
WFCF - A Workflow Cloud Framework

Eric Kübler and Mirjam Minor
Institute of Informatics, Goethe University, Robert-Mayer-Str.10, Frankfurt am Main, Germany

Keywords: Cloud Management, Case-based Reasoning, Workflow.

Abstract: Using cloud resources for execution of workflows is common nowadays. However, there is a lack of concepts
for flexible integration of workflow management tools and clouds for resource usage optimization. While
traditional methods such as running a workflow management tool monolithically on cloud resources lead to
over- and under-provisioning problems, other concepts include a very deep integration, where the options for
changing the involved workflow management tools and clouds are very limited. In this work, we present the
architecture of WFCF, a connector-based integration framework for workflow management tools and clouds
to optimize the resource utilization of cloud resources for workflow. Case-based reasoning is used to optimize
resource provisioning based on solutions for past resource provisioning problems. The approach is illustrated
by real sample workflow’s from the music mastering domain.

1 INTRODUCTION

Nowadays, cloud computing is more and more pop-
ular and the variance of offered services is increas-
ing. One of these services is workflow as a Service
(WFaaS) as introduced by (Wang et al., 2014; Ko-
rambath et al., 2014). The Workflow Management
Coalition (Workflow Management Coalition, 1999)
defines a workflow as “the automation of a business
process, in whole or part, during which documents,
information or tasks are passed from one participant
to another for action, according to a set of procedural
rules”. A task, also called activity, is defined as “a de-
scription of a piece of work that forms one logical step
within a process. An activity may be a manual ac-
tivity, which does not support computer automation,
or a workflow (automated) activity. A workflow ac-
tivity requires human and/or machine resources(s) to
support process execution” (Workflow Management
Coalition, 1999).

The idea of WFaaS is to execute automated activ-
ities (also called tasks) within a cloud. For the user
or provider of workflows, this could be beneficial, be-
cause a cloud offers nearly infinite resources and is of-
ten cheaper than buying own infrastructure. However,
it is still difficult to use the offered cloud resources
properly. If the user or the WFaaS provider rents more
resources than required (over-provisioning), he has to
pay more than necessary. On the other hand, espe-
cially for WFaaS provider, if he rents less resources

than required (under-provisioning), this can lead to vi-
olations of the service level agreement (SLA). A SLA
defines agreements between the provider and the cus-
tomer about different aspects of the quality of service.
Violations of a SLA can lead to high costs and loss of
reputation for the provider (Shoaib and Das, 2014).
Therefore, the management of resources is an impor-
tant aspect for cloud computing (Baun et al., 2011)
in general and also for WFaaS. It is required to find
a good balance between over- and under-provisioning
of resources (Armbrust et al., 2010). To find such a
balance is generally a problem. The simplest method
to provide resources is the static way. This means,
the system does not adjust itself to a changing sit-
uation. Obviously, this will lead to under- or over-
provisioning (Shoaib and Das, 2014). A more dy-
namic approach is required. The range for such ap-
proaches is great and spans from rather simple, rule-
based approaches such as observations on the num-
ber of open connections (Pousty and Miller, 2014)
to complex algorithms such as(Quiroz et al., 2009).
Another alternative could be case-based reasoning
(CBR). The idea of CBR is that similar problems have
similar solutions (Aamodt and Plaza, 1994). To re-
trieve similar problems (cases), a similarity function
determines the similarity between two cases. CBR
has two unique benefits. Due to the fact that CBR only
requires the similarity function to receive other, sim-
ilar problems and their similar solution, the time and
computational effort should be relatively low. In ad-

518
Kübler, E. and Minor, M.
WFCF - A Workflow Cloud Framework.
DOI: 10.5220/0006346305460551
In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 518-523
ISBN: 978-989-758-243-1
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



dition, because of the stored solutions, when WFCF is
otherwise idle, it can do a post-mortem analysis of the
stored solutions and improve them. The idea of using
CBR for cloud management is not new. The work of
Maurer et al. (Maurer et al., 2013) applies CBR to
implement automatic cloud management. A case in
cloud management records a cloud configuration with
current services and SLA’s to be processed as a prob-
lem situation. A solution describes the optimal dis-
tribution of work on the optimal number and config-
uration of cloud resources while maintaining SLA’s.
Maurer et al. use a bag of workloads to schedule the
work, which makes it difficult to predict future work-
loads and system behavior.

Another aspect of WFaaS is the integration of
workflow management tools with clouds. In this case,
integration means an exchange of information be-
tween the workflow management tool and the cloud
for an optimized resource usage. Without any inte-
gration, it is difficult for any management approach
to determine the required resources. This easily leads
to over- or under-provisioning. In their work, Bala
and Chana (Bala and Chana, 2011) present a survey
of workflow scheduling algorithms for cloud com-
puting. However, most of the approaches have not
yet been implemented, three notable exceptions are
(Wang et al., 2014; Korambath et al., 2014; Liu et al.,
2010). They deeply integrate workflow and cloud
technology, i.e., they strongly depend on the used
cloud and workflow managent tools. Therefore, they
are very limited in their options to exchange either
the used cloud or workflow management tool or both.
A solution for this problem should be a shallow in-
tegration for flexible integration of different work-
flow management tools and clouds while not being
restricted to them, because of flexible connectors and
an abstract representation of the used tools.

In this work, we present the architecture of WFCF,
a connector-based integration framework for work-
flow management tools and clouds, to optimize the
resource utilization of cloud resources for workflow.
This follows a shallow integration approach. The goal
of the WFCF framework is to reduce over- and under-
provisioning via CBR and to allow the customer or
WFaaS provider to integrate workflow management
tools and cloud provider as wished. The basic idea
of WFCF is to have a set of never-changing compo-
nents, which work with a standardized sight of work-
flow management tools and cloud layers and a indi-
vidual set of connectors to interact with the actually
used tools.

2 WFCF ARCHITECTURE

In this section, we will explain the architecture of
WFCF and its components. Starting with the over-
all architecture, we show the details of the monitoring
and management components and how they interact.

Figure 1 shows the overall architecture of the
WFCF, which we will explain in the following. The
architecture can be divided roughly in three parts: the
environment, the monitoring component and the man-
agement component. The environment are the cloud
and the workflow management tool that is used by the
customer. Ideally, WFCF will use the already offered
information and management methods of the tools, so
that additional changes are not necessary. Therefore,
WFCF will use offered log files, databases and API’s
for monitoring the environment and to configure the
cloud. CWorkload is the monitoring component. It
collects information from the environment and com-
bines data across the different layers (the cloud layer
and the workflow layer) to one status model of the
system. We had done initial tests for the cross layer
monitoring aspect of CWorkload in (Kübler and Mi-
nor, 2015). The management component recognizes
current or upcoming problems within the system.
This could be for example violated SLA’s, violated
constraints or resource over-provisioning. If a prob-
lem occurs, the management component searches for
a solution and reconfigures the cloud. We will explain
this in more detail in section 2.2.

Figure 1: Architecture of WFCF.

2.1 Monitoring

The main components of WFCF work independent
from the actually used environment. To work prop-
erly, WFCF needs different information about the sta-
tus of the actually running workflow instances and the
resource utilization of the cloud. Figure 2 shows in
more detail the monitoring of WFCF.

There are three concentrators between the envi-
ronment and WFCF. A workflow definition is very

WFCF - A Workflow Cloud Framework

519



Figure 2: Monitoring of WFCF.

similar to a class in programming as that a workflow
definition is the schema of a workflow where an work-
flow instance is an object of a workflow definition. A
workflow definition contains all information about the
structure of the workflow. For example, the name of
the tasks and their order. There are several formats to
define a workflow definition. These could be, for ex-
ample, BPMN or acyclic directed graphs. The Defini-
tion Parser parses the workflow definition, transforms
it into a standardized format and stores it in the WFCF
Workflow Definition Archive. The archive will also
contain the service characterizations we introduced in
(Kübler and Minor, 2015). In short, the service char-
acterizations provide a hint as to how a web service
(or the tasks which call the web service) will utilize
the cloud resources. A characterization could be, for
example, long running, which means the service will
be executed for more than 30 minutes. Another exam-
ple could be compute intensive, which means that the
service has a high demand for CPU cycles. In addi-
tion, the archive also contains information about local
SLA and other constraints, for example, which task
requires which type of web service.

The WF Monitoring Connector gathers the infor-
mation about the current workflow instances. This
information could be from log files, databases or di-
rectly from the workflow engine via API. The infor-
mation contains the name and start-time of the exe-
cuted workflow and the start-, end-time and name of
individual tasks, as well as the URL or IP of the called
web service. This information should be offered in
one form or another by all commercial workflow man-
agement tools and most of the open source tools. Be-
cause of the great variety of workflow management
solutions, it is necessary to implement the WF Mon-
itoring Connector and the other two individually for
the used management tool. However, the workflow
management tool itself has not to be changed when
any kind of logging is enabled. So even when the
connector has to be reimplemented, the company has
not to change their already running systems.

The Cloud Monitoring Connector is the interface
between WFCF and the used cloud. This connector
monitors the resource utilization. For example, the
CPU and memory usage. Similar to the WF Mon-
itoring Connector, this connector can use log files,

API’s or databases for monitoring and has to be im-
plemented individually for each different cloud.

CWorkload is the core of the monitoring compo-
nent. It has two tasks. First, it builds the monitoring
model. This model is the WFCF CloudWF Status and
combines all information about the status of the cloud,
the currently running workflow instances and the in-
formation about the workflow definitions of these in-
stances. It also contains all information about local
SLA and constraints. The management component of
WFCF will use the WFCF CloudWF Status to iden-
tify current or upcoming problems. The second job
of CWorkload is to maintain the Monitoring Informa-
tion Archive. This archive stores information about
the duration, run time behavior and resource-usage of
the executed tasks. The WFCF Task Analyzer ana-
lyzes this information and updates the service char-
acterizations of tasks in the WFCF Workflow Defini-
tion Archive. For example, if a task has been exe-
cuted several times and each time its execution time
was over 30 minutes, WFCF Task Analyzer will an-
notate this in the WFCF Workflow Definition Archive
as long running.

2.2 Management

Whereas the monitoring component observes the en-
vironment, the management component configures it.
This means, the management component starts and
stops virtual machines or PaaS container, scales re-
sources and migrates content. Figure 3shows the
management component in more detail.

After CWorkload has build the WFCF CloudWF
Status, CProblem is the part of WFCF which inves-
tigates the current status of the environment that is
modeled as the WFCF CloudWF Status. Besides the
CloudWF status, there is another archive, the Global
SLA // Constraint Archive, where global constraints
and SLA’s are stored. Other than the WFCF Workflow
Definition Archive that only contains local constraints
and SLA’s for individual workflows, the Global SLA
// Constraint Archive contains SLA’s and constraints
that are valid for all workflows of a user. There are
several different problems that can occur and which
CProblem will identify, e.g., violated SLA’s. We are
planning that CProblem does not only check the cur-
rent situation, but also do a forecast to identify up-
coming problems and over-provisioning. Through the
workflow definitions, for example, CProblem can rec-
ognize if a certain web service is going to be used in
the future by a currently running workflow instance.
If not, WFCF can shut down the VM or container to
save money. Another possible scenario could be that
currently, there is no violated SLA, but in the near

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

520



future, several tasks with high resource demand will
be started, which can probably lead to a SLA viola-
tion, so WFCF should scale up the resources to avoid
this problem. Forecasting SLA violations, however,
could be a difficult task. To decide if the start of
some resource intensive tasks lead to a SLA viola-
tion is not as easy as to recognize if a web service
has not started yet. A simulations seems a proper
way to identify these kind of problems. Therefore,
CProblem interacts with CSimu. We are planning to
use CloudSim (clo, 2016) as the core of our simula-
tion part. CSimu will simulate the execution of the
tasks with the current cloud status and will show if
this will lead to a SLA violation. If any problem is
unidentified, CProblem extends the CloudWF status
with annotations about the problems. This new anno-
tated model is the WFCF CloudWF Problem. Such
annotations could be, for example, web service x is
not longer needed or SLA y is currently violated.

Figure 3: Management of WFCF.

Whereas CWorkload is the core of the monitor-
ing component, the WFCFSolver is the core of the
management. Similar to CWorkload, the solver has
two jobs. First, the solver searches for a new cloud
configuration that solves the current problems. Then
it finds a reconfiguration path from the current cloud
configuration to the new solution. In the last step, the
solver sends the reconfiguration steps to the WFCF
Configurator as shown in figure 1. The reconfigura-
tor then will do the reconfiguration job. There are sev-
eral possible approaches to find a new cloud configu-
ration. We will choose case-based Reasoning (CBR)
as our solving strategy. As in section 1 mentioned, the
idea of CBR is that similar problems have similar so-
lutions. In our case, a problem is a WFCF CloudWF
Problem. A case base is an archive of previous prob-
lems and their solutions. The case base is not included
in Figure 3, because it is part of the solving strategy
and not part of WFCF itself. The solver will search
the case base for similar problems in the past. In our
work (Kübler and Minor, 2016), we had introduced

the idea of a similarity function for cloud configura-
tions. Figure 4 shows an example configuration. It in-
cludes the container (CON1 to CON3), with the web
services for the tasks (Task1 and Task2), the place-
ment of the container to the virtual machines (VM1
and VM2) and the placement of the VM’s to the hard-
ware (PM1 and PM2). Future tests with human ex-
perts as reference were promising, but did not include
workflow similarities yet.

Figure 4: Example of a cloud configuration.

The similarity function for the workflow aspect of
our approach is ongoing work. We are planning to
consider the currently active tasks as well as the tasks
that are to be started in the near future. The similar-
ity of two individual tasks is determined by its service
characterization and the size of its input data. Two
tasks are similar if they have the same characteriza-
tion (for example CPU intensive) and if the size of the
input data are similar. Each workflow instance has 0
to n active tasks. These are the tasks that are currently
executed. The set of active tasks is the set of all active
tasks from all workflow instances. To determine the
similarity of two sets of active tasks, we are planning
to implement one of the functions introduced in the
literature (Bergmann, 2002).

In addition, the knowledge of the workflow defi-
nitions allows to build another set of tasks that will be
active in the near future. Figure 5 shows an example
workflow. If Task normalize is the currently active
task, we can say for sure, that task limiter will be exe-
cuted as soon as the normalization is finished. In some
cases, for example after a conditional fork, the next
task to executed can be unclear. However, in this case
we can make an assumption, based on the empirical
knowledge of the workflow, stored in the Monitoring
Information Archive, we introduced earlier. This can
be done for every active workflow instance to esti-
mate the tasks approaching soon. The result is a set
of possible future tasks. Since the size of the input
data of the next task can be approximated from the
ongoing task, the required amount of resources can
be roughly estimated. Due to the run time informa-
tion, from the past stored in the Monitoring Informa-
tion Archive and the service characteristics, WFCF

WFCF - A Workflow Cloud Framework

521



should be able to identify near future problems and
bottlenecks. Thus, we will also consider the similar-
ity of the future tasks in the problem part.

A solution is a cloud configuration without prob-
lems. The solver will search for a similar problem
and use the solution for this old problem or the solu-
tion can serve as a starting point for a new solution.
Anyways, the solver will send the solution back to
CProblem to check if the solution comes up with new
problems. CProblem will check and simulate the so-
lution and give feedback to the solver. This will be
repeated until a solution is found or another condition
is reached. This could be, for example, a time limit.
In this case, the solution with the last significant prob-
lem will be chosen. The usage of CBR also opens
the possibility for post-mortem analysis and improve-
ment of the stored solution, while WFCF is otherwise
idle. Beside the case base, there is the WFCF Cloud
Resources and Service Archive. This archive contains
information about the possibility of the cloud. For
example, possible sizes of containers, available im-
ages and web services. This archive helps the solver
to find valid solutions. Similar to the connectors in
the monitoring part, the Cloud Service Explorer is a
connector to the cloud to discover possible sizes and
services and store them in the Resources and Service
Archive.

3 EXAMPLE

To demonstrate the idea of WFCF, we will give a run-
ning example. As our example domain, we chose mu-
sic workflows to mastering music. The purpose of
such a workflow is to transform and process a music
file. This includes to normalize and limit the volume
of the sound, increase or reduce the sample rate, con-
vert from mono to stereo or reverse and adding spe-
cial effects like fading and compressing the size of the
music file. Figure 5 shows an example workflow. The
workflow is modelled in BPMN (Chinosi and Trom-
betta, 2012). To simplify the image, figure 5 does not
show the input and output files of the web services.
The workflow starts with the Init Workflow Parame-
ter tasks to initialize the workflow by a human. The
user chooses some parameter for the later mastering.
The following two tasks are also human tasks require
along with the first one no cloud resources.

The following tasks are all based on web services
and alter the music file each time. For example, the
task normalize normalizes the volume of the music
file, while the task fading adds a fade-out effect to the
end of the music. Let us assume we are a user who
runs jBPM (jbp, 2016) as a workflow management

Figure 5: Sample workflow of mastering music.

tool and OpenShift (ope, 2016) (PaaS) and recently
created the introduced workflow. Before an instance
of this workflow is started, the Definition Parser de-
tects a new workflow definition and stores this new
definition in the WFCF Workflow Definition Archive.
The Information will be stored as XML or JSON and
will include, besides other information, the following:
Workflow-Definition = ”master music”, task name =
normalize, requires = ”normalize web service”, ser-
vice characterization = none. This means that the
name of the workflow definition is master music and
it has (among others) one task with the name normal-
ize. This task requires a normalize web service and
has no service characterization. When the user starts
an instance of this workflow, the Workflow Monitor-
ing connector registers the start and sends a message
along with pieces of information to CWorkload. The
information CWorkload receives is that an instance of
the master music workflow is started along with the
Init Workflow Parameter task. CWorkload will store
the start-time of the first task in the Monitoring Infor-
mation Archive and will prepare a WFCF CloudWF
Status for CProblem. The WFCF Cloud Status con-
tains the information about the freshly started work-
flow and the information about the current situation of
the OpenShift. Because the user has not executed any
Workflow at the moment, no container was started and
WFCF includes this information. Because the first
three tasks do not require any cloud resources, there
is currently no problem. However, CProblem realizes
that in the near future, the task normalize will start.
This task requires the web service normalize web ser-
vice that is not available at the moment and this is
a problem. CProblem prepares the WFCF CloudWF
Problem and annotates that this web service is re-
quired. Because of the simple cloud configuration and
because no SLA’s are involved, no simulation from
CSimu is needed. The WFCFSolver searches its case
base for a case where a web service is required and
no container is currently started. Let us assume that
the WFCFSolver finds such a solution and this solu-
tion includes to start a container with the needed web
service. The solver will send this solution back to
CProblem to check if the solution includes new prob-

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

522



lems. This, however, is not the case. The solver can
now start to plan the reconfiguration. After the solver
is done, the WFCF Configurator starts a container
with the web service.

4 CONCLUSION

In this paper, we introduced the architecture of
WFCF, a connector-based integration framework for
workflow management tools and clouds. The goal of
WFCF is to provide a way to integrate different work-
flow management tools and clouds, while also opti-
mizing the resource utilization of the used cloud re-
sources. To achieve this goal, WFCF uses multiple
concepts. The connector’s concept allows in a modu-
lar way to integrate workflow tools and clouds by us-
ing their usual management and monitoring concepts
and without the need for special requirements to the
used tools. The monitoring component of WFCF an-
alyzes the run time behavior and resource usage of
tasks for a better understanding of their needs and
also combines information of the workflow manage-
ment tool and the cloud to a status model for future
analysis and forecast of problems. The management
component analyzes this status model for problems
by using a combination of simulation and static meth-
ods. When a problem occurred or can be forecasted,
the management component uses CBR to find a simi-
lar problem in the past and solve the problem based
on the old solution. The goal of WFCF is a shal-
low integration of cloud and workflow management
tools for flexible combination of tools and the opti-
mization of resource usage. Currently, we are work-
ing on a prototype of the architecture to evaluate the
concept in the future to the point where the prototype
offers reconfiguration solutions for recognized prob-
lems. An open issue is to design the WFCF CloudWF
Status model in a universal way, without dependen-
cies of the actually used tools. Another future task is
the acquisition of a larger set of problems that should
be recognized and solved.

REFERENCES

(2016). The CLOUDS lab: Flagship projects - gridbus and
cloudbus.

(2016). jBPM. https://www.jbpm.org, 2016-12-08.
(2016). OpenShift. https://www.openshift.com/, 2016-12-

08.
Aamodt, A. and Plaza, E. (1994). Case-based reasoning:

Foundational issues, methodological variations, and
system approaches. 7(1):39–59.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., and Zaharia, M. (2010). A view of cloud
computing. 53(4):50–58.

Bala, A. and Chana, I. (2011). A survey of various work-
flow scheduling algorithms in cloud environment. In
2nd National Conference on Information and Commu-
nication Technology (NCICT), pages 26–30. sn.

Baun, C., Kunze, M., Nimis, J., and Tai, S. (2011).
Cloud Computing - Web-Based Dynamic IT Services.
Springer.

Bergmann, R. (2002). Experience management: Founda-
tions, development methodology, and Internet-based
applications. Springer Verlag.

Chinosi, M. and Trombetta, A. (2012). BPMN: An intro-
duction to the standard. 34(1):124–134.

Korambath, P., Wang, J., Kumar, A., Hochstein, L., Schott,
B., Graybill, R., Baldea, M., and Davis, J. (2014). De-
ploying kepler workflows as services on a cloud in-
frastructure for smart manufacturing. 29:2254–2259.

Kübler, E. and Minor, M. (2015). Towards cross-layer mon-
itoring of cloud workflows. In Helfert, M., Ferguson,
D., and Muoz, V. M., editors, CLOSER 2015 - Pro-
ceedings of the 5th International Conference on Cloud
Computing and Services Science, Lisbon, Portugal,
20-22 May, 2015, pages 389–396. SciTePress.

Kübler, E. and Minor, M. (2016). Towards a case-based rea-
soning approach for cloud provisioning. In CLOSER
2016 - Proceedings of the 6th International Con-
ference on Cloud Computing and Services Science,
Rome, Italy 23-25 April, 2016, volume 2, pages 290–
295. SciTePress.

Liu, X., Yuan, D., Zhang, G., Chen, J., and Yang, Y. (2010).
SwinDeW-c: A peer-to-peer based cloud workflow
system. In Furht, B. and Escalante, A., editors, Hand-
book of Cloud Computing, pages 309–332. Springer
US.

Maurer, M., Brandic, I., and Sakellariou, R. (2013). Adap-
tive resource configuration for cloud infrastructure
management. 29(2):472–487.

Pousty, S. and Miller, K. (2014). Getting Started with Open-
Shift. ”O’Reilly Media, Inc.”.

Quiroz, A., Kim, H., Parashar, M., Gnanasambandam, N.,
and Sharma, N. (2009). Towards autonomic workload
provisioning for enterprise grids and clouds. In Grid
Computing, 2009 10th IEEE/ACM International Con-
ference on, pages 50–57. IEEE.

Shoaib, Y. and Das, O. (2014). Performance-oriented cloud
provisioning: Taxonomy and survey. abs/1411.5077.

Wang, J., Korambath, P., Altintas, I., Davis, J., and Crawl,
D. (2014). Workflow as a service in the cloud: Archi-
tecture and scheduling algorithms. 29:546–556.

Workflow Management Coalition (1999). Workflow
management coalition glossary & terminology.
http://www.wfmc.org/resources 2016-12-15.

WFCF - A Workflow Cloud Framework

523


