
From Temporal Models to Property-based Testing

Nasser Alzahrani, Maria Spichkova and Jan Olaf Blech
RMIT University, Melbourne, Australia

Keywords: Formal Methods, Property based Testing.

Abstract: This paper presents a framework to apply property-based testing (PBT) on top of temporal formal models.
The aim of this work is to help software engineers to understand temporal models that are presented formally
and to make use of the advantages of formal methods: the core time-based constructs of a formal method are
schematically translated to the BeSpaceD extension of the Scala programming language. This allows us to
have an executable Scala code that corresponds to the formal model, as well as to perform PBT of the models
functionality. To model temporal properties of the systems, in the current work we focus on two formal
languages, TLA+ and FocusST .

1 INTRODUCTION

Safety-critical systems, e.g., in the automotive dom-
ain (Kühnel and Spichkova, 2007), become more and
more software-intensive with every year. While spe-
cifying such systems, a precise formal model, i.e.,
a mathematical model at some level of abstraction,
might be essential to eliminate ambiguity and to de-
tect possible errors early in the software development
life-cycle (SDL). Also, in most cases the system pro-
perties have to be analysed in relation to the time,
thus, verification/testing of the temporal aspects is
crucial.

To achieve the integration of formal models into
SDL, the development process should be human-
oriented. Thus, aspects of human factors engineering
should be taken into account, cf. (Spichkova et al.,
2015). Moreover, using Formal Methods (FMs) can
be beneficial while developing not only safety-critical
systems, but also web services, cf. (Newcombe et al.,
2015). FMs were successfully applied to design and
analyse systems since many years, cf. (Bowen and
Hinchey, 1995; Yu et al., 1999). Despite all the ad-
vantages of FMs, software engineers are not keen to
include them into the software development process.
This problem was discussed 15-20 years ago, e.g.,
in (Hinchey, 2003). This problem is still unsolved
now. Lack of readability and usability is one of the
reasons for very limited use of FMs in industrial pro-
jects (Zamansky et al., 2016). However, in some cases
even simply implementable improvements can make
an FM more readable and understandable, cf. (Spi-

chkova, 2012).
In many cases, FMs require huge amount of trai-

ning, as they use a very specific syntax that is unrea-
dable for novices. In general, testing approaches are
perceived by practitioners as more appropriate for a
real-life development process. However, they are usu-
ally comfortable with concepts from property-based
testing (PBT), which require a little bit of mathema-
tical thinking. PBT approach allows to use randomly
generated test cases based on properties to test sys-
tems against their specifications.

To led programmers in formulating and testing
properties of programs, Claessen and Hughes intro-
duced a tool named QuickCheck that is focusing on
Haskell programming language. They demonstrated
that QuickCheck allowed them to discover hundreds
of bugs, e.g., DropBox file sharing service (Claessen
and Hughes, 2011; Hughes, 2010). In its first edition,
QuickCheck was proposed as a testing framework for
testing only functional programs. However, recent de-
velopment in the area of PBT incorporates the state-
fulness of systems. That provides functionality for the
testing of state-ful systems as well as for testing pro-
grams written in imperative languages, e.g., C (Ger-
des et al., 2015; Hughes, 2010).

We propose to apply PBT on top of temporal for-
mal models. This might help software engineers to
understand temporal formal models (which describe
the state of a system in every discrete time point), as
the FM constructs will be expressed in terms of sy-
stem code. This might contribute to the understanda-
bility of FMs indirectly, and allow software engineers
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to make use of the advantages of FMs. To achieve
this goal, we suggest to translate the core time-based
constructs of an FM to the BeSpaceD extension of the
Scala programming language, specified in (Blech and
Schmidt, 2014). This allows us to have an executable
Scala code that corresponds to the formal model, as
well as to perform PBT of the models functionality.
To model temporal properties of the systems, in the
current work we focus on two formal languages, Tem-
poral logic of actions (TLA+) and FOCUSST . TLA+
combines temporal logic with a logic of actions, and
is used to describe behaviours of concurrent systems,
cf. (Lamport, 1994; Lamport, 1993). FOCUSST is a
formal language providing concise but easily under-
standable specifications that is focused on timing and
spatial aspects of the system behaviour (Spichkova
et al., 2014; Spichkova, 2007).

To implement the proposed ideas, we selected
Scala programming language, as on the PBT level
this allows us to apply an extension to ScalaCheck
library. Early ideas of this approach was presented
at Software Technologies: Applications and Founda-
tions Conference, cf. (Alzahrani et al., 2016). In this
paper we go further and discuss the developed fra-
mework and how it can be applies to TLA+ and FO-
CUSST . This approach is based on a completed Minor
Master Thesis of the first author.

2 PROPOSED FRAMEWORK

Figure 1 depicts the proposed framework that will al-
low for combining FMs with PBT. The general idea
is to start with specifying the system using human-
oriented modelling techniques based on FMs. After
the specification phase, the software of the system
under test is designed according to the specification.
The framework will then generate random test cases
to exercise and verify that the system runs according
to the specification. If a test fails, it will be the judg-
ment of the engineer to decide whether the errors were
in the system software or in the specification formu-
las for which the system was not correctly specified.
If the test passes without any errors, the system under
test meets the specification.

The FM specification gets translated to host pro-
gramming language (Scala in this case). These spe-
cification gets formal verification depending on the
flavour of FM being used. For example, in case of
TLA+, the TLA+ model checker (TLC) is used to
check the specification. On the other hand, in case of
FOCUSST , the theorem prover Isabelle/HOL via the
framework Focus on Isabelle is used to verify sys-
tems specification, cf. (Nipkow et al., 2002) and (Spi-

chkova, 2007).
The workflow within the proposed framework in-

cludes the following steps:
• To create an (informal) requirements specification

of the system;
• To transform the informal specification to a for-

mal specification (model) of the system, using
TLA+ or FOCUSST ;

• To verify formal model, using TLA+ model chec-
ker or Isabelle/HOL theorem prover, respectively;

• To translate the formal model to Scala using the
provided translation schema;

• To add the specified in Scala model to the exten-
ded ScalaCheck library;

• To check the extended ScalaCheck library against
the behaviour generated by FM specification.
In this section, we show the applicability of the

proposed framework to TLA+ and FOCUSST . The
goal is to demonstrate how the proposed framework
can be applied to many types of FMs with similar
syntax. Each subsection presents systematic informal
program transformation schemas. Using these sche-
mas makes transforming FM formulas to any hosting
language, Scala in this case, an easy mechanical task.
We start by analysing TLA+ syntax and semantics.
After that, we show the design and model the API
for the TLA+ flavour. After that, we show the desig-
ned API and the testing it using small example (One
Bit Block). Similar process applied to FOCUSST , sho-
wing the analysis of FOCUSST syntax and semantics.
Restricting FOCUSST to it’s major parts that is related
to temporal properties.

Figure 1: Proposed Framework.

2.1 Application to TLA+

TLA provides a toolbox which includes an integra-
ted development environment (IDE) for the TLA+.
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The IDE allows create and edit specifications, it also
shows parsing errors and can be used to turn TLA+
model checker. To decrease the cognitive load of the
developer and tester, it also includes an error trace
viewer and explorer: these components provide a
structured view of the states, illustrate how the sta-
tes/values are changed at each step, and allow to run
the TLA+ proof system.

A TLA formula such as Init ∧�[Next]v specifies
the initial states and the allowed transitions of a sy-
stem. It allows for transitions that do not change the
value of v. This kind of transitions is called stuttering
transitions. Most TLA system specifications are of
the form Init ∧�[Next]v ∧L. The semantics of such
formulas are shown in Table 1. Table 2 shows logic
operators in TLA+ and their mappings in Scala, many
of the logical operators in Scala are provided by Be-
SpaceD.

Table 1: Semantics of TLA formula.

Init State formula describing the initial state(s)
Next Action formula formalizing the transition rela-

tion – usually a disjunction A1∨ ..∨An of pos-
sible actions (events) Ai

L Temporal formula asserting liveness conditions

Table 2: Operator mapping from TLA+ to Scala.

TLA+ Scala
/\ AND
\/ OR
⇒ IMPLIES

TRUE TRUE
FALSE FALSE

BOOLEAN Boolean
{T RUE,FALSE} List(TRUE, FALSE)

≤ lessThanEq
≥ greaterThanEq
> greaterThan
< lessThan
� lessThanEqNot
≮ lessThanNot
� greaterThanEqNot
≯ greaterThanNot
∈ IN

x == e defined(x, e)
x = e assign(x, e)
∀x ∈ S : p for {x← S; if p} yield x
∃x ∈ S : p exists(x, S, p)

CHOOSE x ∈ S choose(x, List(S))

In TLA+, a representation of an abstraction of a sy-
stem is modelled using the standard model. The Stan-
dard Model states that an abstract system is described
as a collection of behaviours, each representing a pos-
sible execution of the system, where a behaviour is a
sequence of states and a state is an assignment of va-
lues to variables. In this model, an event (step) is the

transition from one state to the next in a behaviour.
For example, In one-bit clock, formulas are defined
as follows:
VARIABLE b
Init == (b = 0) \/ (b = 1)
Next == \/ /\ b = 0

/\ b’ = 1
\/ /\ b = 1

/\ b’ = 0

These two TLA+ statements define Init and Next to
be two formulas. Therefore, referencing init or Next
is completely equivalent to typing ((b = 0) \/ (b = 1)).
The equality symbol = (typed ==) is read is defined
to equal. To transform these formulas into a host pro-
gramming language, it is necessary to capture the es-
sential aspects of the formula to be transformed, i.e.,
to create a translation schema. Each transformation
step will consist of two elements: one to capture the
TLA+ formula and one to capture the corresponding
programming language function. The two schemata
together can then be used to do the transformation.
The TLA+ elements for the above formulas:
f1 == p \/ q
f2 == \/ /\ p

/\ q
\/ /\ q

/\ p

That is, f1 represent Init, f2 represent Next, p repre-
sent (b=0), q represent (b=1) respectively. According
to the translation schema, the translation of one bit
clock from TLA+ to Scala is as follows:
val b: TLAVariable = TLAVariable(IN(List(0, 1)))

val init: TLAInit = OR(defined(b,0), defined(b,1))

val next: TLANext = {

while(true) {

if defined(b, 0)

return assign(b, 1)

else

return assign(b, 0)

}

}

2.2 Application to FOCUSST

The FOCUSST language was inspired by Focus, a fra-
mework for formal specification and development of
interactive systems. In both languages, specifications
are based on the notion of streams, cf. (Broy and
Stølen, 2001). The syntax of FOCUSST is particularly
devoted to specify spatial (S) and timing (T) aspects in
a comprehensible fashion, which is the reason to ex-
tend the name of the language by ST: FOCUSST stream
is a mapping from natural numbers to lists of mes-
sages within the corresponding time intervals. Table
3 shows a partial mappings between FOCUSST basic
operators and their Scala representations.
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Table 3: Operator mapping from FOCUSST to Scala.

FOCUSST Scala
/\ AND
\/ OR
→ IMPLIES

TRUE TRUE
FALSE FALSE

BOOLEAN Boolean
≤ lessThanEq
≥ greaterThanEq
> greaterThan
< lessThan
� lessThanEqNot
≮ lessThanNot
� greaterThanEqNot
≯ greaterThanNot
∈ IN

x == e defined(x, e)
x = e assign(x, e)
∀x ∈ S : p for {x← S; if p} yield x
∃x ∈ S : p exists(x, S, p)
〈〉 List()

〈a1, . . . ,am〉 a1 to am

Figure 2: FOCUSST Specification of Steam Boiler Controller
(Spichkova, 2016).

The FOCUSST specification layout is based on
human factor analysis within formal methods (Spi-
chkova, 2012; Spichkova, 2013). Figure 2 provides an
example on how a FOCUSST specification looks like.
The in and out sections of FOCUSST specifications
are used to specify input and output streams of the
corresponding types. local and init sections include
local variables and initial values, respectively. FO-
CUSST requires using assumption-guarantee templa-
tes, to avoid the omission of unnecessary assumptions
about the system‘s environment. The keyword asm

lists the assumption that the specified component ex-
pect from its environment, e.g., the assumption ts(s)
would mean that the input stream s should contain ex-
actly one message per time interval. The component
behaviour that should be guaranteed in the case all
assumptions are fulfilled, is then described in the spe-
cification section gar.

3 DISCUSSION AND
EVALUATION

Let us use the steam soiler (Broy and Stølen, 2001)
example to discuss the applicability of the develo-
ped framework. We selected this example as it (1)
is simple-enough to introduce it shortly, (2) is well-
known example for analysing FMs, (3) includes most
of the functionalities of the proposed framework.
For this example, we start by given the TLA+ and
FOCUSST specification which gets translated to Scala
programming language before feeding the translated
specification to the proposed framework. The trans-
lation correctness is verified manually by checking
the behaviour that is generated by the tools develo-
ped and used to generate systems behaviours with the
behaviour generated by the actual TLA model chec-
ker (TLC). We follow the informal definition of the
example provided in (Spichkova, 2016): The steam
boiler has a water tank, which contains a number of
gallons of water, and a pump, which adds 10 gallons
of water per time unit to its water tank, if the pump
is on. At most 10 gallons of water are consumed per
time unit by the steam production, if the pump is off.
The steam boiler has a sensor that measures the water
level. Initially, the water level is 500 gallons, and the
pump is off. In each time interval the system outputs
it current water level in gallons and this level should
always be between 200 and 800 gallons.

The system consists of three logical components:
SteamBoiler, Converter, and Controller. The specifi-
cation Controller as shown in Figure 2 describes the
controller component of the system. The controller
role is to switch the steam boiler pump on and off. In
addition, it knows the current state of the pump. The
behaviour of this component is asynchronous to keep
the number of control signals as small as possible.

Figure 3 shows TLA+ specification of the Steam
Boiler controller. Unlike FOCUSST , TLA+ is weakly
typed. Therefore, it uses a convention to indicated
types of variables using TypeOK keyword as shown
in the specification.

To check the framework, we provided two imple-
mentation for the steam boiler system, correct (wrt.
the given FOCUSST and TLA+ specification) and in-
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Figure 3: TLA+ specification of the Steam Boiler controller.

correct one (having mistakes wrt. the given specifi-
cation). For instance, in the case when the system
is specified to have its current water level be bet-
ween 200 and 800 gallons, the wrong implementa-
tion does not satisfy this property and instead have
the the current level below 200 and above 800. The
wrong example also include the failure of the pump
to turn on or off. Table 4 shows number of invoca-
tions for every API call in each test run. Both trans-
lated TLA+ and FOCUSST specifications have similar
numbers since the schematic translation from TLA+
and FOCUSST to Scala is similar in both cases. The
extended ScalaCheck implementation that we develo-
ped does not shrink the test case to generate minimal
failing test cases (which would make the code easier
to debug). The future work will include the shrinking
behaviour that is inspired by QuickCheck library.

Table 5 contrast the performance of permutations
and PBT test runs between the schematic translation
of TLA+ and FOCUSST . There are no observable dif-
ferences between the performance of TLA+ and FO-
CUSST in almost all of the phases of the workflow.
This is expected since both TLA+ and FOCUSST has
similar syntax and the translation is similar in most
cases. For the same reason, there is no considerable
difference between lines of code after translation from
TLA+ to Scala which was 70 lines of code and the
translation from FOCUSST to Scala was 75 lines. All
tests were carried out on two machines:

Intel Core i5 2.6 GHz, RAM 8 GB
Intel Core-i7 360QM 2.0 GHz, RAM 4GB

To evaluate the performance of the scripts using to
support the framework, we used a number of further

Table 4: Number of API Invocations in test cases.

API Code TLA+ FOCUSST

startSystem() 1 1
endSystem() 1 1

pumpDidOpen() 27 27
openPump() 11 11

pumpDidClose() 17 17
closePump() 47 47

waterLevelDidChange(amount: Int) 21 21
checkWaterLevel() 20 20

controlSignalDidChange(val: Int) 26 26

Table 5: Translated TLA+ and FOCUSST statistics (time in
seconds).

TLA+ FOCUSST

API permutations 10-11 10-11
Behaviour Generating 7-8 7-8

Single Test run 0.5 0.5
Total Test run time 100 test cases 23-25 23-25

problems commonly used in the TLA+ community:

• One Bit Clock simply alternates between 0 and 1.
Such a clock is used to control any modern com-
puter. Its times being displayed as the voltage on
a wire. Therefore, there are only two states; the 0
state and the 1 state.

• The DieHard problem from the movieDie Hard 3,
the heroes had to solve the problem of obtaining
exactly 4 gallons of water using a 5 gallon jug, a
3 gallon jug, and a water faucet.

• Euclid‘s algorithm for computing the greatest
common divisor of two positive integers.

• Therac-25, a radiation therapy machine used in
curing cancer, led to deaths and serious injuries
of patients which received thousand times the nor-
mal dose of radiation (Miller, 1987; Leveson and
Turner, 1993). The causes of these accidents were
software failures as well as problems with the sy-
stem interface. The machine included VT-100
terminal which controlled the PDP-11 computer,
where the sequence of user actions leading to the
accidents was as follows: user selects 25 MeV
photon mode, enters cursor up, select 25 MeV
Electron mode, previous commands have to take
place in eight seconds.

Table 6 shows the statistics on the applied behaviour
generator. Diameter column is the number of states in
the longest path of the graph in which no state appears
twice. States Found column is the total number of
states it examined in the first step of the algorithm or
as successor states in the second step. Distinct States
column is the number of states that form the set of
nodes of the graph. For instance, in case of One Bit
Clock, model checker found two distinct states.
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Table 6: Behaviour Generator Statistics.

Example Diameter State Found Distinct States
DieHard 9 97 16

One Bit Clock 1 4 2
Euclid Algorithm 3 22 8

Therac25 9 97 16

4 CONCLUSION

We have presented our framework for application of
the property-based testing (PBT) concepts on top of
temporal formal models. This allows us to have an
executable Scala code that corresponds to the for-
mal model, as well as to perform PBT of the mo-
dels functionality. The framework is aiming on re-
duction of the impedance mismatch between formal
methods and practitioners through the combining of
formal methods with property-based testing. We in-
troduced the core ideas on how the framework can be
applied to particular formal languages, such as TLA+
and FocusST .
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