
Biologically Inspired Security as a Service for Service-Oriented

Middleware

Tashreen Shaikh Jamaluddin1, Hoda Hassan2 and Haitham S. Hamza3
1Computer Science Department, AASTMT Academy, Qism El-Nozha, Cairo, Egypt

2Electrical Engineering Department, British University in Egypt, ElShrouk, Cairo, Egypt
3Information Technology Department, Cairo University, Ahmed Zewail st., Cairo, Egypt

Keywords: Security as a Service (SECaaS), Denial-of-Service (DoS), Service-Oriented Architecture (SOA), Service-

Oriented Middleware (SOM).

Abstract: Service-Oriented computing is a new programming paradigm based on service-oriented architecture that

uses web services as its basic building block. Service-Oriented Middleware is a middleware layer that was

developed to support service-oriented computing by allowing the flexible integration and operation of web

services within the service-oriented computing environment. With the wide adoption of service-oriented

computing, web service applications are no longer contained within tightly controlled environments, and

thus could be subjected to malicious attacks, such as Denial of Service attacks. In this paper, we propose a

generic security service that protects web services against denial of service attacks at the service-oriented

middleware layer. Our security service draws on a bio-inspired framework that was developed to counteract

denial of service at the network layer. To evaluate our work we have developed a prototype that showed that

our proposed security service was able to detect denial of service attacks targeting a web service.

1 INTRODUCTION

Service Oriented Architecture (SOA) is a form of

distributed system architecture for developing and

integrating enterprise applications (Jensen et al.

2007; Jensen et al. 2009). It enables an enterprise to

expose software components as self-describing,

loosely coupled, coarse-grained, and re-usable

business functions. SOA, with its loosely coupled

nature, is widely used to provide interoperable

services and to reuse existing services. Within SOA,

application functionalities can be integrated and

invoked with a variety of platform-independent

service interfaces available through standard

network protocols.

A Web Service is an application that is

described, published, and invoked over the Web

through an identifying URI (Bichler and Lin. 2006).

Web service protocols and technologies include:

XML (W3C 2008), XML Schema (W3C 2001),

Web Services Description Language (WSDL) (W3C

2001), Universal Discovery Description and

Integration (UDDI) (OASIS 2015) and Simple

Object Access Protocol (SOAP) (W3C 2007). The

web service public interfaces and bindings are

defined in a WSDL document using XML. SOAP is

a communication protocol that runs between the

Service Requestor and the Service Provider. In most

SOA applications, SOAP is adopted to develop Web

services as SOAP is highly extensible and ensures

confidentiality and integrity as specified within the

WS-Security standards (Gudgin et al. 2007). The

WS-Security protocol is the standard that is most

widely used to implement an end-to-end security

solution. Nevertheless, as noted in (WS-Security

2015), intrusion vulnerabilities can extend to XML-

related processing, as well as to WS-Security web

services standards.

With Web services, software applications began

to be constructed based on independent services with

standard interfaces. This led to huge distribution and

heterogeneity in the software produced and in the

communication technologies used. Thus

interoperability was introduced as a new challenge

in SOA based applications (Al-Jaroodi and

Mohamed 2012). This situation motivated the

development of the Middleware layer to handle the

flexible integration and scalable interoperation

between different heterogeneous platforms. Similar

to traditional distributed middleware, Service

Jamaluddin, T., Hassan, H. and Hamza, H.
Biologically Inspired Security as a Service for Service-Oriented Middleware.
DOI: 10.5220/0006337801210132
In Proceedings of the 12th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2017), pages 121-132
ISBN: 978-989-758-250-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

121

Oriented Middleware (SOM) acts as a software layer

that abstracts the distribution of the underlying

entities, integrates components and services, and

provides common non-functional values to SOA

based applications (Al-Jaroodi et al. 2010a; Al-

Jaroodi & Al-Dhaheri 2011).

Service Oriented Computing (SOC) is a cross-

disciplinary paradigm that is based on SOA

environment to oversee distributed computing

(Bichler and Lin 2006). In SOC, SOM is used to

ease the design, development, and deployment of

web services as well as to coordinate interaction

among the components of SOA. Furthermore, SOM

provides rich features such as runtime support to

deploy/discover services, service transparency to

clients, abstraction of the underlying environment,

interoperability of devices, and integrated support

for security. To fully utilize SOM within the

business environment, vendors started to develop

SOM functionalities that were suited to their

particular business requirements. Several SOM

models that were studied in Al-Jaroodi and Al-

Dhaheri (2011) and Al-Jaroodi and Mohamed

(2012) operate in SOC environments, yet they do not

apply full security solutions. Such models only

incorporate the set of functionalities required within

the application domain. Moreover, with wide

adoption of SOC, applications are no longer

contained within a tightly controlled environment.

This online exchange of information generates the

risk of malicious attacks (Lazarevic et al. 2005),

where an attacker crafts XML messages (SOAP

request) with large payloads, recursive content,

malicious external entities, or excessive nesting that

causes DoS attacks. Usually in XML Denial of

Service (DoS) attacks, the operational parameters of

messages coming from legitimate users are changed

in real-time by adding additional elements or

replacing existing elements within the message.

Accordingly, it is important to revise Web-service

security countermeasures as Web services risks are

increasing due to the open nature of communication

and easy access to data (Jensen et al. 2007; Jensen et

al. 2009). Presently, the available countermeasures

that provide effective protection against the

aforementioned types of attacks are (i) XML

message validation and (ii) XML message

hardening. Ultimately, one of the main features of

the SOM was to provide security to SOC, which

faces problems of insecure communication and

configuration, information leakage and insufficient

authentication (Al-Jaroodi & Mohamed 2012; Al-

Jaroodi et al. 2010b). Due to the absence of

standardized security guidelines (Al-Jaroodi & Al-

Dhaheri 2011) several SOM approaches implement

security features that are tailored to particular needs,

thus hindering interoperability and reusability. Al-

Jaroodi et al. (2010b) showed the need for security

requirements for SOM. According to Al-Jaroodi &

Al-Dhaheri (2011), the authors have proposed to

develop a general set of security requirements

through independent “security as a service”

components. These security services can offer a

variety of security functionalities that could be

adapted to SOM.

The main contributions of this paper are (i) to

present an application-level Bio-inspired Anomaly

Detection Framework (BADF) that draws on the

ideology of the Danger Theory (DT) previously

proposed in (Hashim et al. 2010) for heterogeneous

networks. The presented framework is designed as a

generic framework that improves the security

features of the SOM by applying the DT principles

to protect web-service based-applications from

Denial of Service (DoS) attacks. (ii) Based on

BADF, we derive an architecture for a generic

“security as a service” (SECaaS) web service. Our

derived security service is identified as a message-

protection service as mentioned in (Al-Jaroodi & Al-

Dhaheri 2011). It aims to protect incoming SOAP

messages against XML Denial of Service (DoS)

attacks. BADF is evaluated by developing a

prototype for the “security as a service” (SECaaS)

architecture, and showing the ability of the SECaaS

web-service to detect different types of DoS attacks

induced within SOAP requests.

The rest of this paper is organized as follows;

section 2 overviews related work with respect to

SOAP message attacks and possible mitigation

methods. Section 3 presents our Bio-inspired

Anomaly Detection Framework (BADF) and the

SECaaS architecture. In section 4 we describe our

evaluation environment and results. Finally, in

section 5 we conclude the paper and mention our

future work.

2 RELATED WORK

In recent years Web service attacks have gained
considerable attention from the research community.
According to Jenson et al. (2007) attacks can be
categorized as XML attacks, Semantic WS attacks,
Cryptography based attacks, or SOAP based attacks.
Vipul et al. (2011a) classified SOAP based attacks
as XML injection, XSS injection, and HTTP header
manipulation. All aforementioned SOAP based
attacks exploit XML based messages and parsers,

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

122

and pave the way to introduce DoS attacks. DoS
attacks, prevent legitimate users from accessing the
attacked services, thus reducing the system’s
availability. DoS attacks are further categorized as
Protocol Deviation Attacks or Resource Exhaustion
attacks (Schafer 2014). Protocol Deviation Attacks
aim to exploit the underlying protocol to make it
deviate from its correct behaviour, while Resource
Exhaustion attacks aim to consume the system
resources. Both attacks show a destructive impact
on service availability. Several papers addressed the
topic of DoS attacks on Web services as it became
crucial to understand the DoS impact on the
operation of Web Services.

Gruschka and Luttenberger (2006) have studied
two SOAP based attacks, namely Coercive parsing
and Oversize payload. Coercive parsing includes
recursive calls for XML tags, whereas Oversize
Payload includes extremely large XML documents
within SOAP messages. Gruschka and Luttenberger
(2006) proposed a Check Way Gateway, which is a
Web Service Firewall to validate the incoming
Clients’ SOAP requests through event-based parsing
using a SAX (Simple API for XML) interface. The
firewall generates a strict Schema from the WSDL
file associated with the Web Service to validate the
incoming SOAP request. They evaluated the
processing and response times of the firewall
validator and noted that both were within acceptable
limits with respect to other intrusion detection
techniques. Again Gruschka and Iacono (2009)
studied XML wrapping attacks in the context of the
vulnerability reported by Amazon EC2. The
outcome of this study was a Security Policy
Validation mechanism, which represents a practical
guideline for SOAP message security validation.
However, the evaluation of the proposed security
validation techniques was missing. Gupta and
Thilagam (2013) surveyed several SOAP based
attacks out of which XML injection and Parameter
tampering were reported to result in DoS. The paper
discussed different attack techniques that
contaminate SOAP messages to facilitate DoS
attack. Among which XML injection attacks modify
the XML structure of a SOAP message by inserting
indefinite XML tags. Whereas, Parameter tampering
attack attempts to bypass the input validation in
order to access the unauthorized information to
achieve DoS attack.

The authors in (Jensen et al. 2007; Jensen et al.
2009) classified the SOAPAction spoofing and
oversize payload attack as SOAP based attacks,
where the attacker floods the web server with XML
requests that result in a web server crash. They noted
that the new technologies and standards, in spite of
advancing web service operation, have generated
loopholes to promote DoS attacks.

The two most important countermeasures
proposed in the literature and presently used to
mitigate DoS attacks are XML Schema Validation
(Vipul et al. 2011a), XML Schema Hardening
(Vipul et al. 2011a) and Self-adaptive Schema
Hardening (Vipul et al. 2011b). XML Schema
Validation restricts malicious content within an
XML document to make it abide by the specification
of the XML Schema derived from the WSDL
document. However, applying validation alone is not
sufficient, as the attacker can elegantly contrive an
attack by exploiting the pitfalls within the WSDL
files. In this case, XML Schema Hardening should
be applied as it strictly prohibits malicious content
that is not contained in the XML Schema. Therefore,
it is important that XML Schema should adapt to
strict validation rules though schema hardening. In
(Jensen et al. 2009) the authors surveyed and
proposed Schema Validation, Strict WS-Security
Policy Enforcement, Schema Hardening, and Event-
based SOAP message processing as a
countermeasure for web service attacks. Jenson et
al. (2011) have studied the WS-* Specification in
light of XML Signature and tried to show that XML
Schema validation with a hardened XML Schema
could fend XML Signature Wrapping attack. Some
improvisation of XML Schema definitions is
proposed to strengthen XML Schema validation.
However, XML Schema hardening shows
performance degradation due to increased
processing time. Moreover, the proposed prevention
mechanism is more specific to XML Signature
Wrapping rather than Denial-of-Service attacks.
Vipul et al. (2011a) proposed a new self-adaptive
schema-hardening algorithm to obtain fine-tuned
schema that can be used to validate SOAP messages.
The proposed solution detects the Web Service
attacks when compared to the other mitigation
techniques. However, the comparative mitigation
techniques were not clearly identified and the results
presented only indicated whether the attacks were
detected or not. Vipul et al. (2011b) proposed an
enhanced self-adaptive schema-hardening algorithm.
The presented algorithm automates schema-
hardening process, and it is expected to increase the
efficiency of the validation process to detect attacks.
However, no evaluation results were presented for
the proposed self-adaptive schema-hardening
algorithm.

DoS attack is a popular form of attack in

computer networks and has been studied

extensively. In order to cope with DoS attacks in a

heterogeneous environment, researchers have

adopted ideas from the field of Biology. Hashim et

al. (2010) adopted the ideology of the Danger

Theory (DT) to propose an Anomaly Detection

Biologically Inspired Security as a Service for Service-Oriented Middleware

123

Framework that detects DDoS attacks in

heterogeneous networks. This framework detects

DoS attacks through three main processes, namely

Initiation Process (IP), Recognition Process (RP),

and Co-stimulation Process (CP). In an

internetworking environment, these three processes

are triggered whenever network traffic exhibits

abnormal behaviour during its operation. Abrupt

changes in traffic behaviour are flagged as irregular

and are identified as intrusions. Hence, the IP studies

the abnormal network traffic deviation and signals

the presence of malicious bandwidth attacks (such as

DoS, DDoS or Worms) to RP. On its turn, the RP

detects malicious anomalies in the network deviated

traffic and informs nearby nodes about the possible

presence of an attack. Finally, the CP adds an

additional security measure by cross-examining

information gained from IP and RP. CP confirms

that the identified attack is really malicious or

genuine and alerts the nearby nodes in the network

about the presence of DoS attacks. To evaluate their

framework, the authors performed different sets of

DoS/DDoS and Worms attacks on an anomaly

detection process, which is handled by different

network domains. Analysing attack detection time

and the Quality of Service (QoS) performance

showed that this framework facilitates robust and

adaptive anomaly detection in a heterogeneous

network.

3 PROPOSED WORK

The traditional attack mitigation techniques offer

solutions that strictly abide within tight, monolithic

security middleware environment. As services are no

longer contained within a tightly controlled

environment, security solutions need to offer

independent security functions. To protect against

SOAP based DoS attacks, it is crucial to design and

implement a flexible and secure SOAP message

security validation scheme. Thus the main

contributions of this paper are to (i) present an

application-level Bio-inspired Anomaly Detection

Framework (BADF) that uses DT principles to

protect web-service based-applications against

Denial of Service (DoS) attacks, then (ii) derive an

architecture that is based on BADF, which will be

modelled as a web service and provide “SECurity as

a Service” functionalities (SECaaS) to web-service

based-applications at the SOM. Our proposed

system would be based on SOA architecture, where

Web services communicate with three elements (i)

the Service Client, (ii) the UDDI Registry, and (iii)

Figure 1: Biologically Inspired Anomaly Detection

Framework (BADF).

the Service Provider. Our architecture will use a

reformed version of the self-adaptive schema-

hardening algorithm proposed by Vipul et al.

(2011b) to mitigate SOAP based DoS attacks. Our

choice to focus on SOAP as the communication

protocol stems from the fact that most Web services

are offered over HTTP using SOAP within SOA

(OASIS 2015). In order to use a web service, Clients

send SOAP-requests (XML document) to request a

Web service, which has been previously published

to the UDDI registry by the Service provider. When

receiving the SOAP-request message, Service

providers respond with a SOAP-response message to

fulfil the Client’s request. To guard against SOAP

DoS attacks, the SOAP-request message need to be

handled carefully before it is parsed for in-memory

representation in case attacks are infused within the

request. Our security service is designed to handle

SOAP-request message attack and provide

mitigation against XML SOAP-based attacks. In

section 3.1, we first present our proposed framework

and then in section 3.2 we outline the components of

our derived architecture.

3.1 Biologically Inspired Anomaly
Detection Framework (BADF)

Our proposed Biologically Inspired Anomaly

Detection Framework (BADF) draws on the

biologically inspired Anomaly Detection Framework

presented in networks by Hashim et al. (2010). Our

framework employs the three processes defined in

Hashim et al. (2010) namely: (i) the Initiation

Process (IP), (ii) the Recognition Process (RP) and

(iii) the Co-stimulation Process (CP). Figure 1

shows the interaction of the three processes within

BADF and the details of their operation is presented

below.

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

124

 The Initiation Process

Receiving a SOAP request at the UDDI registry

activates the Initiation Process (IP). The IP is

responsible for validating the XML schema for the

incoming SOAP-request messages. The XML

schema validation is an important measure for

checking the syntactical correctness of incoming

messages. Schema validation checks for the

presence of broken attributes or additional unusual

elements within the message body. Detection of

malfunctioned elements is considered as traces of

attacks. These attack traces are marked within the

XML schema and will be referred to here on as

“attack vectors”. In order to perform SOAP

validation, the IP checks the received message

structure against the XML Schema Document

(XSD) associated with the corresponding Web

service. Usually, the XSD is a modified XML

Schema derived from the WSDL, which is a Web

Service interface description document. Initially, the

XSD provided by the Service Provider (SP) will be

used as the reference schema for the validation step

at IP. However, this Service Provider Reference

Schema (SPRS) will be later replaced by the XSD

updated at the RP and CP. Thus, the main task of the

IP is to ensure the correctness of SOAP input

parameters and operations, as specified in the web

service description and as required by the Service

provider. During validation, if the message does not

abide by the schema structure of the XSD, the

message is identified as an attack. Accordingly, the

IP would send a SOAP-response message to the

client indicating the presence of an attack. Since an

attack can also be due to the weak strictness of the

service schema document (XSD), it is important to

further investigate the schema itself. The schema

used for validation should be as strict as possible to

hamper modification inside the message body. To

combat false positive situations due to schema

inefficiencies, any detected attack by the IP is sent to

the RP and the CP for further investigation. Thus, In

case the validation of a SOAP message fails, the IP

generates a danger signal, namely the Initiation

Signal (IS), for any malformed SOAP message to

initiate the Recognition Process (RP). In addition,

IP marks the attack vectors identified in the

defective XSD in the XSD repositories to be further

investigated by the RP.

 The Recognition Process

RP is initiated when receiving the IS signal. The RP
is responsible for XML schema hardening of any
defective XSDs. Thus, the RP reads the attack

vectors of the message that was previously identified
as an attack, as well as the corresponding XSD for
further investigation. To develop a hardened XSD,
the RP would first read the Web Service description
document of the attacked web service. Basically,
this description describes the grammar that XSD
should follow. This description is parsed to develop
a stricter grammar structure that would enhance the
XSD operation. The structure contents, elements,
rules, and definitions of the updated schema should
all abide by the set of Web service description
specifications as defined by the service provider and
written in the WSDL. The RP generates the schema
structure that represents the hardened XSD and
stores the updated XSD into the Schema repository
to be subsequently used by the IP in the validation
step. However, the RP would not update the
reference schema (SPRS) initially given by the
service provider. From now on the newly hardened
schema (XSD) would be used as the reference
schema instead of the SPRS. After performing the
hardening step, the RP decides whether the IS was
issued as a result of an attack, or as a result of a
lenient schema. In case of the former, the RP
immediately issues the Recognition Signal (RS) for
investigating the attack further at the Co-stimulation
Process (CP). In case of the latter, the RP issues the
Recognition Signal (RS) only after the number of
logged XSDs for a specific web service has
exceeded a preset threshold indicating a recurring
incidences of false positive alerts.

 The Co-stimulation Process

The Co-stimulation Process is initiated as a result of

the RS signal issued by the RP. The Co-stimulation

Process is responsible for self-adaptive schema

hardening for all defective XSDs that have been

accumulated for all SOAP messages requesting a

specific Web service. The purpose of the Co-

stimulation Process (CP) is to develop improvised

solutions learned from the detection of an attack at

the IP and its consequent mitigation at RP. The CP is

a crucial step as the validation and subsequent

hardening of the XML schemata that were

previously categorized as potential attacks could still

possess some inaccuracies. This inaccuracy could be

due to the flexible and permissive nature of the

schemata, where security issues might arise, yet are

not evident at first sight. Hence, a complete

refinement is necessary to generate a strict XML

Schema that would be learned from multiple logged-

in hardened-XSD attacks for a particular Web

service. Upon receiving the RS, the CP would be

activated to perform self-adaptive schema hardening

to develop a strict XML schema (XSD) to be later

Biologically Inspired Security as a Service for Service-Oriented Middleware

125

Figure 2: CP Schema hardening algorithm.

used at the IP for validation.

The self-adaptive algorithm that is used by the

CP in our proposed framework is based on the self-

adaptive algorithm presented by Vipul et al. (2011b)

with some modifications, which will be pointed out

later. Our self-adaptive hardening algorithm takes as

an input all hardened XSDs that were logged by the

RP to the schema repository, and produces one

single hardened schema. This hardened schema will

incorporate all refinements and schema hardening

that were previously imposed by RP on a given

reference schema as a result of multiple malformed

SOAP-requests and/or attacks. This hardened

schema will be used later on as the new reference

schema in the validation step at the IP. The stages of

our algorithm are shown in Figure 2. As shown in

the figure, our algorithm is similar to Vipul in the

first and second stage only. Furthermore, our

algorithm takes as input the XSDs hardened by the

RP in contrast to Vipul et al. (2011b) algorithm that

works on XSDs generated from SOAP-requests. The

stages of our algorithm are detailed below.

Stage 1 Schema Tree Generation

As pointed out by Vipul et al. (2011b), it is

inconvenient to directly compare XSDs. Therefore,

all hardened XSDs generated at the RP, as well as

the reference XSD, will be first transformed to

normalized tree representations. To generate the

normalized schema tree representations we use the

same methodology adopted in Vipul et al. (2011b),

where each XSD is traversed and for each XSD tag

encountered a node will be introduced. Each node in

the generated schema tree will have the following

four attributes:

 Node Name: this represents the name given to

an Element and/or an Attribute. However, for

nodes that do not have a name, such as nodes

that represent meta-data as complexType,

simpleType, sequence, etc…, Node Name will

be the name for the meta-data that the node

represents,

 Node Type: this represents the type of the

node such as an element, an attribute, an

extension, a restriction, a sequence, a

complexType or a simpleType, etc…,

 Data Type: data type of a node, and

 Cardinality: this refers to the minimum and

maximum number of occurrences of an

element.

For each of the generated trees, a tree signature is

devised using a key generation function that

uniquely identifies each schema tree.

Stage 2 Bucketing Equivalent Schemas

The main aim of this stage is to determine the

equivalence among the generated trees in an attempt

to cluster equivalent schemata together. We opine

that XSDs generated due to similar attack attempts,

or similar malformed SOAP-requests will have high

equivalence, thus will fall into the same bucket. As

in Vipul et al. (2011b), equivalence among two

schema trees is determined through the measure of

difference (MoD), which is a scalar value that

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

126

Figure 3: SECaaS Architecture.

represents an extent to which two schemas differ.

For calculating the MoD among all schemata we

adopt the algorithm presented in Vipul et al.

(2011b), which reduces the number of comparisons

by determining the equivalence among schemata by

calculating the MoD between each of the schema

trees and the reference schema tree. Schema trees

that have similar MoD with respect to the reference

schema tree will be considered equivalent and will

be grouped together in the same Bucket. In this

work, similar MoD means that the scalar value

calculated for the MoD is within a given range. For

our purpose, we create a list for each bucket that

stores the schema tree signature and its equivalent

MoD value with respect to the reference schema.

Stage 3 Selecting representative Schema
Tree for each bucket

We speculate that the schema trees grouped into the

same bucket are those that represent the XSDs that

have been generated in response to similar anomaly

situations. Accordingly, the schema trees grouped

within the same bucket represent the XSDs that

incorporate the refinements/updates that detect one

class of anomalies. Furthermore, we reason that

within each bucket, the schema tree with the

maximum MoD with respect to the reference schema

tree can be considered the representative schema tree

for the rest of the trees within the same bucket as a

larger MoD implies a greater degree of hardening

has been applied to the schema. Thus to get a

representative schema tree for each bucket, we sort

the list created for each bucket in the previous step

in descending order based on the value of the MoD,

and pick the schema tree with the highest MoD.

Stage 4 Generating a New Hardened
Reference Schema

A new hardened reference schema tree will be

created by merging the reference schema tree with

all representative schema trees identified in the

previous step. This merging step ensures that the

newly generated reference schema tree will

incorporate all hardening refinements/updates

required to detect the different anomaly classes that

have been encountered so far. The newly generated

reference schema tree will be converted back to an

XSD representation and passed back to the IP to be

used in the validation step. To do so, the CP

activates the Co-stimulation signal (CS) to update

the reference schema to the newly generated XSD.

In addition, the CP activates the Danger Zone (DZ)

signal that maps the left out schema trees within

each bucket to associated SOAP-requests, to be used

at the network level to identify sources of anomalies.

3.2 Security as a Service based on
BADF

Figure 3 presents the components of the SECaaS
architecture derived based on BADF. The
components of the SECaaS architecture are (i) the
SOAP message validator to validate SOAP
messages, (ii) the Schema repository to store
hardened XSDs, (iii) the SOAP-request repository to
store malicious requests, (iv) the Schema hardening
mitigation parser to develop hardened schema, and
(v) the Reference Schema. The proposed Security

Biologically Inspired Security as a Service for Service-Oriented Middleware

127

Figure 4: Flowchart for SECaaS Architecture.

Service is published within the UDDI registry as a
stand-alone web service and acts as a generic Web
service that secures other web services running on
UDDI registry at the application layer. Each of the
BADF processes operates independently and their
execution is loop-free and sequential. In addition,
each process depends on the different instances of
the XSDs that is stored progressively in the schema
repository for the correct overall operation of the
security service.

Our Security Service is activated when a client
sends a SOAP-request to the registry requesting a
particular web service. The SOAP-request for the
requested web service (“Web service 1” in Figure 3)
is handed to our Security Service. Accordingly, the
IP loads the XSD that is associated with the
requested web service. Initially, this XSD is
provided by the service provider and represents the
reference schema that will be used by the message
validator to validate the SOAP-request message. If
the validation of the message fails, the following
steps are executed (i) The IP logs the SOAP message
as a malicious message in the SOAP-request
repository; (ii) The IP replies to the client with a
SOAP-response message identifying the attack
vectors; (iii) The IP marks attack traces within the
XSD; (iv) The IP triggers the IS to activate the RP.

Upon receiving the IS, the RP retrieves the XSD
that has been previously accessed and marked by IP
from the schema repository. The RP generates a
hardened XSD by applying the hardening rules to
the accessed XSD. The refined XSD is stored in the
schema repository to replace the older XSD that was
previously associated with the message of web
service at IP. Typically, as mentioned earlier, the RP
generates the Recognition Signal (RS) based on the

threshold value for false positive or in response to a
detected attack, to initiate the CP.

On receiving the RS, the CP is activated, which
means that the dubious SOAP-requests for a
particular Web service has either exceeded a given
threshold value or has been identified with high
confidence as an attack. The CP retrieves all
accumulated XSDs for all logged SOAP-requests for
a given web service from the repository, and initiates
the self-adaptive schema-hardening algorithm over
all XSDs for the same Web service request. The
hardened XSD would update the last logged XSD by
RP that was used as the reference schema in the
previous processes.

4 EVALUATION

The BADF evaluation will be performed by

evaluating the SECaaS architecture that we have

derived in the previous section. We have developed

a prototype for the SCEaaS architecture on a

localhost and tested its behaviour against DoS

SOAP-attacks. The SECaaS prototype, as shown in

Figure 4, is composed of the main components of

the SOA, namely the SOAP Service Client, the

Service Registry UDDI, and the SOAP Server. The

prototype components implement the IP and RP

only, whereas the CP is not implemented, since the

adaptive-schema hardening algorithm comprises our

future work.

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

128

Table 1: DoS SOAP-based attacks detected comparison.

Attack

type

Attack

code

Attack details SOAP REQ & Parameters Attack Results

SECaaS

on

SECaaS off

Paramet

er

Tamper

ing

PT-1 Buffer Overflow of

String Types

<name>‘Cornary temperedtext-CAD’

</name>

detected detected

PT-2 Buffer Overflow of

Integer Types

<ldl> -1 </ldl> detected undetected

PT-3 Field Manipulation

causes URL

manipulation

<heart_diseases

RegistrationNumber="1295857444">

……</heart_diseases>

detected undetected

XDoS XD-1 XML Extra Long

Names

<name> Ischemic Heart Diseases

</name>

repeated 50 times

detected detected

XD-2 XML Namespace Prefix

Attack

<xs:heart_diseases description =

“Common type” -----repeated 100

times------>

detected undetected

XML

Injectio

n

XIJ-1 Reference Entity Attack <name>&xxe; </name> detected undetected

XIJ-2 Internal Entity Attack 1 <name>> </name> detected undetected

XIJ-3 Internal Entity Attack 2 <name><</name> detected undetected

XIJ-4 Invalid XML meta-

characters (quotes)

<xs:attribute heart_diseases

=‘’>345675453’ </xs:attribute>

detected detected

XIJ-5 Invalid XML meta-

characters (comment

tag)

<xs:attribute treatment_cost = ‘’>

465<!--</xs:attribute>

detected undetected

Recursi

ve

payload

RP-1 Tag recursive calls <level> <level>--- Beginner----

</level></level>> called 100 times

detected detected

RP-2 XML Recursive Entity

Expansion

<!ENTITY x8 “&x7;&x7;”>

called as <attack>&x8;</attack>

detected undetected

4.1 The Development Environment

In our implementation, we have used Eclipse JAX-
WS as the SOAP engine and Apache Tomcat juddi-
tomcat-3.3.2 on Microsoft Windows 7 as the SOAP
server. For the Service Registry UDDI, we used
jUDDI version juddi-distro-3.3.2. All the user and
service information about the published schema
were stored in the MySQL Community Server
5.5.14 database for jUDDI. All the Web services
were developed using Java (Java SE) version jdk1.
6.0_21. For testing our security service against
incoming SOAP messages we used SoapUI, which
is a GUI for unit and load testing of SOAP web
services. To evaluate SECaaS performance, its
responses were compared to the responses generated
by an external validation/parser tool (Mantid 2016)
that is used in our base case scenario. We reverted to
this evaluation methodology since the comparative
evaluation with the literature mitigation techniques
was not possible. This can be attributed to the fact
that to the extent of our knowledge the concept of
SECaaS specific to DoS attacks has not been

presented before. Most of the reported work falls
short of evaluation results and address general web
service attacks. The techniques discussed in
Gruschka and Luttenberger (2006) and Jensen et al.
(2011) focused on performance evaluation and used
large data sets for testing a number of web service
elements. However, in our case, we care to evaluate
the efficacy of SECaaS to detect SOAP based DoS
attacks within the SOA. Therefore, we reverted to a
local host implementation since an online
implementation was not feasible.

To validate the efficacy of our security service on
localhost, we built Disease Information Web
services, which has multiple APIs. The service
operates on 1000 different health trace dataset
gathered into a disease database.

4.2 The Types of Attacks

Our evaluation scenarios use four different DoS

SOAP-attacks, namely Parameter Tampering,

XDoS, XML Injection, and Oversize/ Recursive

payload. The Parameter Tampering attack infuses

Biologically Inspired Security as a Service for Service-Oriented Middleware

129

malicious content with node/ tags within message

query to deceive the validator. The XDoS attack

tries to exhaust the system resources on the server by

iteratively declaring strings. The XML Injection

injects additional nodes or modifies existing nodes

so as to change the operation parameters of the

message. Finally, the Recursive payload adds

additional nodes repeatedly, which are excessively

large, to deplete CPU cycles. All these attacks (listed

in Table 1) were performed using a malicious insider

or man-in-the-middle techniques of DoS. Hence, to

generate a good set of inputs to be used in testing,

we looked at the WSDL document of Disease Web

Service to find loopholes. These attacks traces were

included in the SOAP request to measure the

efficiency of SECaaS Architecture.

4.3 Evaluating the SECaaS
Architecture

Our evaluation is composed of two scenarios; a base

scenario and a SECaaS scenario. In the base

scenario, the security service was turned off and an

external parser was used to validate the SOAP

requests. In the SECaaS scenario, the security

service was turned on and the SOAP requests were

validated at IP. In each scenario, we send one

malformed SOAP-request followed by several

legitimate SOAP requests. Each malformed SOAP-

request comprises an attack and invokes a specific

web service with some tampered input parameter.

Table 1 details the different attacks that were

administered to the system in each scenario and the

response in each case. Some XSD hardening results

are presented for two of the administered attacks,

namely Parameter Tempering (PT-2) and XML

Namespace Prefix Attack (XD-2) for IP and RP.

4.3.1 Buffer Overflow of Integer Type

To generate the attack PT-2, we analyzed the disease

service WSDL document. From the document we

were able to identify the rule for the element “ldl”.

Element “Id1” accepts a 4-bit integer variable as an

input and has a value that ranges between 1 and 15.

The XSD declaration imposes the rule

<xs:minLength value="1"/> <xs:maxLength

value="15"/> without a restriction. Hence, we tried

to input a string which is less than 1 or greater than

15 and checked the server response. In Figure 5, an

invalid input value of -1 is passed to the element

name ldl. If the input value is undetected it would

Figure 5: PT-2 SOAP Request.

Figure 6: SOAP Response at SECaaS on case.

exploit the parser to result in a buffer overflow

exception. In the base case, when the SECaaS was

turned off the invalid input was not detected.

However, when the SECaaS was turned on, the

invalid input resulted in a server exception to handle

a buffer overflow attack situation. The result of

attack detection is shown in Figure 6. For hardening,

the RP imposed a restriction as a type of “integer”

over all declared tags in the older XSD as new

hardened XSD. This restriction requires the input to

be of type integer for all declared tags.

4.3.2 XML Namespace Prefix Attack

The purpose of this attack is to place as many

attributes in an element, so that a buffer overflow

would occur before the namespace prefix gets

declared. Once a namespace and its prefix are

declared, adding the prefix label to elements and

attributes qualifies the entity for the namespace.

Placing the target namespace attribute at the top of

Old XSD: < xs:minLength

value="1" xs:maxLength value="15">

New XSD: < xs:restriction

base="xs:integer" xs:minLength

value="1" xs:maxLength value="15">

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

130

Figure 7: XD-2 SOAP Request.

Figure 8: SOAP Response at SECaaS on case.

the XSD schema means that all entities defined in it

are part of this namespace. In this attack, we enforce

a buffer overflow by infusing a large number of

attributes in an element. Thus, before the parser

could reach the namespace prefix declaration to

generate an error, a buffer overflow occurs. Hence,

we tried to play with the element tag <description>,

to induce our attack. As shown in Figure 7, within

the SOAP request, the attribute description is

inserted iteratively to overflow the parser. In the

base case, the attack was detected only when the

attribute is iterated for a maximum of 5 times.

Otherwise the parser crashed. However, when the

SECaaS was turned on, the IP detected the attack

even when we continually increased the attribute

iteration. Figure 8 shows that server throws an

exception for the detected attack.  The RP placed

some restrictions over the prefix declaration in XSD.

The description element within schema is limited to

an occurrence of 5 times, to avoid its iteration.

Moreover, the input string is constrained by the

maximum length to 100. The element name

“description” in the older XSD is replaced with the

restriction in the new XSD as shown in XML code.

Table 2: Attack detection results (%).

Attack type # Attack code

Mix

% Attack Results

SECaaS

on

SECaaS

off

Parameter
Tampering

PT-1, PT-2, &
PT-3

63.63 36.36

XDoS XD-1, XD-2, &

XIJ-1

70 50

XML

Injection

XIJ-1, XIJ-2,

XIJ-3, XIJ-4, &

XIJ-5

80 50

Recursive

payload

RP-1 & RP-2

80 40

As shown in Table 1, SECaaS prototype was

capable of detecting all contrived attacks in contrast

to the base case, which missed several attacks. The

summary of the results of our evaluation can be

found in Table 2. As can be seen, the SECaaS

prototype is more capable of attacks detection

compared to the base case. We note that our

evaluation has covered only a subset of the possible

SOAP attacks mentioned in literature, since the

exhaustive enumeration of all possible SOAP attacks

is not possible. However, we claim that the results

obtained provide a proof of concept and show the

efficacy of our SECaaS architecture to defend web

services against SOAP based attacks.

5 CONCLUSIONS

In this paper, we have presented a generic

application-level Bio-inspired Anomaly Detection

Framework (BADF) that improves the security

features of the SOM by defending web-service

based-applications from Denial of Service (DoS)

attacks. Based on BADF we have derived a

Old XSD:

<xs:simpleType name="description"

xs:minOccurs="1" maxOccurs="5"

minLength value="15"maxLength

value="100”>

New XSD:

<xs:simpleType name="description"

xs:minOccurs="1" maxOccurs="5" >

<xs:restriction base="xs:string"

minLength value="15" maxLength

value="100”>

 </xs:restriction>

</xs:simpleType>

Biologically Inspired Security as a Service for Service-Oriented Middleware

131

“Security as a Service” (SECaaS) architecture that

employs SOAP message validation and subsequent

schema hardening to defend against DoS attacks. To

evaluate our work we have developed a prototype

for the (SECaaS) architecture and tested it against

several DoS SOAP-based attacks. Results show that

our prototype was capable of detecting all attacks

administered to the system. Our future work will

focus on implementation and evaluation of CP

algorithm. Although the proposed work presents the

detection of some DoS attacks, a formal proof for

mitigation is missing. Thus, upcoming work would

focus on performance evaluation of the presented

work in comparison to other techniques.

REFERENCES

Al-Jaroodi, J., & Al-Dhaheri, A., 2011, ‘Security Issues of

Service-Oriented Middleware’ in International

Journal of Computer Science and Network Security,

vol. 11, no.1.

Al-Jaroodi, J., Mohamed, N., & Aziz, J., 2010a, ‘Service

Oriented Middleware: Trends and Challenges’ in

Proceedings of the 2010 Seventh International

Conference on Information Technology: New

Generations (ITNG) , IEEE CPS, Las Vegas, USA.

Al-Jaroodi, J., & Mohamed, N., 2012, ‘Service-oriented

middleware: A survey’ in Journal of Network and

Computer Applications, vol.35, p. 211–220.

Al-Jaroodi, J., Jawhar, I., Al-Dhaheri, A., Al-Abdouli, F.,

& Mohamed, N., 2010b, ‘Security middleware

approaches and issues for ubiquitous applications’ in

Science Direct Computers and Mathematics with

Applications, vol. 60, p. 187–197.

Lazarevic, A., Kumar, V., & Srivastava, J., 2005,

‘Intrusion Detection: Survey’ in Managing Cyber

Threats: Issues, Approaches, and Challenges,

Springer Science and Business Media, Inc., New

York, p. 19- 78.

Bichler, M., & Lin, K.J., 2006, ‘Service-Oriented

Computing’ in IEEE Computer, vol. 39, no. 3, p. 99–

101.

Hashim, F., Munasinghe, K.S., & Jamalipour, A., 2010,

‘Biologically Inspired Anomaly Detection and

Security Control Frameworks for Complex

Heterogeneous Networks’ in Proceedings of the IEEE

Transactions on Network and Service Management,

vol. 7, no. 4, p. 268–281.

Gruschka, N., & Luttenberger, N., 2006, ‘Protecting Web

Services from DoS Attacks by SOAP Message

Validation’ in IFIP TC-11 21st International

Information Security Conference, SEC 2006, vol. 201,

p. 22–24.

Jensen, M., Gruschka, N., Herkenhoner, R., Luttenberger,

N., 2007, ‘SOA and Web Services: New

Technologies, New Standards - New Attacks’ in

ECOWS’07 Fifth European Conference on Web

Services, p. 35-44.

Jensen, M., Gruschka, N., & Herkenh, R., 2009, ‘A

Survey of Attacks on Web Services’ in Journal

Computer Science - Research and Development.

Jensen, M., Meyer, C., Somorovsky, J., & Schwenk, J.,

2011, ‘On the Effectiveness of XML Schema

Validation for Countering XML Signature Wrapping

Attacks’ in IEEE, viewed 12 January 2015, from

http://dx.doi.org/10.1109/IWSSCloud.2011.6049019.

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, JJ.,

Nielsen, HF., Karmarkar, A., & Lafon, Y., 2007,

‘SOAP Version 1.2.’ in W3C Recommendation

specification―SOAP Version 1.2, vol. 24.

“Web Services Security: SOAP Messages Security 1.1”,

OASIS Standard, viewed 2 March 2015, from

http://www.oasis-open.org/.

Vipul, P., Mohandas, R., & Pais, A. R., 2011a, ‘Attacks

On Web Services And Mitigation Schemes’ in

Proceedings of the 2010 International Conference,

Security and Cryptography (SECRYPT).

Vipul, P., Mohandas, R., & Pais, A., 2011b, ‘Safeguarding

Web Services Using Self-Adaptive Schema Hardening

Algorithm’ in Advances in Network Security and

Applications, Communications in Computer and

Information Science, vol. 196, Springer Berlin

Heidelberg, Chennai, India.

Gupta, A. N., & Thilagam, P. S., 2013, ‘Attacks On Web

Services Need To Secure Xml On Web’ in Computer

Science & Engineering: An International Journal

(CSEIJ), vol. 3, no. 5.

Gruschka, N. & Iacono, L., 2009, ‘Vulnerable Cloud:

SOAP Message Security Validation Revisited’ in

IEEE International Conference on Web Services

ICWS.

Schäfer, G., Sisalem, D., & Kuthan, J., 2014, ‘Denial of

Service Attacks and Sip Infrastructure Attack

Scenarios and Prevention Mechanisms’, viewed 10

May 2014, from

http://www.iptel.org/~dor/papers/Sisalem1204_DoS.p

df.

W3C.2008, viewed 22 March 2015, from

https://www.w3.org/TR/xml.

W3C.2001, viewed 22 March 2015, from

http://www.w3.org/TR/wsdl.

W3C.2007, viewed 22 March 2015, from

http://www.w3.org/TR/soap/

W3C.2001 viewed 22 March 2015, from

https://www.w3.org/XML/Schema.

OASIS UDDI Specification TC, viewed 22 March 2015,

from https://www.oasis-open.org/committees/uddi-

spec/faq.php.

MANTID Using XML Schema, viewed 18 Oct 2016, from

http://www.mantidproject.org/Using_XML_Schema.

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

132

