
Semantic Mutation Test to OWL Ontologies

Alex Mateus Porn and Leticia Mara Peres
Informatics Department, Federal University of Paraná, Av. Cel. Francisco H. dos Santos, Curitiba, Brazil

Keywords: Ontology, Semantic, Mutation.

Abstract: Ontologies are structures used to represent a specific knowledge domain. There is not a right way of defining
an ontology, because its definition depends on its purpose, domain, abstraction level and a number of ontology
engineer choices. Therefore, a domain can be represented by distinct ontologies in distinct structures and,
consequently, they can have distinct results when classifying and querying information. In light of this, faults
can be accidentally inserted during its development, causing unexpected results. In this context, we propose
semantic mutation operators and apply a semantic mutation test method to OWL ontologies. Our objective is
to reveal semantic fault caused by poor axiom definition automatically generating test data. Our method
showed semantic errors which occurred in OWL ontology constraints. Eight semantic mutation operators
were used and we observe that is necessary to generate new semantic mutation operators to address all OWL
language features.

1 INTRODUCTION

Ontologies are considered one of the semantic web
support. They describe and represent concepts of a
domain and relations between them. They have a
fundamental role to describe data semantics and act
like a backbone in knowledge based systems.

In information systems, an ontology is an
engineering artefact. They introduce a vocabulary to
define concepts, classify terms and relationships, and
define constraints (Gruber, 1995). They are used to
describe and represent a knowledge domain, and
provides an explicit specification of this vocabulary
(Horrocks, 2008). Ontologies can be very complex,
with several thousands of terms or very simple,
describing one or two concepts only.

The World Wide Web Consortium (W3C)
developed the Ontology Web Language (OWL)
standard (McGuinness and Harmelen, 2004). OWL is
a semantic web language designed to represent rich
and complex knowledge about things, groups of
things, and relations between things. It is a
computational logic-based language such that
knowledge expressed in OWL can be exploited by
computer programs, e.g., to verify the consistency of
that knowledge or to make implicit knowledge
explicit (OWL Working Group, 2012).

OWL formalism adopts an object-oriented model
in which the domain is described in terms of

individuals, classes and properties (Horrocks, 2008).
A key feature of OWL is it is based in a very
expressive Description Logics (DL), and in light of
this, an OWL ontology consists of a set of axioms
which are defined to represent a specific knowledge
domain (Horrocks, 2008).

However, a knowledge domain can be represented
by several distinct ontologies, which can result in
distinct structures, axioms and consequently, they can
have distinct results when classifying and querying
information. Therefore, ontology evaluation is an
important ontology engineer process to identify
whether an ontology meet its goals and whether it is
free of faults.

In light of this, we propose apply semantic
mutation test to OWL ontologies and generate
automatically test data, with objective to reveal
semantic faults in OWL ontology constraints defined
for any knowledge domain.

In the following, we describe related works in
section two, a briefly semantic mutation test
overview, semantic mutation operator definition and
semantic mutation test application in section three.
Next, we showing our experiment setup in section
four, and last, our conclusions.

434
Porn, A. and Peres, L.
Semantic Mutation Test to OWL Ontologies.
DOI: 10.5220/0006335204340441
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 2, pages 434-441
ISBN: 978-989-758-248-6
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 RELATED WORKS

In (Grüninger and Fox, 1995) is provided a
mechanism to guide evaluation of design and
adequacy of ontologies. Firstly, informal competency
questions are defined. Then, using a first-order logic
terminology, they are converted in formal
competency questions. These formal competency
questions are used as axioms in ontology evaluation.

With objective to guarantee that an ontology is
well-verified, (Gómez-Pérez, 1996) presents a
framework which evaluates correctness of ontology
definitions. Using design criteria, Gómez-Pérez
analyses architecture, lexicon and syntax, and
content. The focus of this work is ontology
evaluation, which consists on verification, validation
and assessment.

Several authors propose methods to semantic
evaluation. (Poveda Villalón et al., 2012), proposes a
web based tool to improve ontology quality by
automatically detecting potential pitfalls which could
lead to modelling error.

(Batet and Sanchez, 2014) propose a score of the
accuracy evaluation which is dependent of the degree
of semantic dispersion of concepts in a given
ontology. This work is based on (Fernández et al.,
2009), which identified how taxonomic depth and
breadth variance can be used to reasonably predict
ontologies semantic accuracy.

In this same context, (Hlomani and Stacey, 2014)
propose apply a data-driven ontology evaluation,
using among others, clarity metric to measure the
number of word meanings, to evaluate quality and
correctness of the ontology.

According (Porn et al., 2016), ontology testing as
a specific ontology evaluation process is little
explored in the literature. In this sense, (Vrandečić
and Gangemi, 2009) propose apply unit testing in
ontologies like in software engineer.

In (García-Ramos et al., 2009) is proposed a
method to dynamically test ontologies. An automated
tool allows the user to define a set of tests to check
the functional requirements of ontology, to execute
them, and to inspect the results of execution.

In (Blomqvist et al., 2012), is proposed to find
errors verifying ontology inference through error
provocation and competency questions verification.

Some previous works concerning OWL mutation
testing can be saw in (Lee et al., 2008), (Porn and
Peres, 2014) and (Bartolini, 2016). Those three works
are similar to our proposal in this paper.

In (Lee et al., 2008) mutation operators are
applied in the mutation test to OWL-S, a standard
XML-based language for specifying workflows and

semantic integration among Web services (WS). In
this work, they analyse fault patterns of specific
OWL-S and their workflows, proposes an ontology-
based mutation analysis method, and applies
specification-based mutation techniques for WS
simulation and testing.

In (Porn and Peres, 2014) is proposed apply
mutation test exclusively to OWL ontologies, and 19
syntactic mutation operators on classes and relations
structures are defined with goal to find OWL
ontology pitfalls according to faults found in the
literature. However, in this work is not applied
mutation on OWL ontology DL axioms and is not
generate automatically test data. Although these 19
operators are defined to syntactic mutation, 5 of them
can be also used to semantic mutation.

Similar process is used in (Bartolini, 2016). In this
work are presented 22 mutation operators to semantic
mutation test, but 9 of them are similar to proposed in
(Porn and Peres, 2014). Others proposed syntactic
operators are applied in OWL annotations and OWL
structure, not being possible apply them in DL axioms
to evaluate OWL ontology semantic. Results do not
show the mutation score to analyse the test data
quality.

Small change in a semantic definition can
produce, in knowledge-based systems like
ontologies, a semantic meaning which is completely
distinct from the original axiom. In this sense, just
syntactic analysis is not enough to test an ontology.

Therefore, in this paper, we propose semantic
mutation operators and apply semantic mutation test
method to OWL ontologies. These semantic operators
are defined to make syntactic changes in DL
constraints of OWL ontology. They are applied with
aim to reveal semantic fault caused by poor axiom
definition and automatically generate test data.

3 OWL SEMANTIC MUTATION

We define OWL semantic mutation test as an error-
based technique where syntactic changes are
introduced in a set C of DL constraints or DL axioms
of an OWL ontology O. These syntactic changes are
made through predefined mutation operators, and
each change generates a new set C’ called mutant of
C.

Thus, semantic mutation test in OWL ontologies
consists in make changes in OWL ontology
constraints Q of a set C, replacing, removing or
adding logic operators, generating new constraints Q’
of a set C’ and which can give another meaning to
original constraint Q, according to predefined

Semantic Mutation Test to OWL Ontologies

435

mutation operators. In this sense, it is possible
consider as a test case set T, a set of competency
questions proposed in (Grüninger and Fox, 1995).

For this comparison is necessary to execute O and
C, and O and C’ with the same test case set T. After
these executions, the results are compared to analyse
if the results of distinct executions, with the same set
T, are distinct for the execution of C’ in O. A set T is
used to distinguish the results of C’ from C, where
each C’ is executed with the same set T applied to C
in O (Delamaro et al., 2007).

Similar to program mutation test, if after
executing all test cases T, there are still Q’ in C’ of O
that generate the same output of Q in C of the same
O, and it is not possible generate new test cases that
differentiate Q from Q’, the mutant constraint Q’ is
considered similar to Q, it means that, or Q is correct,
or it has errors unlikely to occur (DeMillo, 1978).

In the same way, as in software engineer, test case
set T is suitable to C concerning C’, whether for each
constraint Q belonging to C’, or Q’ is similar to Q or
Q’ is distinct from Q in at least one test data
(Delamaro et al., 2007).

Deciding whether a mutant is equivalent to an
original constraint, is made by the engineer, because
determine whether two programs compute the same
function is an undecidable question (Budd, 1981).

Although mutation operators apply syntactic
changes, they are considered semantic operators
because they allow semantic analysis of results.

With the objective of to analyse adequacy of T
executed in C and C’, the mutation score is calculated.
This score ranges from 0 to 1 and provides an
objective measure of how much T is considered
appropriate (DeMillo, 1978 and Delamaro et al.,
2007). For an ontology O, a set of constraints C' and
a set of test cases T, the mutation score S is obtained
as follows (DeMillo, 1978): ܵሺܶሻ = ݃′ܥ݉′ܥ − (1) ݁′ܥ

The mutation score is obtained through the total
of dead mutant constraints (C’m) of OWL ontology
O, over the generated mutant constraints (C’g) of
OWL ontology O, minus equivalent mutant
constraints (C’e) of OWL ontology O.

3.1 OWL Semantic Mutation
Operators

In (Porn and Peres, 2014), 19 mutation operators were
defined to introduce syntactic changes in OWL
ontologies. Those operators generate variations like
change hierarchical structure of a class, add or

remove a disjunction definition between classes, add
or remove a class equivalence definition, remove
“AND” and “OR” operators in an equivalence
definition, among others.

Some of those operators can be used to produce
semantic mutation in OWL ontologies, but they are
not sufficient to test all OWL possibilities.

According (Horrocks et al., 2000), a description
logic knowledge base is made up of a terminological
part (Tbox) and an assertional part (Abox), each part
consisting of a set of DL axioms. Tbox asserts facts
about concepts and roles (binary relations), usually in
the form of inclusion axioms, while Abox asserts
facts about individuals (single objects), usually in the
form of instantiation axioms.

OWL comprises Tbox and Abox, and it is based
on a very expressive DL called SHOIN, a sort of
acronym derived from several language features. The
symbol S is an abbreviation to ALC, a DL Alternative
Language whit add-ons. It depicts a basic set of
features, like data types, constraints as intersection,
union and complement, as well as, existential and
universal quantifiers. The symbol H corresponds to
properties hierarchies, symbol O to enumerated
classes and axioms, like disjunction and equivalence,
symbol I stands inverse properties and symbol N
cardinality restrictions.

How description logic is composed by several
formal knowledge representation languages, and
OWL ontologies implementation is based on DLs,
each semantic mutation operator should consider
Tbox or Abox axioms defined in DL ALCON, in other
words, axioms defined in Attributive Language (AL),
which allow atomic negation, concept intersection,
universal restrictions and limited existential
quantification. They should support complex concept
negation (C), enumerated classes of objects value
restrictions (O) or cardinality restrictions (N).

Therefore, to apply this semantic mutation test
method to OWL ontologies, we select 5 mutation
operators (CEUA, CEUO, ACOTA, ACATO and
ACSTA) proposed in earlier works (Porn and Peres,
2014), and we defined 3 new operators to generate
semantic mutants and generate automatically test
data. These 8 operators accomplish at least one of the
DL ALCON feature.

In this context, we propose the following semantic
mutation operators applied over DL constraints
defined in OWL classes, OWL object properties and
OWL data properties. The semantic mutation
operators are presented as follow:

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

436

• CEUA removes each AND operator in a given
OWL DL constraint, generating two mutants,
one with the left side of the AND operator and
another with the right side.

• CEUO removes each OR operator in a given
OWL DL constraint, generating two mutants,
one with the left side of the OR operator and
another with the right side.

• ACOTA replaces each OR operator in a given
OWL DL constraint by one AND operator,
generating one mutant for each OR operator
replaced.

• ACATO replaces each AND operator in a given
OWL DL constraint by one OR operator,
generating one mutant for each AND operator
replaced.

• ACSTA replaces each ∃ (Existential) operator
in a given OWL DL constraint by one ∀
(Universal) operator, generating one mutant for
each Existential operator replaced.

• ACATS replaces each ∀ (Universal) operator
in a given OWL DL constraint by one ∃
(Existential) operator, generating one mutant
for each Universal operator replaced.

• AEDN adds one negation operator for each
AND, OR, ∃ or ∀ operator in a given OWL DL
constraint, generating one mutant to each
operator.

• AEUN removes one negation operator in a
given OWL DL constraint, generating one
mutant for each not operator removed.

Some considerations about these operators are
which they are applied only in logical axioms,
because we considered in this analysis to apply
semantic mutation test on OWL constraints defined
according to at least on DL ALCON feature.

These types of axioms do not include annotations
or labels, they include axioms like disjunction
between class, cardinalities constraints, domain and
range definitions of classes, object properties and data
type properties, as well as, axioms which are not
addressed by the proposed mutation operators, like an
equivalence axiom defined by only one class, similar
to say which disease class is equivalent to the
pathology class, or remove a disjunction definition
between these two classes.

Table 1 shows an example of the semantic
mutation test applied in the people OWL ontology
(Bechhofer et al., 2003), where an equivalence axiom
defined on the class “haulage truck driver” is mutated
with ACATO semantic mutation operator, generating
three new mutant OWL ontology constraint. Each one
of these constraints is also used as a test data.

Table 1: Example of semantic mutation operator ACATO
applied in an original OWL ontology constraint.

Class Constraint Mutant constraint

haulage
truck
driver

Person
and
(drives
some
truck)
and
(works
for some
(part of
some
'haulage
company')
)

person or
(drives some truck)
and
(works_for some
(part_of some
'haulage company'))
person and
(drives some truck)
or
(works_for some
(part_of some
'haulage company'))
person or
(drives some truck)
or
(works_for some
(part_of some
'haulage company'))

3.2 Semantic Mutation Application

We propose to execute semantic mutation test in
OWL ontologies in a similar process as (Porn and
Peres, 2014):

1. Mutation operator selection: the first step is
select or define appropriate semantic mutation
operators which address at least one DL ALCON
feature, and realize semantic mutations on DL
constraints of OWL ontologies.

2. Mutants DL constraints generation: each
selected semantic mutation operator is applied
on original DL constraints Q in C of original
OWL ontology O based on its specification.
They generate an arbitrary number of mutant
constraints Q’ with the same error type applied
in distinct constraints.

3. Test data generation: each original DL
constraint Q and each new mutant DL
constraint Q’ in C’ are selected as new test data,
generating a set of test case T to be executed in
the original ontology DL constraints C and each
C’.

4. Original ontology constraint execution: after
define T, C must be executed with T. Each test
data in T is interpreted by a reasoner, which
analyse test data according to C defined in the
ontology, giving back a result based on super
classes, subclasses and individual instantiation.

5. Mutants ontology constraint execution: each
test data T executed in C should be executed in
each mutant constraint Q’, and result of C’

Semantic Mutation Test to OWL Ontologies

437

should be compared with result of original
ontology O.

6. Result analysis: whether a mutant Q’ presents
a distinct result of Q after a test data T
execution, Q’ is considered killed. Otherwise,
whether Q’ presents the same result of Q and is
not possible generate new test data to be used,
Q’ can be considered equivalent to Q, or a fault
was revealed in C. This analysis is determined
by the engineer. The mutation score can be
calculated after execute all mutants, to set
suitability degree of used test data.

The main differences between these steps in
relation to process proposed by (Porn and Peres,
2014), are the test data set automatically generated
and the application of mutation operators in
constraints, which satisfy at least one DL ALCON
feature. In light of generate automatically test data,
each mutated constraint is considered a new test data
to be executed over DL mutant constraint generated
of the OWL ontology.

About the application of mutation operators just
in semantic context, it is an excellent alternative to
produce mutants containing significant faults, and
reduce the large number of inconsistent mutants and
with obvious faults, like circulatory faults or partition
faults (Gómez-Pérez, 2004) or unlikely to occur.

4 EVALUATION

4.1 Objectives

Executing semantic mutation test in OWL ontologies,
and analyse in detail the application adequacy of
proposed mutation operators, as well as, validate
them and analyse the test data quality automatically
generated.

4.2 Hypothesis

Mutation test is the most effective to reveal faults, but
also the most expensive (Wong et al., 1995).
According to this, for our evaluation we infer two
hypotheses, identified as H1 and H2:

H1: Semantic mutation operators to OWL
ontologies reduce application cost of mutation test
and allows to reveal faults which are not identified
with syntactic operators.

H2: After applying each semantic mutation
operator in OWL ontology constraints, these mutated
OWL constraints are effective test data to find faults
in original OWL ontology.

4.3 Activities and Instruments

In order to execute and validate the steps of semantic
mutation test presented in section 3.2, we used 8
semantic mutation operators presented in section 3.1.

Steps 2 and 3 were made using Protégé tool
(Musen, 2015). Each semantic mutation operator was
applied over all DL constraints, each operator at a
time, generating mutants according to the number of
existing operators. According to (Delamaro et al.,
2007), it is possible generate mutants applying more
than one mutation operator at once. However, this
situation has a high cost of mutant generation and
implementation, and it does not contribute to generate
better test cases (Budd, T. A. et al., 1980).

For steps 4 and 5, each generated test data during
step 3 is firstly executed on the original OWL
ontology constraint C and next on each mutant OWL
ontology constraint C’, using in these steps the
Protégé DL query.

For step 6, the last one, the results of C and each
C’ are compared. This analysis is to verify results
which are composed by instantiation of super classes,
subclasses and individuals. If results of C and C’ are
distinct with the same test data, C’ is considered
killed and a fault revealed. However, if results are
similar, C’ can be considered equivalent to C, and in
other words, or C is correct, or C has errors unlikely
to occur.

Table 2 presents results example from an original
OWL ontology constraint after executing a test data.

Table 2: Example of results from an original OWL ontology
constraint.

Class
Original

Constraint
C

Test data T Results

driver

person
and
(drives
some
vehicle)

person
and
(drives
some
vehicle)

Superclasses
- adult
- animal
- grownup
- person

Subclasses
- bus driver
- haulage truck
driver
- lorry driver
- mad cow
- van driver
- white van man

Instances
- Mick

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

438

After execute a test data it was obtained 4 super
classes, 6 subclasses and 1 individual according to
Table 2. On the other hand, according to Table 3,
when executing the same test data in the OWL
ontology mutant constraint, it was obtained 5 super
classes, 7 subclasses and 1 individual. In this
example, the test data revealed the inserted fault and
the mutant was considered killed and discarded.

Table 3: Example of results from a mutant OWL ontology
constraint.

Class Mutant C’ Test data T Results

driver

person
or
(drives
some
vehicle)

person and
(drives
some
vehicle)

Superclasses
- adult
- animal
- driver
- grownup
- person

Subclasses
- bus driver
- haulage
truck driver
- lorry driver
- mad cow
- van driver
- white van
man
- kid

Instances
- Mick

Defining if C’ is equivalent to C is an undecidable
question. Decide whether the test keep going while C’
presents the same result from C is an engineer
decision. The mutation score is used to evaluate
generated test data and as a metric to decide whether
it is necessary generates new test data or close the test.

4.4 Data Set

We selected as data set of our evaluation the OWL
ontology called people, from (Bechhofer et al., 2003).
This is a simple ontology which describes people,
links between them, pets and things they do. This
ontology has DL expressivity ALCHOIN. It contains
372 axioms and 108 logical axioms. We consider to
this setup only logical axioms, because they do not
include annotations, which do not represent logical
concepts.

Next, we presenting a summary of features of
people OWL ontology: 372 axioms, 108 logical
axioms, 60 classes, 14 object properties, 22
individuals, 33 subclasses; and 21 equivalent classes.

We consider only axioms which can be mutated
and generated at the same time as a new test data, with

at least one DL ALCON feature. Due to this, in people
ontology we consider 68 logical DL ALCON axioms
which can be mutated with these 8 semantic mutation
operators.

4.5 Results

After execute semantic mutation test in people OWL
ontology, we obtained 434 mutants for 8 semantic
mutation operators and the mutation score 0,94. Table
4 presents the results, showing the total of generated,
killed, inconsistent and live mutants.

Table 4: Semantic mutation test results.

Mutation
operator

Generated
Mutants

Killed
Mutants

Inconsistent
Mutants

Live
Mutants

CEUA 77 73 0 4
CEUO 18 7 10 1
ACOTA 12 7 5 0
ACATO 45 43 2 0
ACSTA 66 57 0 9
ACATS 13 13 0 0
AEDN 200 152 38 10
AEUN 3 3 0 0
Total 434 355 55 24

Mutation score 0,94

Live mutants can be a fault or equivalent mutant.
In this analysis, we considered live mutants as
equivalent to original DL constraints.

Inconsistent mutant is a mutant that can not be
executed by a reasoner, because it has in its definition
inconsistent axioms. This fault type is immediately
revealed in which reasoner is executed. In this case,
no test data needs to be executed. However, this
mutant type is considered a mutant killed, but it does
not allow to evaluate the set of test case.

Therefore, to calculation of mutation score, we
considered the total of mutants minus the total of
inconsistent mutants as the total of generated mutants.

Table 5 shows the number of the test data used to
kill each mutant DL constraint of people OWL
ontology.

Table 5: Number of test data used to kill mutants.

Mutant
operator

Total of
mutants

Original
test data

Mutated
test data

Other test
data

CEUA 77 25 46 1

CEUO 18 --- --- 7
ACOTA 12 1 --- 6
ACATO 45 18 25 ---
ACSTA 66 34 5 18
ACATS 13 13 --- ---
AEDN 200 62 25 65
AEUN 3 3 --- ---

Semantic Mutation Test to OWL Ontologies

439

About Table 5, we considered on the “Original
test data” column the same constraints used by
mutation operator to generate mutant DL constraints.
The column “Mutated test data” refers to the number
of mutated constraints by the same mutation operator
which generated mutant DL constraints. The column
“Other test data” refers to the number of test data
generated by a given mutation operator and used to
kill a mutant DL constraint generated by other
mutation operator.

4.6 Discussion

With these results was possible observe that, to kill
some mutant DL constraints of people OWL
ontology, generated by five mutation operators
(CEUA, CEUO, ACOTA, ACSTA and AEDN) was
necessary carry out test data generated by another
mutation operators. This occurred because the
original test data and mutated test data produced the
same semantic result, but in contrast with another
distinct constraint, the fault was revealed.

In other cases, like ACATS and AEUN mutation
operators, original test data were sufficient to kill and
reveal all inserted faults.

Some mutant DL constraints could not be killed
in this experiment. We did not define them as
equivalents or fault, because we consider that is
necessary define new semantic mutation operators
which approach other OWL language features. Thus,
with new test data it will be possible that more
mutants will be killed.

This result presents operators effectiveness,
showing a large amount of errors which can be
inserted in OWL ontologies by developer, due to the
large number of generated mutants.

According (DeMillo, 1978), mutation score is
better the closer to 1. Our test case set proved to be
efficient to revealed fault, because the mutation score
is 0,94. This score was found during the first
execution of mutation test.

In a general context, according to hypothesis H1,
this method of semantic mutation test produced a
large number of mutants, but a smaller amount than
the syntactic mutation test, decreasing the cost of its
application and improving the quality of mutants,
because few equivalent mutants have been generated,
which provides a more accurate evaluation of the test
data used in accordance with hypothesis H2.

5 CONCLUSIONS

OWL ontologies are knowledge representation model
of a specific domain. However, a domain can be
defined by several ways, because its definition
depends on features as desired abstraction level,
purpose and a number of developer choices, among
others.

In this sense, there is not a right way to develop
OWL ontologies. Methods to evaluate them are
useful to guide developers and testers to develop
ontologies which are correct or close to reality.

The semantic mutation test proposed in this paper
showed be an alternative to OWL ontology testing.
The generated mutants revealed faults with efficiency
based on mutation score of 0,94.

According to this, the results of this method
present a large amount of errors which can occur in
OWL ontologies, based on a large number of
generated mutants. In this context, the generated test
cases proved are very efficient to revealed these
errors, in accordance with few mutants remained
alive, as mentioned in Table 4 and Table 5.

Our semantic mutation operators have shown that
they do not cover all OWL language implementation
possibilities. So, it is necessary generate new
semantic mutation operators addressing other OWL
language features, like add, remove or replace
disjunction between class, cardinality restrictions,
object properties and data type properties domain and
range, as well as, semantic mutation operators to
individuals, property characteristics, among others.

Therefore, it is still necessary to develop an
automated tool to facilitate OWL semantic mutation
test application, because Protégé tool aids to generate
mutants and execute test data, but it does not provide
a mechanism to execute this process automatically.

ACKNOWLEDGEMENTS

We thank the support provided by the Federal
University of Paraná Graduate Program in Computer
Science (PPGInf / UFPR), CAPES and Federal
Institute of Paraná.

This work was conducted using Protégé resource,
which is supported by grant GM10331601 from the
National Institute of General Medical Sciences of the
United States National Institutes of Health.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

440

REFERENCES

Gruber, T. R., 1995. Toward principles for the design of
ontologies used for knowledge sharing. In Int. j. hum-
comput. st., Vol. 43, No. 5-6, pp. 907-928.

Grüninger, M., Fox, M. S., 1995. Methodology for the
Design and Evaluation of Ontologies. In Workshop on
Basic Ontological Issues in Knowledge Sharing in Int.
Joint Conf. on Artificial Intelligence. Toronto, Canada.

Gómez-Pérez, A., 1996. Towards a framework to verify
knowledge sharing technology, Expert Systems with
Applications, Vol 11, No. 4, pp. 519-529.

Poveda-Villalón, M., Suárez-Figueroa, M. C., Gómez-
Pérez, A., 2012. Validating ontologies with OOPS!, In
18th Int. Conf. in Knowledge Eng. and Knowledge
Management. Galway City, Ireland, pp. 267-281.

Batet, M., Sanchez, D., 2014. A Semantic Approach for
Ontology Evaluation. In 26th Int. Conf. on Tools with
Artificial Intelligence. Limassol, Cyprus, pp. 138-145.

Fernández, M., Overbeeke, C., Sabou, M., Motta, E., 2009.
What Makes a Good Ontology? A Case-Study in Fine-
Grained Knowledge Reuse. In 4th Asian Conference on
The Semantic Web, pp. 61-75.

Porzel, R., Malaka, R., 2004. A task-based approach for
ontology evaluation. In Proc. of the Workshop on
Ontology Learning and Population at the 16th
European Conf. on Artificial Intel. Valencia, Spain.

Brewster, C., Alani, H., Dasmahapatra, S., Wilks, Y., 2004.
Data driven ontology evaluation, In Int. Conf. on
Language Resources and Evaluation. Lisbon, Portugal.

Porn, A. M., Huve, C. G., Peres, L. M. Direne, A. I., 2016.
A Systematic Literature Review of OWL Ontology
Evaluation. In 15th International Conference on
WWW/Internet. Mannheim, Germany, pp. 67-74.

Vrandečić, D., Gangemi, A., 2006. Unit tests for ontologies.
In On the Move to Meaningful Internet Systems.
Montpellier, France, pp. 1012-1020.

García-Ramos, S, Otero, A., Fernández-López, M., 2009.
OntologyTest: A Tool to Evaluate Ontologies through
Tests Defined by the User. In 10th Int. Work-Conf. on
Art. Neural Networks. Salamanca, Spain, pp. 91-98.

Blomqvist, E., Sepour, A. S., Presutti, V., 2012. Ontology
testing-methodology and tool, In 18th International
Conference in Knowledge Engineering and Knowledge
Management. Galway City, Ireland, pp. 216-226.

Lee S, Bai X, Chen Y., 2008. Automatic Mutation Testing
and Simulation on OWL-S Specified Web Services. In
Simulation Symposium, Annual, pp. 149-156.

Bartolini, C., 2016. Mutation OWLs: semantic mutation
testing for ontologies. In Proc. of the International
Workshop on domain specific Model-based approaches
to verification and validation. Rome, Italy, pp. 43-53.

Porn, A. M., Peres, L. M., 2014. Mutation Test to OWL
Ontologies. In 13th International Conference on
WWW/Internet. Porto, Portugal, pp. 123-130.

Delamaro, M. E., Maldonado, J. C., Jino, M., 2007.
Introdução ao Teste de Software, in Portuguese,
volume 394 of Campus. Elsevier, 2007.

DeMillo, R. A., Lipton, R. J., Sayward, F. G., 1978. Hints
on Test Data Selection: Help for the Practicing
Programmer. Computer. pp. 34-41.

Budd. T. A., 1981. Mutation Analysis: Ideas, Example,
Problems and Prospects. In Proceedings of the Summer
School on Computer Program Testing held at
SOGESTA, Urbino, Italy, pp. 129-148.

Horrocks, I., Sattler, U., Tobies, S., 2000. Reasoning with
Individuals for the Description Logic SHIQ. In
Proceedings of the 17th International Conference on
Automated Deduction. Pittsburgh, USA, pp. 482-496.

Musen, M. A., 2015. The Protégé project: A look back and
a look forward. AI Matters. Association of Computing
Machinery Specific Interest Group in Art. Intelligence.

Bechhofer, S., Horrocks, I., Patel-Schneider, P., 2003.
Tutorial on OWL. In 2nd International Semantic Web
Conference. Sanibel Island, Florida, USA. Available in:
<http://owl.man.ac.uk/2006/07/sssw/people.owl>.
Accessed: November 10th, 2016.

Horrocks, I., 2008. Ontologies and the semantic web. In
Magazine Communications of the ACM – Surviving the
data deluge. Vol. 51, Issue 12, pp. 58-67.

McGuinness, D. L., Harmelen, F. van, 2004. OWL Web
Ontology Language Overview. Available in:
<http://www.w3.org/TR/owl-features/>. Accessed:
November 11th, 2016.

OWL Working Group, 2012. Web Ontology Language
(OWL). Available in:
<https://www.w3.org/2001/sw/wiki/OWL>. Accessed:
November 11th, 2016.

Budd, T. A., DeMillo, R. A., Lipton, R. J., Sayward, F. G.,
1980. Theoretical and Empirical Studies on Using
Programa Mutation to Test the Functional Correctness
of Programs. In Proc. of the 7th ACM Symposium of
Principles of Programming Languages. pp. 220-233,
New York, NY, USA.

Gómez-Pérez, A., 2004. Ontology Evaluation. Handbook
on Ontologies, Springer, pp. 251-273.

Burton-Jones, A., Storey, V. C., Sugumaran, V., Ahluwalia,
P., 2005. A semiotic metrics suite for assessing the
quality of ontologies, Data & Knowledge Engineering,
Vol. 55, No. 1, pp. 84-102.

Hlomani, H., Stacey, D., 2014. An extension to the data-
driven ontology evaluation. In 15th Int. Conf. on Info.
Reuse and Integration. Redwood, USA, pp. 845-849.

Wong, W. E., Mathur, A. P., Maldonado, J. C., 1995.
Mutation Versus All-uses: An Empirical Evaluation of
Cost, Strength and Effectiveness. In Software Quality
and Productivity: Theory, Practice and Training.
London, UK, pp. 258-265.

Semantic Mutation Test to OWL Ontologies

441

