ  as a mask vector, which decides the 
corresponding locus on parent chromosomes to 
overlap or not. Then, each parent order string is 
scanned from the beginning. For each position ݏ, if 
ሿݏሾ݇ݏܽ݉ ൌ 1, two parent chromosomes will swap 
genes in position ݏ; otherwise, no swap. 

The strings ݅݊݁ݕݐ2ݏ  are operated in an 
analogously way as string ݏ2݅݊݇ݏܽݐ, except that the 
length of mask vector should be ݉. 

4.4.2 Mutation 

The mutation operator is to slightly modify 
chromosomes in the population to enlarge the search 
fields of GA. In this step, some genes on 
chromosomes are chosen to mutate based on a 
probability calculated with the consideration of the 
energy consumption, monetary cost and ݉ܽ݇݁݊ܽݏ. 
The probability of mutating chromosome ݅  is 
calculated as: 

݁ݐܽݐݑ݉                   ൌ
௧௦௦

ᇲ

∑ ௧௦௦ೕ
ᇲ

ೕసభ
,                              (32) 

where ݂݅ݏݏ݁݊ݐ
ᇱ is calculated according to Eq. (31). 

Thus, mutation rate for task offloading schemes 
with more monetary cost and energy consumption are 
higher than the others. 

For the chromosomes to be mutated, polygenic 
mutation strategy is adopted. The number of genes to 
be mutated in a chromosome depends on its fitness 
value. The smaller the fitness value is (which means 
the quality of solution is better), the less the genetic 
mutations in a chromosome. The reason behind is that 
although traditional way of mutation can lead to 
superior population diversity, it can also cause 
chaotic generation of offspring chromosomes which 
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do not inherit the benefit parts from their parents. 
Therefore, we modify the mutation operator to lead 
the population to evolve towards more benefits for 
fitness value minimization. The number of genetic 
mutations of a chromosome is computed as follows: 

ݐ݅݃݅݀              ൌ ቒ݉ݐ ൈ
௧௦௦ି௧௦௦

௧௦௦ೌೣି௧௦௦
ቓ ,           (33) 

where ݉ݐ  is a constant. In practice, we usually set 
	ݐ݉ in range ሾ1/4 ൈ ሺ݊ െ ,ሻݎ 1/3 ൈ ሺ݊ െ ሻሿݎ  for string 
and ሾ1/4 ݏ2݅݊݇ݏܽݐ ൈ ݉, 1/3 ൈ ݉ሿ for string ݅݊݁ݕݐ2ݏ. 

௫ݏݏ݁݊ݐ݂݅ െ ݏݏ݁݊ݐ݂݅  denotes the scope of 
current generation’s fitness value. ݂݅ݏݏ݁݊ݐ െ
ݏݏ݁݊ݐ݂݅  denotes the distance between the fitness 
value of individual ݅ and minimum fitness value in 
the current generation. ܨ ൌ

௧௦௦ି௧௦௦

௧௦௦ೌೣି௧௦௦
 

indicates the relative quality of individual ݅  in the 
current population. A higher value of ܨ  indicates a 
worse quality of individual ݅ ; otherwise, a better 
quality. Therefore, by Eq. (33), the mutation bit 
number can be adaptively determined: for good 
quality individual, the mutation bit number is small or 
even equal to 0; for bad quality individual, the 
mutation bit number is slightly larger. 
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Figure 4: Mutation Operator. 

For ݏ2݅݊݇ݏܽݐ  and ݅݊݁ݕݐ2ݏ  of individual ݅ , we 
randomly generate ܨ  integers in range ሾ0,… , ݊ െ  ሿݎ
and ሾ1, … ,݉ሿ  to decide the mutation positions, 
respectively. Strings are mutated by a random choice 
of two methods, with equal probability. The first 
method is called “internal mutation”, which is by 
swapping instance; the second one is “external 
mutation”, which introduces new genes from outside.  

4.4.3 Population Initialization 

To accelerate the converge speed of genetic algorithm 
as well as to ensure the constraints being satisfied, we 
use the following two method to generate initial 
population: 
 Heuristic-Based Method: In this method, we 

generate the minimal-delay workflow map 
without considering the energy consumption of 
the SMD and the monetary cost for renting VMs. 
We modify HEFT algorithm (Topcuoglu, 2002) to 
jointly schedule tasks on the SMD and each VM 

instance in cloud. For each task ܶ  in the 
workflow, please note that if task ܶ belongs to set 
 it should be assigned to the SMD for , ݈݈ܽܿܶ
execution.  

 Random Generated method: we generate random 
schedules for population initialization to increase 
the diversity of the population. That is, for each 
task in the workflow, randomly choose a machine 
for execution. In a similar way, we need to ensure 
that Eq. (26) is satisfied.  

5 COMPLEXITY ANALYSIS 

The computational complexity of the proposed 
algorithm is calculated based on its initialization, 
selection, crossover, mutation and fitness evaluation 
operators. It is supposed that the algorithm iterates for 
݃  generations with a population size  . i) The 
computation complexity of the fitness value 
calculation is ܱሺ݊ଶሻ . Because the fitness value 
calculation is done for each chromosome, the 
complexity of fitness evaluation is ܱሺ݊ଶሻ ൈ  ൎ
ܱሺ݊ଶሻ. ii) As the selection operator is based on a 
roulette wheel method, in the worst case, an ܱሺሻ 
scan is needed to do a simple query. iii) The time 
complexity of crossover and mutation operator is 
ܱሺ݊ െ ݎ ݉ሻ. iv) The complexity of the initialization 
operator is ܱሺ݇݊ଷሻ  ܱሺ݊ ݉ሻ ൎ ܱሺ݇݊ଷሻ. 

Thus, the overall complexity of the proposed 
algorithm is ܱሺ݃݊ଶ  ݇݊ଷሻ . In practice, ݇ ൈ ݊  is 
usually much less then ݃ ൈ  .Therefore, the most 
time-consuming parts would still be the evolution 
procedures, with the complexity of ܱሺ݃݊ଶሻ. 

6 PERFORMANCE EVALUATION 

6.1 Experiments Setup 

Several experiments are performed to investigate the 
properties of the proposed algorithm. Simulations are 
run on a machine with two Intel Core i7-6500U CPU 
with 2.5 GHz and 2.59 GHz respectively with 8 GB 
of RAM. All algorithms are implemented in Java 8. 
mobile scientific workflows with random 
computation tasks and structures are generated for 
simulations. For each computation task, the 
input/output data size and the workload are based on 
a uniform distribution. 

We use the parameters of IaaS platform in table 1 
which is also used by (Zhu, 2016). It is supposed that 
the CPU capability of mobile device is  2  (cores),  the 
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upload transmission rate is 4M/s, the power 
consumption of task execution on mobile device is 2, 
the power consumption of RF component when 
sending and receiving data is 0.5 and 0.15, 
respectively.  

Table 1: IaaS parameters used in experiments. 

Instance 
Type 

Number of 
cores 

Bandwidths 
(M/ s) 

Price  
($/ h) 

m1.small 1.7 37.5 0.06 
m1.medium 3.75 81.25 0.12 
m3.medium 3.75 81.25 0.113 

m1.large 7.5 81.25 0.24 
m3.large 7.5 81.25 0.225 
m1.xlarge 15 125 0.48 
m3.xlarge 15 125 0.45 

m3.2xlarge 30 125 0.9 

6.2 Compared Algorithms 

The effectiveness of the proposed algorithm is 
verified on a set of generated task graphs with 
different specifications. The proposed algorithm is 
referred to as GA in the following evaluations. We 
compare the mapping result of GA to six baseline 
algorithms.  
 Baseline 1 algorithm comprises of only the 

heuristic initialization step of GA, which is used 
to demonstrate the effectiveness of the modified 
genetic operations. 

 Baseline 2 algorithm is the random algorithm 
which randomly chooses machines for task 
executions. It serves as a reference in the deadline 
satisfaction rate evaluation. For each task in the 
task graph, if it belongs to ݈݈ܶܽܿ , then it is 
assigned to the SMD; else it is randomly assigned 
to any machine for execution. 

 Baseline 3 algorithm uses the same genetic 
operators as GA except adopting random 
algorithm to generate initial population and it is 
used to measure the performance of the modified 
population initialization method. 

 Baseline 4 algorithm is a basic genetic algorithm 
which uses uniform crossover and uniform 
mutation. 

 Baseline 5 algorithm gives an optimal solution 
(without deadline constraint) to estimate the upper 
bounds of energy and cost minimization. 

 Baseline 6 algorithm is a genetic algorithm which 
minimizes the ݉ܽ݇݁݊ܽݏ of workflow. 
In addition, the following setups are used: 
For GA, baseline 3, 4, 5 and 6 algorithms, the size 

of population is 50 and the maximum iteration 
number is 300, the crossover rate and mutation rate is 

0.3 and 0.2 respectively. In addition, during 
population initialization procedure, the populations 
generated by heuristic based method and random 
method are in a proportion of 1:1. 

For GA, baseline 3 and 4 algorithms, a penalty 
coefficient which can dynamically change per 
generation ݅ is introduced. It is defined as: 

ሺ݅ሻߤ                       ൌ ൜
0.05 ൈ ሺ݅ሻߤ			,݅ 	 8
݁ݏ݅ݓݎ݄݁ݐ			,4

.                (34) 

For baseline 6 algorithm, the workflow mapping 
is repeated for 100 times and the most optimal one 
(the ݉ܽ݇݁݊ܽݏ is minimized) is picked up.  

Furthermore, to remove disturbance, we use the 
same way to compute ݉ܽ݇݁݊ܽݏ and fitness value in 
all algorithms.  

6.3 Results and Discussions 

There are four variables can possibly affect the 
performance of workflow mapping algorithms: user 
defined deadline, ߱ௗ , size of ݈݈ܶܽܿ  set and the 
number of tasks included in workflow. One variable 
is tuned and the others are fixed in each evaluation. 

6.3.1 Deadline Constraint Evaluation 

A deadline is defined as a time limit for the execution 
of the workflow. To analyse the algorithms in terms 
of meeting user defined deadline, we plotted the 
percentage of deadlines met for each user-defined 
deadline value. The basic runtime is defined as the 
execution time obtained with an offloading policy 
that assigns each workflow task to the most powerful 
virtual machine, which is rather efficient, as only 
conditioned by data transfers. Therefore, the running 
time range of the random generated workflow for the 
simulation is within [65.8, 372.6] minutes. The 
smallest deadline value is then defined as about 10 
percent of the proportional base value for workflow 
runtime and with an increment of 10 in the evaluation. 
As a control, we set ߱ௗ ൌ 0.5 and 

|்|

|்|
ൌ 0.2. 

 
Figure 5: the deadline satisfaction rate versus deadline 
value. 
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The results are shown in Fig. 5. For baseline 2 
algorithm, as the deadline value increases, the 
deadline satisfaction rate increases. It can be inferred 
that baseline 2 algorithm reflects the ݉ܽ݇݁݊ܽݏ 
distribution of general workflow mapping schemes. 
The deadline satisfaction rate of GA is significantly 
higher than baseline 2 algorithm with the range from 
75% to 100% and mean value 94%. When deadline 
value is less than 145, the satisfaction rate of baseline 
3 algorithm is much lower than GA. However, it still 
outperforms baseline 2 algorithm by an average of 
22.7%. When deadline value is larger than 165, 
almost all the mapping solutions produced by 
baseline 3 algorithm satisfy the deadline constraint.  

 

 

Figure 6: the average fitness value versus deadline value. 

Fig. 6 reveals the average objective function value 
of each algorithm when deadline changes. The 
smaller the fitness function is, the better. Baseline 2 
algorithm performs remarkably worse than the other 
three algorithms. GA clearly outperform baseline 1 
and 3 algorithms. When deadline value is less than 
125, baseline 1 algorithm performs better than 
baseline 3 algorithm. However, baseline 3 can still 
defeat baseline 1 algorithm in most cases, although it 
is lost to GA. 

This simulation reveals that GA makes better 
trade-off between deadline constraint satisfaction rate 
and the optimization goals than other algorithms. 

 Value Evaluationࢊ࣓ 6.3.2

Based on Eq. (27), different values of ߱ௗ  is used to 
simulate different mobile device’s battery statuses 
and budget situations. Fig. 7(a) and Fig. 7(b) shows 
the effect that increased ߱ௗ value has on the energy 
consumption and monetary cost respectively. When 
߱ௗ  value increases, the energy consumption of GA 
decreases while monetary cost increases with ߱ௗ . 
This is because ߱ௗ can manage the weight of energy 
and cost, larger ߱ௗ  value means more focusing on 
energy minimization and properly allowing more 
monetary cost. 
 

 
(a)                                                 (b)  

Figure 7: the average energy consumption versus ߱ௗvalue 
(a) and the average monetary cost versus ߱ௗvalue (b). 

6.3.3 Fixed Tasks Evaluation 

Fig. 8 presents the effect that the increased size of 
fixed tasks set has on the workflow execution time. 
As expected, increased size of ݈݈ܶܽܿ tends to further 
adds to execution time. The results show that with the 
increase in size of ݈݈ܶܽܿ, the advantage of baseline 1 
algorithm in minimizing ݉ܽ݇݁݊ܽݏ  is diminishing. 
When the weight value is 0.6 and 0.8, GA can 
produce task offloading scheme whose ݉ܽ݇݁݊ܽݏ is 
even smaller. When all tasks in the task graph are 
executed locally, all the algorithms produce the same 
result. 

As is shown that baseline 1 algorithm is not robust 
to the fixed tasks set size. That is, when the ratio of 
fixed tasks grows, baseline 1 algorithm can no longer 
generate the mapping scheme whose ݉ܽ݇݁݊ܽݏ  is 
minimized. The reason for this underperformance is 
the recursion strategy of HEFT, which causes 
processor selection of each step to be independent. 
For example, if task ܶ  in task graph is assigned to 
VM instance ܫ  according to HEFT, however it 
belongs to ݈݈ܶܽܿ and should be executed locally on 
SMD. This deviation will certainly interference with 
the processor selection of its successor tasks.  

 

 

Figure 8: the average ݉ܽ݇݁݊ܽݏversus the proportion of 
fix tasks. 

It can be observed that the larger the weight of 
fixed tasks will cause poorer workflow execution 
performance. Furthermore, baseline 1 algorithm is 
used in GA to produce part of its initial population, so 
it may cause performance deterioration of GA when 
minimizing ݉ܽ݇݁݊ܽݏ . However, it is still able to 
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produce a small enough ݉ܽ݇݁݊ܽݏ  in a relatively 
short time for population initialization which is better 
than random initialize algorithm. 

 

 

Figure 9: the normalized average objective value versus the 
proportion of fix tasks. 

To compare objective values among different 
fixed tasks ratio conditions, we thus normalize the 
average fitness values. Fig. 9 shows the normalized 
average fitness value of GA, baseline 1, 3, 4 and 5 
algorithms. GA always generates solution which is 
the closest to the optimal one (baseline 5 algorithm) 
on average.  

6.3.4 Scalability Evaluation 

We demonstrate the effectiveness of the proposed 
algorithm on a set of generated task graphs with 
different specifications.  For load balancing concerns, 
we set the ratio of fixed tasks to be 0.1. Five task 
graphs with different task number for comparing GA 
with baseline algorithms are generated. The fitness 
value is plotted in Fig. 10 as a function of the number 
of tasks in the scientific workflow. It can be observed 
that the proposed algorithm always achieves the 
lowest fitness values compared with baseline 
algorithms. 
 

 

Figure 10: the average fitness value versus number of tasks. 

6.3.5 Running Time Analysis 

As is mentioned in section 4.3, there are two terminal 
conditions: i) the maximum number of iterations is 
reached, and ii) the fitness value is converged to some 
value. To objectively  describe  the  time  performance 

 

Figure 11: the average running time versus the task 
number. 

of GA, the relationship of running time and the task 
number of random workflow is presented in this 
section. 10 test cases of varying sizes are involved in 
the running time analysis. Over the ten separate runs 
for each test case, the average running time of GA is 
recorded. Fig.11 gives the experimental results. 

There’s a significant trend with increased running 
time going with larger task number, which matches 
the complexity analysis of GA. However, the running 
time could also be influenced by other parameters 
such as mutation rate, crossover rate and the ratio 
between the number of individuals generated by 
heuristic based method and random method, etc. So, 
the time performance can still be improved upon by 
carefully tuning those parameters. 

From all the above results, we conclude that the 
proposed algorithm obtains task offloading with 
significantly lower energy consumption and 
monetary cost, besides requiring relatively short 
execution time, making it a suitable candidate to 
manage scientific workflow execution in mobile 
cloud computing environment. 

7 CONCLUSION AND FUTURE 
WORK 

This paper targets the task offloading problem for 
mobile scientific workflows. Although there are 
many existing workflow scheduling algorithms for 
cloud computing environments, they have difficulties 
in being directly applied to the Mobile Cloud 
Computing. Therefore, we offer three entry points for 
the problem solving: first, a cost model based on the 
pay-as-you-go manner of IaaS Cloud is proposed; 
then, we investigate the problem of task offloading 
strategy of scientific workflows to minimize the 
monetary cost and energy consumption of SMDs 
under deadline constraints in MCC; furthermore, the 
dataset placement problem is addressed during the 
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offloading and mapping process of workflows. A 
genetic algorithm based task offloading method is 
proposed by carefully modifying parts of a generic 
GA to suit our needs for the stated problem. We test 
the proposed algorithm on several random generated 
workflows. Simulation results shows the proposed 
algorithm can achieve a near-optimal energy and cost 
minimization task offloading strategy with the 
workflow deadline and data placement constraints 
satisfied. 

Fog computing is a new computing paradigm 
which brings resource close to users to improve user 
experience (Bonomi, 2012). However, its distributed 
and heterogeneous nature can bring in uncertainty 
during workflow execution which will harm the 
reliability of scientific computation. The extended 
work could be to efficiently organize the resource, 
handle the intermediate data placement and storage 
issue to support workflow execution in fog computing.  
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