
Combining Behaviour-Driven Development with Scrum for Software
Development in the Education Domain

Pedro Lopes de Souza1, Antonio Francisco do Prado1, Wanderley Lopes de Souza1,
Sissi Marilia dos Santos Forghieri Pereira2 and Luı́s Ferreira Pires3

1Department of Computing, Federal University of São Carlos, PO Box 676, 13565-905, São Carlos, São Paulo, Brazil
2Department of Medicine, Federal University of São Carlos, PO Box 676, 13565-905, São Carlos, São Paulo, Brazil

3Centre for Telematics & Information Technology, University of Twente, PO Box 217, 7500AE, Enschede, The Netherlands

Keywords: Software Engineering, Methodologies for System Development, BDD, Scrum, ICT in Education, PBL.

Abstract: Most of the Brazilian universities employ teaching-learning methodologies based on classic frontal lectures.
The Medicine Programme of the Federal University of São Carlos (UFSCar) is an exception, since it em-
ploys active learning methodologies. The Educational and Academic Management System for Courses Based
on Active Learning Methodologies (EAMS-CBALM) was built and it is currently used to support this pro-
gramme, and has been made available for other programmes as well. This system was developed using Scrum,
but during its development project it was often necessary to reconsider system behaviour scenarios, and con-
sequently the product backlog items, mainly due to poor communication between the Product Owner (PO)
and the development team. This paper discusses a case study in which Behaviour-Driven Development (BDD)
has been used in combination with Scrum to redesign some EAMS-CBALM components. The paper demon-
strates that the communication between the PO and the development team can be improved by using BDD as a
communication platform to unambiguously define system requirements and automatically generate test suites.

1 INTRODUCTION

Until recently, most universities still employed tradi-
tional teaching-learning methodologies based on clas-
sic frontal lectures (Weltman, 2007). The Medicine
Programme of the Federal University of São Car-
los (UFSCar) has broken this trend, by introduc-
ing active learning methodologies in its curricu-
lum. This programme was established in 2006, and
follows a socio-constructivist educational approach,
has a competency-oriented pedagogical program,
and employs active learning methodologies, such as
Problem-Based Learning (PBL) (Rhem, 1998), and
Practice-Based Learning (Carlisle et al., 2009).

In order to provide computational support to these
active learning methodologies, the Ubiquitous Com-
puting Group (UCG) of UFSCar coordinated the de-
velopment of the Educational and Academic Man-
agement System for Courses Based on Active Learn-
ing Methodologies (EAMS-CBALM) (Santos et al.,
2016). EAMS-CBALM was developed using Scrum
(Schwaber and Sutherland, 2016), which prescribes,
amongst others, sprint reviews, which are meetings
involving the development team and Product Owner

(PO) to define the product backlog and evaluate the
sprint results. In this project, it was often necessary to
redefine some system behaviour scenarios, and conse-
quently the product backlog items, due to misunder-
standing of the stories reported by the PO.

Behaviour-Driven Development (BDD) is an ap-
proach to software development that prescribes the
definition of usage scenarios (behaviour specifica-
tions) upfront, as a way to better understand what the
software is supposed to do (its ‘behaviour’) (North,
2006). This paper discusses a case study in which
we combined BDD with Scrum in order to address
the problems mentioned before, in which we re-
designed some EAMS-CBALM components. This
paper demonstrates that the communication between
the PO and the development team can be improved
quite a lot by applying BDD in combination with
Scrum.

This paper is further structured as follows: Sec-
tion 2 introduces the UFSCar Medicine Programme,
Section 3 describes the original EAMS-CBALM ar-
chitecture, Section 4 presents the case study, Section 5
discusses the benefits and drawbacks of our results,
Section 6 presents some related work and Section 7

Souza, P., Prado, A., Souza, W., Pereira, S. and Pires, L.
Combining Behaviour-Driven Development with Scrum for Software Development in the Education Domain.
DOI: 10.5220/0006336804490458
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 2, pages 449-458
ISBN: 978-989-758-248-6
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

449



gives our conclusions.

2 UFSCar MEDICINE
PROGRAMME

The UFSCar Medicine Programme curriculum is
based on educational activities organised in three ed-
ucational units, as shown in Figure 1: Education Unit
of Simulation of Professional Practice (EUSPP), Edu-
cation Unit of Professional Practice (EUPP), and Ed-
ucation Unit of Elective Activities (EUEA) (UFSCar,
2007). Figure 1 also shows that simulation practice is
gradually replaced by professional practice through-
out the programme.

Figure 1: UFSCar Medicine Programme curriculum.

The educational activities of the UFSCar
Medicine Programme have learning triggers, which
are problems that simulate or portray the daily activ-
ities to be performed by the students. These triggers
activate the constructivist spiral (Tempski, 2014),
which encourages students to reflect and stimulate
them to develop their capacities. For each learning
trigger, the students traverse the constructivist spiral,
starting by identifying the problem, formulating
explanations, preparing learning questions, looking
for new information, building new meanings, and
finally evaluating the process.

3 EAMS-CBALM

The Educational and Academic Management System
for Courses Based on Active Learning Methodolo-
gies (EAMS-CBALM) (Santos et al., 2016) was de-
veloped by the UCG/UFSCar, in partnership with
the DMed/UFSCar, the Teaching and Research Insti-
tute (TRI) of the Sı́rio-Libanês Hospital (SLH), and
the TokenLab software house. EAMS-CBALM was
developed using Scrum (Schwaber and Sutherland,
2016).

3.1 Development Process

In Scrum, the units of work are divided in sprints,
which can last between a week and a month, period
in which the development team creates an increment
of the product to be delivered to the user. The devel-
opment team must have a Product Owner (PO), who
is designated by the client to follow the development
process, which in a nutshell consists of: sprint plan-
ning; product delivery at the end of each sprint; and
final product delivery, properly deployed and tested.

Scrum emphasises the interactions between the
users and the development team, mainly when the re-
quirements are established and selected in user sto-
ries, in order to obtain a fast delivery and a satisfac-
tory quality of the product. Most of the clarifications
and details regarding the product under development
are obtained during these interactions, allowing prod-
uct adaptations to be done quickly, thus avoiding bot-
tlenecks and delays and reducing the likelihood of un-
satisfactory results.

Throughout the one-year development of the
EAMS-CBALM, weekly meetings were held at To-
kenLab in São Carlos-SP (Brazil) for the planning
and analysis of the different phases of this project, in-
volving the UCG/UFSCar coordinator, the coordina-
tor of the TokenLab development team, two POs des-
ignated by TRI/SLH and DMed/UFSCar (the product
clients), respectively, and a PhD student. Monthly
sprint review meetings were held at TRI/SLH in
São Paulo-SP (Brazil) to present the products result-
ing from the sprints, involving the participants of
the TokenLab meetings and TRI/SLH members di-
rectly or indirectly related to the project. In addi-
tion, the PhD student participated in courses offered
by the DMed/UFSCar and the TRI/SLH to observe
the teaching-learning process of these courses.

During the TokenLab meetings, the POs reported
user stories informally in Portuguese, describing the
activities to be performed by the EAMS-CBALM
users. From these user stories, system requirements
were captured and specified also informally in Por-
tuguese. Using these requirement specifications, the
development team defined system behaviour scenar-
ios and implemented the screen pages for these sce-
narios, which were presented and discussed at the
next meeting. A total of 109 hours have been spent
with these meetings, in which the CBALM teaching-
learning process was scrutinised, resulting in the defi-
nition of the functional and non-functional system re-
quirements, and the overall system architecture.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

450



Figure 2: EAMS-CBALM academic module.

3.2 System Architecture

EAMS-CBALM has two main functional modules:
academic and pedagogical. The academic module,
shown in Figure 2, allows its users to define the pro-
gramme structure, the CBALM community, and the
curriculum. The programme structure is used for
creating courses, where each course can be offered
several times, and each course offer can have sev-
eral classes (like, e.g., ‘the class of 2016’). The
CBALM community consists of students and teach-
ers. A teacher can play the following roles: facilita-
tor in curricular activities, supervisor, preceptor, con-
sultant, appraiser, author of simulated practices and
of educational units, manager of educational units,
working groups or educational resources. Registered
students can be enrolled in courses, and then assigned
to groups. The curriculum is used to create a curricu-
lum structure with at least two and at most five hier-
archical levels. For example, the UFSCar Medicine
Programme curriculum, which is shown in Figure 1,
has five levels: cycles, years, educational units, cur-
ricular activities and educational actions.

The pedagogical module, shown in Figure 3, re-
flects the curricular structure over each class of each
course previously recorded in the academic module.
The educational actions are programmed in the ped-
agogical module, giving rise to the educational envi-
ronment in which students and teachers perform and

record their activities. The planning of an educational
action starts with the meeting preparation, where each
meeting corresponds to a step of the constructivist spi-
ral, and ends with the evaluation preparation.

EAMS-CBLAM allows students to discuss
through forums, exchange text documents, images,
videos, and audios fragments, create individual or
collaborative documents, store and retrieve document
versions, and share the knowledge produced by other
students and teachers. All these resources contribute
to the student capabilities development leading to
knowledge production.

Another EAMS-CBALM feature regards data vi-
sualisation, since all educational content produced
during the teaching-learning process is provided by
means of a curricular trajectory. This content ranges
from the teaching contribution to the individual and
collaborative knowledge produced by the students.

The curricular trajectory can be viewed in a time-
line or be associated with an educational unit, allow-
ing students and teachers to visualise all developed
practices in the most adequate way at each moment.
In addition, the produced knowledge is indexed by
keywords, facilitating the search of any content cre-
ated throughout the teaching-learning process.

Figure 3: EAMS-CBALM pedagogical module.

Combining Behaviour-Driven Development with Scrum for Software Development in the Education Domain

451



4 CASE STUDY

During the EAMS-CBALM development the non-
functional requirements were defined according to 5
qualitative design criteria: Performance, Interoper-
ability, Portability, Responsiveness and Security. The
functional requirements of this system were orga-
nized into 19 modules: Authentication, General Set-
tings, Access Profiles, Users, Course, User Registra-
tion in Class, Calendar, Programming, Groups, Ped-
agogical Planning, Evaluation Management, Trajec-
tory, Repository of Group Documents, Repository of
Individual Documents, Forums, Meetings, Frequency,
Evaluations, and Performance Record.

The Evaluation Management module generated
the most controversies between POs and developers,
since the CBALM student evaluation is different and
more complex than the traditional one. This module
is composed of 14 functional requirements, and al-
though the scenarios of Evaluation Instrument Reg-
ister requirement have been redone several times, its
final implementation did not fully satisfy the POs.
Therefore, we selected this module in this case study,
by focusing on the CBALM student evaluation pro-
cess. Furthermore, one of the POs that was involved
in the EAMS-CBALM development participated in
this case study. By keeping regular meetings with this
PO, we developed new source code for the Evaluation
Instrument Register requirement by combining BDD
with Scrum. This new source code was presented to
the PO and compared with the implementation origi-
nally produced by TokenLab.

4.1 Behaviour-Driven Development

Test Driven Development (TDD) (Beck, 2002) is
a software evolutionary development methodology,
based on short development cycles, in which auto-
mated tests are described previously to the functional
code. Acceptance Test Driven Development (ATDD)
(Koskela, 2008) extends TDD by using acceptance
tests to represent stakeholders requirements.

Behaviour-Driven Development (BDD) is a soft-
ware agile development methodology, originally pro-
posed by Dan North (North, 2006) and considered
an evolution of TDD and ATDD, whose fundamen-
tal principle is: “stakeholders and developers should
refer to the same system in the same way”. For
achieving this goal, an ubiquitous language is re-
quired that is understandable by all those involved
in system development and that enables executable
granular specifications of the system’s behaviour and
testing (Diepenbeck and Drechsler, 2015).

Six main characteristics of BDD were identi-

fied in (Solis and Wang, 2011): ubiquitous lan-
guage; iterative decomposition process; user story
and scenario templates; automated acceptance test-
ing with mapping rules; readable behaviour-oriented
specification code; and behaviour-driven at different
phases. Using these characteristics, (Solis and Wang,
2011) also analyses seven of the main BDD tools:
NBehave (NBehave, 2014) and JBehave (JBehave,
2015); MSpec (MSpec, 2016) and RSpec (RSpec,
2016); StoryQ (StoryQ, 2010); Cucumber (Cucum-
ber, 2016); and SpecFlow (SpecFlow, 2016).

BDD is an evolving methodology that does not
have a clear definition and unanimous understanding,
and the existing support tools focus mainly on the im-
plementation phase, providing limited support to the
requirements gathering, analysis, and design phases
of software life cycle. Starting from (Solis and Wang,
2011), we did a systematic review of BDD-related
work, and an analysis of the current BDD toolkits.
Figure 4 shows the BDD process depicted using the
Structured Analysis and Design Technique (SADT)
diagrammatic notation.

The purpose of this case study has been to ex-
periment with the combination of BDD and Scrum,
aiming at exploiting the benefits of this combina-
tion. During a Scrum sprint planning meeting in-
volving POs and the development team, requirements
are listed according to their priority and added as
user stories to the product backlog. The develop-
ment team then decides which stories are tackled
during the sprint, and creates a sprint backlog with
the tasks to be performed in the sprint. In order to
avoid rework, a clear understanding of these require-
ments and the corresponding functional behaviour is
necessary. According to (Chauhan, 2016) BDD can
be used for this purpose if it takes a central role in
some Scrum artefacts and rituals: the product back-
log and the sprint backlog; the daily scrum meeting;
and the sprint meeting. In addition, according to (Ma-
lik, 2013) BDD can also be applied in backlog refine-
ment. In the sequel, we discuss how we combined
BDD and Scrum in our case study by discussing each
of the stages of the BDD process in Figure 4.

4.2 Ubiquitous Language

A ubiquitous language is essential in BDD. It must
have a structure derived from a business domain
model, offer a terminology that is understandable to
both clients and developers, be used in all system de-
velopment phases (Evans, 2004). Therefore, a ubiq-
uitous language had to be created for the communica-
tion between the POs and developers.

Most of the ubiquitous language terminology

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

452



Figure 4: BDD process in SADT.

should be defined in the analysis phase, but new terms
can be added at any time and at any phase. In the de-
sign and implementation phases, this terminology is
used to name classes and methods, making the code
clearer and better readable. BDD itself has a sim-
ple pre-defined ubiquitous language for the analysis
phase, which is domain-independent. This language
is used to formulate the user stories and scenarios.

In the first meetings with the PO we defined the
terminology employed in the CBALM student eval-
uation process. Evaluations are performed by all in-
volved in CBALM activities, expressing their percep-
tions, indicating the relevant aspects, and aspects that
need to be improved, reworked or replaced. Two
evaluation types are supported, namely formative and
summative evaluations, and the possible results to
be received/given are ‘satisfactory’, ‘needs improve-
ment’ and ‘unsatisfactory’. The student who does not
reach a satisfactory result must undertake an improve-
ment plan proposed by the teacher, and then be re-
evaluated (UFSCar, 2007). Evaluations are consoli-
dated by applying a set of instruments, which are de-
scribed in the following story reported by the PO:

“In order for the course coordinator to carry out
a student evaluation, six instrument types have to be
previously registered. This requirement is needed be-
cause the evaluation form heading changes according
to the employed instrument. When registering an in-
strument, the system must keep the following infor-
mation: name, acronym and the relationship between
who responds to the evaluation, who evaluates and
who is evaluated. This last information is crucial be-
cause in conjunction with the curricular activity it de-
fines which form type is applied when registering an
evaluation. The six instrument types are:

(a) Performance Assessment of the Teaching-
Learning Process (acronym: PATLP) - It is
formative. Teacher evaluates student. The

Respondent is the teacher. A PATLP has 3 steps:
teacher evaluation, classmate evaluation, and
improvement plan if necessary. The PATLP
also allows a Self-Evaluation (SE). SE skills are
essential for the success of every professional in
maintaining professional competence according
to the teaching-learning process.

(b) Reflective Portfolio (RP) - It is formative and
summative. The monitoring of each student’s
portfolio by the teacher is part of the formative
assessments. The summative evaluation refers to
its preparation and presentation according to pre-
established delivery dates that must be recorded
into the system.

(c) Written Examination (WE) - It is summative.
Each WE is composed of questions created by
the teacher, answered by the student, and then as-
signed by the teacher. Each question is individ-
ually analyzed in order to determine the student
progress. All question must have a ‘satisfactory’
result for the student to pass the WE. Questions
that failed to get a ‘satisfactory’ result are consid-
ered as progress deficit and will be worked out in
the next WE.

(d) Progress Test (PT): It is formative and summa-
tive. A PT consists of multiple choice questions.
The teacher monitors the performance of each
student’s performance in a PT as part of the for-
mative assessments. A PT is also summative be-
cause the students presence at a PT gives them a
‘satisfactory’ result.

(e) Objective and Structured Evaluation of Profes-
sional Performance (OSEPP) - It is summative.
Instead of questions like WE, the students act in
clinical cases and are evaluated by the teacher.
The OSEPP evaluation is similar to the WE eval-
uation.

Combining Behaviour-Driven Development with Scrum for Software Development in the Education Domain

453



(f) Problems Based Exercise (PBE) - It is formative.
A PBE assesses the student’s individual ability to
study and identify health needs, formulate patient
problems, and propose a healthcare plan for a par-
ticular context and problem situation.”

Based on this user story, we defined the main ubiq-
uitous language terminology for the CBALM student
evaluation process. Table 1 summarises the terminol-
ogy that has been employed in the development of the
Evaluation Instrument Register, showing the relation-
ships between the involved actors.

Table 1: Ubiquitous language terminology for Evalu-
ation Instrument Register.

Instrument
type Respondent Appraiser Appraisee

PATLP Teacher Teacher Student
PATLP (SE) Student Student Student
RP / PT

WE / PBE
OSEPP

Student Teacher Student

4.3 BDD Templates

The BDD analysis phase starts by identifying the
most expected system behaviours, which are derived
from the business outcomes to be produced by the
system. Based on these business outcomes, feature
sets are defined, where each feature set can contain
subsets, and indicates what should be accomplished
to achieve a specific business outcome. When com-
bining BDD with Scrum we prescribe that the POs
and the development team should agree on the feature
set, and ideally define it together.

Features are expressed through user stories, and
describe the interactions among a user and the system.
A user story must elucidate the users role in this story,
the feature desired by the user, and the benefit gained
by the user if the system provides the desired fea-
ture. Due to different contexts, a user story may have
different versions that will lead to different story in-
stances, called scenarios, which should describe spe-
cific contexts and outcomes of this user story. When
using Scrum, this should be provided by the POs.

A scenario describes how the system that imple-
ments a given feature should behave when it is in a
main context with possible additional contexts that
could be represented by additional conditions. When
an event happens, e.g., a system entry, the scenarios
result can be one or more actions that change the state
of the system or produces some system output.

This initial analysis may be sufficient for a first
implementation, even if important system behaviours
are yet undisclosed. However, as new behaviours are

revealed, the whole process illustrated in Figure 6 can
be performed again, thus characterising the ”iterative
decomposition process” (Solis and Wang, 2011).

BDD user stories and scenarios follow the prede-
fined templates described in (North, 2006) by em-
ploying a simple ubiquitous language. However,
BDD tools generally do not exactly follow these mod-
els. For example, JBehave supports a slightly dif-
ferent user story template than the one proposed in
(North, 2006), but the same scenario template. In ad-
dition, JBehave supports most of the BDD character-
istics presented in (Solis and Wang, 2011), it is well-
accepted and widely used in the BDD community, it
is open source software, and is frequently updated.
Those are the main reasons that have led us to choose
JBehave in this case study.

The JBehave user story template is as follows

Narrative: [story title]
In order to [benefit]
As a [role]

I want to [feature]

where Narrative:, optionally followed by a story ti-
tle, describes an activity to be performed by a user;
In order to describes the benefit obtained by the user
once the activity is performed; As a defines the role
played by the user on that story; and I want to defines
the feature provided by the system that allows the user
to perform the activity.

The JBehave user story for our case study is the
following:

Narrative: Evaluation Instrument
Register
In order to create the student
evaluation form header
As a course coordinator
I want to previously register all

instrument types into the system

The JBehave scenario template is as follows

Scenario: [scenario title]
Given [main context]
And [additional contexts]
When [specific event]
Then [main outcome]

And [additional outcomes]

where Scenario:, followed by a scenario title, de-
scribes how the system that implements a given fea-
ture should behave; Given defines the system main
context that could be represented by a system state;
And is an optional clause that defines additional con-
texts that could be represented by additional condi-
tions; When defines a specific event that could be
some system input; Then defines the main outcome,
which could be an action for changing the system

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

454



state; And is an optional clause that defines additional
outcomes that could be other actions, for example, to
produce system outputs. This template is similar to
an Extended Finite State Machine (EFSM) model (El-
Fakih et al., 2016).

There are six scenarios in our case study, one for
each instrument type. The JBehave scenario for the
PATLP instrument is the following:

Scenario: Register the PATLP fields
into the system
Given the name Performance Assessment
of the Teaching-Learning Process
And the acronym is PATLP
And the respondent and appraisee is a
student and the appraiser is a
teacher
When the user select register
Then the system register the
instrument
And the PATLP form header for student
evaluation is created
And the Evaluation Instrument list is
updated

4.4 Acceptance Tests

A BDD acceptance test is an executable specification
of the system behaviour, which verifies the interac-
tions or behaviours of objects rather than their states.
The produced scenarios are translated into tests that
guide the implementation. A scenario is composed of
several steps, where each step is an abstraction that
represents the three elements of a scenario: context,
event and action. The meaning of these elements is: in
a particular case of a user history or context C, when
the event X happens, the system response should be
Z. Each step is mapped to one test method, and the
scenario passes only if all its steps pass. Each step
follows the TDD’s process: red, green, and refactor-
ing to make it pass.

Since in BDD all scenarios must be executed
automatically, the acceptance criteria must also be
imported and analysed automatically. The classes
that implement the scenarios read their specifications,
which are written in the ubiquitous language, and exe-
cute them. Therefore, the mapping between scenarios
and testing code needs to be explicitly defined.

There are six acceptance tests in our case study,
one for each scenario. The most relevant excerpts of
the JBehave acceptance test code for the PATLP sce-
nario are shown below
public class InstrumentRegisterSteps

extends Steps{
... // setting variables and methods to

// support the scenarios
@Given("the name is Performance Assessment

of the Teaching-Learning Process")

public void setInstrumentName(String
instrumentName){

... //set instrument name }
@Given("the acronym is PATLP")
public void setInstrumentAcronym(String

acronym){
... //set instrument acrynom }

@Given("the respondend and appraisee is
the student and the appraiser

is the teacher")
public void setRelationship(Boolean

sameRespondentAndAppraisee){
... //set relationship }

@When("the user select register")
public void addInstrument() {

... //perform action }
@Then("the system register the instrument")
public void saveInstrument() {

... //data persist }
@Then("the PATLP form header for student
evaluation is created")

public void instrumentHeader() {
... //creating and persisting headers }

@Then("the Evaluation Instrument list
is updated")

public void instrumentListUpdate() {
...//Evaluation instrument list updated }

... // next scenario }

JBehave uses the @Given, @When and @Then
annotations to relate scenario specification clauses to
Java methods, and the Java class that implements
these methods should extend the Steps class. JBe-
have allows the scenario to be executed as a JUnit test
(JUnit, 2016). The link between JBehave’s executor
framework and the textual scenarios is provided by
the Embeddable class definitions. This class extends
class JUnitStory and its name can be mapped to the
textual story filename.

4.5 Implementation

In BDD the code must be readable, contain the spec-
ification, describe the behaviour of the objects and
be part of the system documentation. The classes
and methods names must be sentences, and the
names of the methods must indicate their function-
ality. Mapping rules assist in the production of read-
able behaviour-oriented code and ensures that classes
and methods names are the same as user story titles
and scenarios, respectively. In addition, these names
make use of the ubiquitous domain-specific language
defined in the project. A behaviour-oriented code of
the JBehave implementation for the Evaluation In-
strument Register requirement can be seen below.
public class EvaluationInstrumentRegister{
// variables

public void setInstrumentName(String
instrumentName){

Combining Behaviour-Driven Development with Scrum for Software Development in the Education Domain

455



//set instrument name }
public void setInstrumentAcronym(String

acronym){
//set instrument acrynom }

public void setRelationship(Boolean
relationship){

//set relationship }
public void addInstrument() {

//perform action }
public void saveInstrument() {

//data persist }
public void instrumentHeader() {

//creating and persisting headers }
public void instrumentListUpdate() {

//Evaluation instruments list updated
} ... }

Since the EAMS-CBALM was implemented ac-
cording to the Model-View-Controller (MVC) pat-
tern, splitting the Model layer into a Business layer
and an Integration and Persistence layer, in our
case study we followed this same pattern and em-
ployed a similar architecture to be able to compare
both codes. These layers were implemented with
the Eclipse Communication framework services, and
PostgreSQL was used for persistence.

5 DISCUSSION

This case study exposed many benefits of combining
the BDD process stages with Scrum. The use of a
ubiquitous language derived from the Education do-
main, and the definition of a CBALM terminology un-
derstandable to both PO and developers avoided mis-
interpretations of user stories, since they provided a
common language and vocabulary for better under-
standing user requirements. The use of the BDD user
story template for describing the Evaluation Instru-
ment Register requirement of the EAMS-CBALM,
and the BDD scenario template for describing the sce-
narios related to the instrument types of the CBALM
student evaluation process allowed to naturally trans-
form this requirement into software functional be-
haviour. Furthermore, JBehave enabled the automatic
generation of the BDD acceptance tests for the instru-
ment types of the CBALM student evaluation process,
and allowed to obtain clearly written and easily un-
derstandable tests to developers, which could also be
inspected by the PO, improving their communication.
Finally, JBehave facilitated the BDD implementation
of the Evaluation Instrument Register requirement, al-
lowing us to produce a readable behaviour-oriented
code to developers, which could also be understood
by the PO, improving their communication.

This case study also confirmed that the BDD pro-
cess stages are beneficial when employed in the some

Scrum artefacts and rituals (Chauhan, 2016). In the
product backlog and sprint backlog, we used the
CBALM ubiquitous language and terminology, the
BDD user story for the Evaluation Instrument Reg-
ister requirement, and the BDD scenarios for the in-
strument types of the CBALM student evaluation pro-
cess, which provided a common BDD platform to
transform this requirement into functional behaviour
in the product backlog, and to transform this func-
tional behaviour into a implementable specification.
In the daily scrum meetings, this common BDD plat-
form improved the understanding of each activity in-
volved in the Evaluation Instrument Register devel-
opment, avoiding confusion and bridging the knowl-
edge gap among the developers, and resulting in a fi-
nal implementation of this requirement that fully sat-
isfied the PO. Finally, in sprint meetings, since all de-
velopers and PO are committed to define the Evalu-
ation Instrument Register requirement, the produced
BDD documents became the reference to discuss the
behaviour that is required by the users of the Evalu-
ation Instrument Register product, improving in this
way the traceability of what was required, why it was
needed, and who has requested it.

All these benefits and improvements to Scrum
were possible mainly due to the use of the ubiqui-
tous domain-specific language and BDD templates.
Although the developers needed to learn another lan-
guage and to deal with more documentation, the use
of this common platform during all BDD stages al-
lowed the PO to follow them in a better way, improv-
ing quite a lot the communication with developers.

In this case study, we performed a qualitative
comparison of Scrum and BDD in combination with
Scrum with respect to the communication between the
PO and the development team, since it is quite hard to
organise a formal experiment to compare this com-
munication in a quantitative way. Nevertheless, we
have the following evidence that our hypothesis that
communication has been improved holds: it took 03
meetings of around 03 hours each between the PO and
the Tokenlab developers for delivering the Evaluation
Instrument Register product, and it also took 03 meet-
ings but of only around 01h20min each between the
same PO and the developers of this case study for de-
livering the same product. This shows that the devel-
opment team could be more productive, thus it was
less disturbed by miscommunication overhead. How-
ever, we need to take into account that rebuilding the
same component has favoured the Scrum/BDD com-
bination, but the positive results obtained in this case
study have motivated the developers to apply BDD to
all the requirements of the EAMS-CBALM Evalua-
tion Management module.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

456



6 RELATED WORK

In (Lubke and Van Lessen, 2016) a platform is pre-
sented for integrating systems responsible for land
registration in Switzerland. The goal is to reduce
process execution time between systems and also the
communication time between POs. In order to model
executable integration processes between various sys-
tems and to develop test cases to validate these pro-
cesses, the authors used BDD and Business Process
Model Notation (BPMN) as the ubiquitous language
for the test case models (scenarios) construction. The
BPMN was chosen because this language is known
by the POs. By combining BDD with BPMN scenar-
ios, the authors found improvements in communica-
tion between developers, users and investors, which
contributed significantly to the more agile develop-
ment of the platform.

In (Oruç and Ovatman, 2016) a tool is proposed
to facilitate the creation of scenarios for web services
test. The tool uses BDD in conjunction with the ubiq-
uitous language Gherkin (Wynne and Hellesoy, 2012)
for dynamically generating test scripts. These scripts
are run in JMeter, a test tool for analysing and mea-
suring the performance of web applications (JMeter,
2016). The authors claim to achieve two benefits with
this tool: because Gherkin is a domain-specific lan-
guage, it allows any domain expert to create and run
web services tests even without software knowledge;
and developers do not need to write unit tests manu-
ally since JMeter automates testing.

In (Silva et al., 2016) an approach based on BDD
is proposed to support the automated assessment of
artefacts along the development process of interactive
systems. A formal ontology model is defined for de-
scribing concepts used by platforms, models and arte-
facts that compose the design of interactive systems,
allowing in this way a wide description of User Inter-
face (UI) elements and its behaviours to support test-
ing activities. In addition, the approach proposes im-
provements in how teams must write requirements for
testing purposes. Once described in the ontology, the
behaviours can be reused freely to write new scenar-
ios in natural language, providing test automation in
BDD and decreasing manual coding.

In (Soeken et al., 2012) a methodology is pre-
sented to assist developers carrying out the BDD
steps. It proposes a design flow where the devel-
oper engages in a dialog with a computer program
in an interactive way. This dialog contains the user
history, and this program processes each spoken sen-
tence and generates the step definitions and code
blocks (classes, attributes and methods) of each sce-
nario. Some natural language processing tools are

explored and a case study illustrates the application.
Rather than going manually through the established
BDD steps, this methodology suggests some scenario
skeletons for tests refinement and implementation.

The main difference between our work and the
ones above is that in addition to applying BDD in soft-
ware development our work also exposes the benefits
of using BDD in combination with Scrum. Moreover,
our case study was developed for the Education do-
main, more specifically for courses based on active
learning methodologies, and to the best of our knowl-
edge the combination of BDD and Scrum in the devel-
opment of software systems for the Education domain
has not been addressed before in the literature.

7 CONCLUSIONS

In order to accomplish this work, first we did a sys-
tematic review on BDD and its toolkits, and prop-
erly defined the BDD development process. Then,
we conducted a case study, focusing on the Evalua-
tion Instrument Register requirement of the EAMS-
CBALM Evaluation Management module. By keep-
ing regular meetings with the same PO that was in-
volved on the EAMS-CBALM development, we gen-
erated a new source code for this requirement follow-
ing the BDD process. This new source code was pre-
sented to the PO and compared with the correspond-
ing one produced by the TokenLab software house.

This case study showed that the BDD process im-
proved the communication between the PO and the
developers with respect to the Scrum method em-
ployed in the EAMS-CBALM development. That was
mainly due to the use of a ubiquitous language for the
education domain together with the BDD scenarios
and acceptance tests, which allowed the PO to fol-
low and properly communicate with the developers
throughout the development process.

Furthermore, this case study also showed that
BDD needs more support for the requirements gath-
ering, analysis, and design phases of software life cy-
cle. As future work, we intend to develop formal sup-
port for the ubiquitous language terminology, for ex-
ample, by means of ontologies (Guizzardi, 2005), in
order to eliminate the ambiguities intrinsic to natural
languages as a BDD ubiquitous language. We also
intend to define a formal model based on EFSM (El-
Fakih et al., 2016) in order to improve the BDD it-
erative decomposition process. Finally, we intend to
evaluate this BDD formal support by applying it to
system development for the Education domain.

Combining Behaviour-Driven Development with Scrum for Software Development in the Education Domain

457



REFERENCES

Beck, K. (2002). Test Driven Development: By Exam-
ple. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

Carlisle, C., Calman, L., and Ibbotson, T. (2009). Practice-
based learning: The role of practice education facili-
tators in supporting mentors. Nurse Education Today,
29(7):715–721.

Chauhan, R. (2016). Fusion of Agile-Scrum to
BDD. http://docplayer.net/28500425-Fusion-of-agile-
scrum-to-bdd.html. Accessed: 2016-12-19.

Cucumber (2016). Cucumber simple, human collaboration.
https://cucumber.io. Accessed: 2016-12-19.

Diepenbeck, M. and Drechsler, R. (2015). Behavior Driven
Development for Tests and Verification. Springer
Fachmedien Wiesbaden, Wiesbaden.

El-Fakih, K., Yevtushenko, N., Bozga, M., and Bensalem,
S. (2016). Distinguishing extended finite state ma-
chine configurations using predicate abstraction. J.
Software Eng. R and D, 4:1.

Evans, E. (2004). Domain-driven Design: Tackling Com-
plexity in the Heart of Software. Addison-Wesley.

Guizzardi, G. (2005). Ontological foundations for struc-
tural conceptual models. PhD thesis, University of
Twente, Enschede.

JBehave (2015). JBehave - a BDD framework.
http://jbehave.org. Accessed: 2016-12-19.

JMeter (2016). JMeter graphical server performance testing
tool. http://jmeter.apache.org. Accessed: 2016-12-19.

JUnit (2016). JUnit - a framework to write repeatable tests.
http://junit.org/junit4. Accessed: 2016-12-19.

Koskela, L. (2008). Test Driven: Practical TDD and Ac-
ceptance TDD for Java Developers. Manning Pubs
Co Series. Manning.

Lubke, D. and Van Lessen, T. (2016). Modeling test cases
in bpmn for behavior-driven development. IEEE Soft-
ware, 33(5):15–21.

Malik, Z. (2013). Value of Behavior-Driven De-
velopment for Backlog Refinement in Scrum.
https://www.scrumalliance.org/community/articles/
2013/march/value-of-behavior-driven-development-
for-backlog-r. Accessed: 2016-12-19.

MSpec (2016). MSpec - Context/Specification framework.
https://github.com/machine/machine.specifications.
Accessed: 2016-12-19.

NBehave (2014). NBehave - a BDD framework. https://
github.com/nbehave/nbehave. Accessed: 2016-12-19.

North, D. (2006). Introducing BDD. https://dannorth.net/
introducing-bdd. Accessed: 2016-12-19.

Oruç, A. F. and Ovatman, T. (2016). Testing of web ser-
vices using behavior-driven development. In CLOSER
2016 - Proceedings of the 6th International Confer-
ence on Cloud Computing and Services Science, Vol-
ume 2, Rome, Italy, April 23-25, 2016., pages 85–92.

Rhem, J. (1998). Problem-based learning: an introduction.
www1.udel.edu/pbl/deu-june2006/supplemental/
NTLF-PBL-introduction.pdf. Accessed: 2016-12-19.

RSpec (2016). RSpec: behaviour driven development for
ruby. http://rspec.info/. Accessed: 2016-12-19.

Santos, H. d. F., de Souza, W. L., do Prado, A. F., and
Pereira, S. M. d. S. F. (2016). Augmented reality
approach for knowledge visualization and production
(arakvp) in educational and academic management
system for courses based on active learning method-
ologies (eams–cbalm). In Latifi, S., editor, Infor-
mation Technology: New Generations: 13th Interna-
tional Conference on Information Technology, pages
1113–1123, Cham. Springer International Publishing.

Schwaber, K. and Sutherland, J. (2016). The defini-
tive guide to scrum: The rules of the game.
http://www.scrumguides.org/docs/scrumguide/v2016/
2016-Scrum-Guide-US.pdf. Accessed: 2016-12-19.

Silva, T., Hak, J.-L., and Winckler, M. (2016). Testing pro-
totypes and final user interfaces through an ontologi-
cal perspective for behavior-driven development. Lec-
ture Notes in Computer Science, 9856:86–107.

Soeken, M., Wille, R., and Drechsler, R. (2012). As-
sisted behavior driven development using natural lan-
guage processing. Lecture Notes in Computer Science,
7304:269–287.

Solis, C. and Wang, X. (2011). A study of the characteristics
of behaviour driven development. In Proceedings of
the 2011 37th EUROMICRO Conference on Software
Engineering and Advanced Applications, SEAA ’11,
pages 383–387. IEEE Computer Society.

SpecFlow (2016). SpecFlow - Cucumber for .NET.
http://specflow.org. Accessed: 2016-12-19.

StoryQ (2010). StoryQ - a bdd framework for .net 3.5.
https://storyq.codeplex.com/. Accessed: 2016-12-19.

Tempski, P. (2014). “Caderno do Curso Educação na Saúde
para Preceptores do SUS”. Teaching and Research
Institute of the Sı́rio-Libanês Hospital (in Portuguese).

UFSCar (2007). Curso de Medicina - CCBS Pro-
jeto Polı́tico Pedagógico Medicina UFSCar.
http://www.prograd.ufscar.br/cursos/cursos-
oferecidos-1/medicina. Accessed: 2016-12-19.

Weltman, D. (2007). A Comparison of Traditional and Ac-
tive Learning Methods: An Empirical Investigation
Utilizing a Linear Mixed Model. University of Texas
at Arlington.

Wynne, M. and Hellesoy, A. (2012). The cucumber book
: behaviour-driven development for testers and de-
velopers. The pragmatic programmers. Dallas, Tex.
Pragmatic Bookshelf.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

458


