
An Interactive Book Authoring Tool to Introduce Programming
Logic in Schools

André Campos1, Alberto Signoretti2 and Mário Rodrigues3

1DIMAp, Federal University of RN - UFRN, Natal, Brazil
2DI, State University of RN - UERN, Natal, Brazil

3ESTGA/IEETA, University of Aveiro - UA, Aveiro, Portugal

Keywords: Computational Thinking, Storytelling, Digital Interactive Book, Computer Science Education.

Abstract: In the past years, there was a growing interest in teaching computational thinking in elementary and high
school institutions. Although the idea is spread and well accepted among academics, it has been rarely put
in practice in the classrooms. Currently, when a programming-related activity is offered, with some few ex-
ceptions, it is usually presented as an extra-curricular (optional) activity. However, it does not need to be
disassociated from the common school curriculum. The present work is based on the idea that programming
logic can be used transversally with different subjects, such as history, geography, science, literacy, mathemat-
ics, among others. The authors envisage to accomplish this goal by enabling programming as a supporting tool
for teachers and students, allowing them to create digital interactive books. The tool, named piBook, has its
main focus in the production of interactive storytelling using non-linear narratives. Besides, it is also possible
to create textual games (such as role-playing games), interactive activities (such as quizzes), tutorials, chatbots
and similar applications.

1 INTRODUCTION

Recent articles has shown the importance of align-
ing the education of “digital natives” (Prensky, 2009)
with the development of digital skills and compe-
tences (Leonard et al., 2016). However, a consid-
erable number of schools still do not address this
need. In several schools, computers are being primar-
ily used as tools for information research, text editing
and presentations. In some contexts, computers are
also used as a motivational tool for learning, through
the use of games and playful digital activities (Felicia,
2014). However, even in these latter cases, there is
no direct stimulus for the students to know how these
games and applications are built.

Knowing how to use tools is the most basic rela-
tionship one can have with technology, which differs
significantly from knowing how to apply concepts to
construct them. In the today digital society, this abil-
ity is highly appreciated in any career. Furthermore,
knowing or identifying the logic behind a computer-
based solution can help the student’s autonomy to
solve objective problems by developing the ability to
think in a systematical and critical way (Wing, 2006).

Ten years after Jeanette Wing’s influential article,

where the term Computational Thinking was coined
(Wing, 2006), the idea has still not been widely
adopted. Despite the growing interest in the subject,
there is a huge difficulty in putting her ideas into prac-
tice, especially in countries with strong resistance to
change or to provide more flexibility to their scholar
curriculum. As a consequence, several educational in-
stitutions that adopt computational thinking and cor-
related activities, usually do so through extracurricu-
lar activities, following the learn-to-code movement
(Kafai and Burke, 2014).

Several institutions and entities worldwide have
been supporting this movement in the last years. This
is mainly due to the stimulus that programming offers
to logical thinking, creativity, reasoning and problem
solving through abstractions and decompositions (Lye
and Koh, 2014). Therefore, it is critical to spend ef-
forts in introducing computational thinking and, more
specifically, programming logic in the early years of
education.

The present work is complementary to the exist-
ing learn-to-code initiatives in extracurricular activ-
ities. However, differently from them, it considers
that teaching programming logic does not necessar-
ily have to be disconnected from the current existing

140
Campos, A., Signoretti, A. and Rodrigues, M.
An Interactive Book Authoring Tool to Introduce Programming Logic in Schools.
DOI: 10.5220/0006333501400148
In Proceedings of the 9th International Conference on Computer Supported Education (CSEDU 2017) - Volume 1, pages 140-148
ISBN: 978-989-758-239-4
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

school contents. In other words, it can be transver-
sally used on diverse subjects, such as history, geogra-
phy, science, literacy, mathematics, foreign language,
among others. For this, it is necessary to embed the
use of programming logic into the existing learning
activities, so that it can be part of a teaching method.

A widely accepted “general purpose” teaching
method is the use of storytelling. According to Robin
(Robin, 2006), storytelling and more specifically in-
teractive digital storytelling is a powerful teaching
and learning tool for engaging both teachers and stu-
dents. Besides, storytelling can effectively be used
in many different contexts and subjects. A language
teacher can, for instance, ask his/her students to cre-
ate a non-linear narrative in order to improve their
literacy skills (Menezes, 2012), while a mathematics
teacher may aim at developing the student’s argumen-
tative competences (Albano et al., 2016). These ex-
amples show how flexible is the use of storytelling in
the educational context.

The present work exploits the flexibility of the sto-
rytelling to promote computational thinking and pro-
gramming skills in the existing scholar curriculum.
This is done with the support of a new tool, named
piBook (Programmable Interactive Book), which the
current paper means to introduce.

The paper is structured in five sections. The cur-
rent one exposes the motivation and goals of the work.
The second section presents correlated strategies used
to create digital non-linear narratives. The follow-
ing one provides the piBook goals and main require-
ments. The next one details the piBook system, by
presenting its architectural elements and how pro-
grams are created on it. Finally, the last section pro-
vides some considerations about the developed tool as
well as intended future work.

2 RELATED WORK

Some computational tools have already been created
with the purpose of enabling users to create digital
interactive stories as well as to publish their books.
Most of these tools use narrative flows (i.e., directed
graphs) in order to define the non-linear structure of
the story. However, some non trivial interactions are
particularly difficult to accomplish without the use of
programming resources and concepts (such as vari-
ables, conditionals, loops). While some tools deal
with this problem through a purely visual approach,
others allow authors to create a more complex logic
by directly using programming languages.

An example of the first case is the StoryTec (Gobel
et al., 2008). StoryTec is storytelling platform com-

posed of two major components: an authoring envi-
ronment and a runtime engine. The authoring com-
ponent is based on a pluggable framework where dif-
ferent editors may be used to create elements for a
story. It was initially conceived with five components:
a Story Editor, a Stage Editor, an Action Set Editor, a
Property Editor, and an Asset Manager. The editors
directly related to the current work are the Story and
Action Set editors. While the first one provides an
interactive 2D representation of the story graph, con-
taining the scenes, the transitions between the scenes
and the story elements, the second one is used to
configure the story logic inside each scene, which
is made through a visual programming environment.
The scene logic is then described visually by a set of
rules composed of conditions and actions. The pro-
gramming approach of this editor is similar to a flow
diagram, as illustrated in Figure 1.

Figure 1: Example of programming rules in the StoryTec’s
Action Set Editor.

The StoryTec’s visual approach eases the use of
the authoring tool for non-specialists due to the fact
that no programming skills are required to define the
story logic. Nevertheless, it restraints the ability to
create rules for complex scenarios. A more recent sto-
rytelling authoring tool, named Twine (Hahn, 2016),
tackles this gap by providing the ability to write the
story logic embedded in the narrative by using a tex-
tual programming language. The way in which Twine
creates non-linear structures in the story is based on
wiki systems. The user creates a text, which may have
one or more wiki link to other texts, which may also
connect to other ones, and so forth. For increasing us-
ability, Twine provides a visualization tool where the
user can see the overall story graph, in a way similar
to StoryTec. However, differently from the latter, it
does not provide a visual editor for authoring the story
logic. In Twine, each wiki-text may also have embed-
ded a chunk of code (written in Javascript) in order
to control, for instance, how many times the user has
passed by that text or if a part of the text should be
visible or not. This approach allows more control.
However, it requires previous knowledge of a specific
programming language. Figure 2 illustrates the Twine
approach to embed variables and coding instructions
into a narrative text.

An Interactive Book Authoring Tool to Introduce Programming Logic in Schools

141

Figure 2: Example of logic embedded in the narrative in
Twine.

The two previously mentioned approaches, exem-
plified by StoryTec and Twine, have advantages and
pitfalls. While a purely visual method does not pro-
vide all programming mechanisms, a direct use of a
programming language may pose a barrier to begin-
ners. It is worth then note that each approach targets a
particular audience: non-programmer users and pro-
grammer ones. By focusing on a unique audience,
they do not provide enough mechanisms to guide a
non programmer user to become a programmer one.
In other words, they are not adequate to be used as a
learning tool.

Aiming at this learning guidance in programming
skills, several tools have been constructed using a
block-based visual programming strategy, as the one
present in Scratch (Resnick et al., 2009). Indeed,
the interest in block-based visual programming has
grown in recent years, specially in the educational
context, helping beginners to get involved in their pro-
gramming first steps (Fraser, 2015). From a leaner
perspective, the advantages of using block-based pro-
gramming relies on the ability to use a visual language
modeled for a specific domain, the possibility of grad-
ually presenting parts of that language, and, finally,
the capacity of not allowing syntax errors (only se-
mantic errors) (Fraser, 2015).

Because of the previously mentioned reasons, au-
thoring applications using block-based programming,
such as Scratch (Resnick et al., 2009) and AppIven-
tor (Wolber, 2011), have been widely used by edu-
cators to teach programming. However, concerning
to the current work, although it is possible to create
non-linear interactive stories with Scratch, AppInven-
tor and similar applications, their visual languages do
not target the specific purpose of creating non-linear
interactive narratives. In fact, they can be categorized
as general-purpose authoring tools. A tool targeting
this particular application context may facilitate the
authoring process, while helping teaching program-
ming logic.

The present work correlates the three previously

mentioned approaches in a unique learning platform.
It provides a tool where the user can visually author a
non-linear sequence through a graph-based flow, but
he can also program the story logic by using a block-
based strategy or, when he becomes more proficient,
a textual programming language.

3 GOALS AND REQUIREMENTS

The primary pedagogical goal of the current work
is to stimulate the development of computational
problem-solving skills in the educational context by
the challenge of authoring digital interactive story-
telling. This goal has however a natural barrier:
school teachers usually do not have previous back-
ground on computational thinking nor programming
skills to set up a logic behind their non-linear nar-
ratives. Taking into account that barrier, it is im-
perative to target different types of audience, from
novice to expert users. So, the tool should be easy
to use by newcomers in programming (programming
skills should not be required), but also to be expres-
sive enough to programming experts. Besides that,
as it is intended to be used in an educational context,
it should also provide a smooth transition from the
novice to the advanced one.

From the novice perspective, users should be able
to conceive their non-linear narratives visually by cre-
ating states in a graph-based flow-oriented diagram.
Each graph node is considered as state in the story,
which can only go forward or backward according
to the reader’s choice. For the intermediary users,
they should be able to express more complex mech-
anisms by visually dragging and dropping program-
ming blocks (Fraser, 2015). The latter introduces pro-
gramming concepts useful for handling more com-
plex reader interactions. Finally, as the intermediary
users become more proficient in the concepts of pro-
gramming blocks, they may turn into advanced users
and change their programming environment to a tex-
tual programming language. The latter should pro-
vide the possibility to fully customize the reader in-
teractive experience.

Besides the aforementioned goal, the following
requirements were also established in order to set up
a playful educational environment around the tool:

• Ability to collaboratively create the story con-
tents, including the programs controlling the logic
behind the story interactions;

• Ability to share the created story with other users
(e.g. classmates and parents) and get feedback
from them;

CSEDU 2017 - 9th International Conference on Computer Supported Education

142

Figure 3: piBook screenshot showing a flow-based programming mode and a preview of the interactive book.

• Ability to publish a final version of the story (in-
teractive digital book).

These items resume the scope of piBook. Never-
theless, it is worth to highlight that piBook has not
been designed to be a self-guided learning tool. A
self-guided or a self-discovery learning tool must fol-
low a learning method and, for the moment, there is
no particular methodological approach set up to pi-
Book. Therefore, researchers and educators may ex-
plore the pedagogical possibilities (online and offline)
and students are supposed to be oriented by them to
use piBook as a way to put their skills and knowledge
in practice.

4 piBook

piBook is an online application composed of two
parts: an authoring platform and a running applica-
tion. The first one is a web-based system where users,
students or teachers, may create interactive books for
their audience, the readers. The second part is a
mobile-based application able to load an interactive
book description and execute it. Figure 3 shows a
screenshot of the authoring platform in flow-based
programming mode. The figure also presents a pre-
view panel where the user can check his creation be-
fore publishing.

For convenience, we refer hereafter piBook au-
thoring plataform as piBook tool and the books au-
thored by the application just as piBooks.

4.1 Elements

In order to understand how to author a piBook, it is
important to have an overview of the elements com-
posing the tool and the authored books. A piBook is
structured into four main elements, which are:

• Section: sections provide a way to organize the
book, either to give sequence of a narrative, like
chapters, or to give a feedback of evolution in the
activities, like game levels. A user/reader may, for
instance, stay in a section (level) while some goal
has not been accomplished. As soon as the reader
reaches the section (level) goals, another one can
be shown.

• Formatted texts: these refer to the visual contents
of the application, which are formatted texts op-
tionally embedded with images, videos, math for-
mulas, and references to data stored in spread-
sheets or program variables. Formatted texts are
then visual templates, which are used to interact
with readers.

• Spreadsheets: piBooks may use persistent data
to fulfill the book’s templates (formatted texts)
or to save data from reader interactions. Spread-
sheets are where these data are saved. The reason
for using spreadsheets instead of database mod-
els is to ease the edition and generation of reports.
Since book authors may not be programmer ex-
perts, they may benefit from using a common and
well-known interface element as a spreadsheets.

• Programs: they define the logic of the interactive

An Interactive Book Authoring Tool to Introduce Programming Logic in Schools

143

book, choosing the template to show to readers,
fulfilling it with corresponding data, and deciding
what to save in the spreadsheet after a reader in-
teraction. It is the kernel of a piBook.

Theses elements are illustrated in Figure 4. The
numbers in the figure represent the cardinality of the
relations between elements. A piBook is composed
of one or more sections, formatted texts and optional
spreadsheets. Each section should have an associated
program, from which the formatted texts and spread-
sheets are handled.

Figure 4: piBook elements.

The figure also highlights the correlation between
the spreadsheets, formatted texts and programs with
the architectural pattern known as MVC (Model-
View-Controller). This pattern creates a separation
of concerns by assigning responsibilities to different
elements. While the formatted texts form the com-
munication channel with the reader (the view), the
spreadsheets store useful book data (the model), and
the program controls the logic behind the scenes (the
controller).

Although the usage of the tool was primarily tar-
geted to create narrative stories for an educational au-
dience, it was perceived during its development that
several other applications could be also constructed
through the use of its concepts and resources. Possi-
ble uses involve the creation of different kinds of in-
teractive activities, such as games, quizzes, tutorials
and chatbots. Figure 5 illustrates some of these uses.

Figure 5: Examples of pi-Book applications targeted on mo-
bile devices.

4.2 Programming Modes

As the primary idea behind the tool is to promote
computational thinking and programming, a piBook
author is not supposed to have previous knowledge
about computer programming. It is then necessary to
build a smooth learning curve. Our approach to intro-
duce computer programming relies on three levels of
ability.

The first one was conceived to the users who have
never programmed computers using a formal com-
puter language. In this level, a piBook logic is defined
visually by a flow-oriented state-based diagram. The
logic is then composed of several states, each one re-
lated to a specific formatted text. When the book is in
a state, the corresponding formatted text is presented
to the reader. After the presentation, the book may go
to a new state, including a user interaction state, like
an option request. When the user chooses, the book

CSEDU 2017 - 9th International Conference on Computer Supported Education

144

switches to a new state, and so on. Figure 6 illustrates
an example of flow-based program. Starting in state
T1, the formatted text associated to T1 is presented
to the reader. After that, the book goes to state T2
and its corresponding text is also presented. Then, a
reader interaction is requested, asking to choose an
option through state O3. According to the answer, the
book goes to state T4 or T5. After T4, a new user in-
teraction is requested and the book state can switches
back to state T1 or T2.

Figure 6: Flow-based program.

As previously mentioned, this level of logic pro-
gramming is well-suited for beginners, since the vi-
sual approach facilitates the conception of non-linear
stories even for non programmers. Besides that, the
book author can have a glimpse on the overall book
and when its content flow changes. However, this ap-
proach is also limiting. It restrains the use of more la-
bored interactions. Consider, for instance, the book’s
author wants to get the reader’s name in order to pro-
vided personalized feedback during the reading. It
will not be possible with the flow-based approach. For
this, it is necessary to deal with the concept of vari-
able, which will temporarily store the reader’s name.

The second programming level tackles this limi-
tation. It was conceived to the users who want more
expressiveness in their books, but have not enough ex-
perience with computer programs yet. In this level, a
piBook logic is also defined visually, but with a block-
based domain specific language (DSL).

As one of the designed goals of piBook tool is
to provide a smooth learning path between user pro-
gramming expertise, a program written in a flow-
based way should be able to be translated to the block-
based mode. Therefore, the state transitions of flow-
based programs should also be present in a block-
based solution.

Flow-based programs are Finite State Machines
(FSM). As so, it naturally handles state transitions. To
provide the corresponding mechanism of state transi-

tions in block-based programs, an event-based strat-
egy was chosen. This approach takes into account the
events triggered by actions performed by readers in a
particular state. As soon as an event is triggered, a
new state transition occurs and piBook enters another
narrative state.

Following this approach, if the user who created
the flow-based program shown in Figure 6 wants to
start working with block-based program, he can trans-
late his original flow-based code to a block-based one.
Figure 7 illustrates an extract of the block-based code
resulting from this transition. In the figure, T1, T2 and
Q1 represent the corresponding states and the reader
interaction state 1 in Figure 6.

Figure 7: Extract of a block-based program.

After that transition, the user can improve his
block-based code by using programming resources
such as variables, conditionals and loops. At this
point, the user can, for instance, iterate over a pre-
viously saved spreadsheet data in order to check a
reader answer.

Finally, the third level enables the book authors to
conceive more complex interactions with the reader.
In this level, piBook logic is defined as a textual gen-
eral purpose programming language. The current sup-
ported language is Javascript, but other scripting lan-
guages may be incorporated depending on the needs
of the future piBook users.

To facilitate the translations between program-
ming modes, the textual mode also follows the event-
based strategy incorporated in the block-based mode.
Again, if the user who created the flow-based program
shown in Figure 6 wants to start working with textual-
based program, he can translate his original code to
a general purpose programming language as the one
presented in Figure 8. The states T1, T2, T3, T4, Q1
and Q2 represent the same states and the reader inter-
action states as described in the block-based mode.

An Interactive Book Authoring Tool to Introduce Programming Logic in Schools

145

01. book.write(T1);
02.
03. T1.on(’read’, ()=> book.write(T2));
04. T2.on(’read’, ()=> book.ask(O3));
05. T4.on(’read’, ()=> book.ask(O6));
06. T5.on(’read’, ()=> book.end());
07.
08. O3.on(’answered’, (answer) => {
09. if (answer == 1)
10. book.write(T4);
11. else
12. book.write(T5);
13. });
14.
15. O6.on(’answered’, (answer) => {
16. if (answer == 1)
17. book.write(T1);
18. else
19. book.write(T2);
20. });

Figure 8: Code example based on event transitions (in
Javascript).

These three programming levels are assumed to
handle the different levels of knowledge of the tar-
geted audience, from a beginner student to an expe-
rienced one. However, it is worth to note that, due
to expressiveness capacity of each mode (or its limi-
tations), the tool allows a code to be translated from
a less expressive mode to a more expressive one, but
not otherwise. In other words, if the user starts a sec-
tion using a flow-based program, he can transform it
into block or textual-based code. However, after that,
he cannot revert a block or text-based code back to a
flow-based program. The same is valid between block
and textual code.

4.3 System Architecture and Data
Format

As previously mentioned, from the user perspective,
piBook is an online application composed of two
parts: an web-based authoring tool (book creator) and
a mobile application (book reader). There is however
a third component, a web server, to handle persis-
tent data and to provide visible online data (published
books). The server exposes a JSON-based REST API
used by both the authoring tool and the mobile appli-
cation to create, read, update or destroy book proper-
ties, sections, contents or logic specifications.

The authoring tool is a Single Page Application
(SPA) composed of three main components: 1) a
user dashboard, where the user can edit his authored
books, create new ones and publish them; 2) a book
editor, where the user can edit the book sections, their

contents and logic; and 3) a data editor, represented
by a spreadsheet where the user can collect data from
book interactions and/or serve static data for his book.

The authoring tool, as well as the mobile applica-
tion, consume data from the server in a specific for-
mat. The data format exchanged by server and ap-
plications induce the hierarchical structures of a pi-
Book into sections, and the latter into a collection of
text snippets and a section logic. The snippet con-
tents follow the Delta format to describe Rich Text
Documents (RTD) specified by the Quill editor (Quill,
2017).

Figures 9 and 10 illustrate how a book specified in
the flow-based mode is represented by the specified
data format. Such format represents the book’s con-
tents in a static way. The data is then interpreted by
the mobile reader to dynamically construct the inter-
active application.

Figure 9: Example of flow.

5 FINAL REMARKS AND
FUTURE WORK

The current paper introduced a tool, named piBook,
conceived to help the introduction of programming
logic in schools. The paper describes the ideas of the
tool, how it is structured and the reasons behind the
choices. The choice of focusing on storytelling was
mainly due to the flexibility it provides, enabling the
introduction of programming logic in most of the sub-
jects of a scholar curriculum, from history to sciences.

The tool is not production-ready. For the time be-
ing, it is possible to specify interactive narratives in
the flow-based programming mode, by writing for-
matted texts, options requests, and defining the logic
to control these contents and interactions. However,

CSEDU 2017 - 9th International Conference on Computer Supported Education

146

{
"title": "Alice’s Adventures in Wonderland",
"authors": ["lewiscarroll"],
"sections": [{
"title": "Down the Rabbit-Hole",
"snippets": [{
"type": "text",
"label": "Start",
"content": [
{ "insert": "Alice was beginning...\n" },
{ "insert": { "image": "rabbit.png" } }

]
},
{ "type": "options",
"label": "O1",
"content": [
{ "insert": "What should Alice do?\n",
"attributes": { "header": 2 } },

{ "insert": "Enter in the rabbit-hole\n",
"attributes": { "list": "bullet" } },

{ "insert": "Try to wake up",
"attributes": { "list": "bullet" } }

],
"options": {
"o1": "Enter in the rabbit-hole",
"o2": "Try to wake up"

}
},
{ "type": "text",
"label": "inTheHole",
"content": [
{ "insert": "Alice entered...\n" }

]
},
{ "type": "text",
"label": "theEnd",
"content": [
{ "insert": "and Alice woke up.\n" },
{ "insert": "The End",
"attributes": { "header": 1 } }

]
}],
"logic": {
"flow": {
"transitions": [
{ "from": "start", "to": "O1" },
{ "from": "O1", "option": "o1",
"to": "inTheHole" },

{ "from": "O1", "option": "o2",
"to": "theEnd" }

]
}

}
}]

}

Figure 10: Example of JSON data representing the contents
of the book specified in Figure 9.

transitions to block and textual modes are still in de-
velopment. Usability tests in the flow-based mode is
currently being made in order to improve user experi-

ence.
The presented tool is not been conceived to be a

self-guided learning tool. It just helps students to put
in practice previously acquired knowledge in order
to develop their coding skills. It is supposed to be
used as a supporting mechanism for different teach-
ing strategies. However, as a companion of story-
telling, piBook seems to be well suited for project-
based learning initiatives (PBL) (Krajcik and Blu-
menfeld, 2006), where students are designated to au-
thor interactive contents for a specific subject and, for
this, they must produce the logic behind the interac-
tive activity. However, an adequate methodological
approach for piBook has not been conceived yet. Us-
ability tests with school teachers should still be done
prior to applying experiments with students.

Besides the improvements and requests after the
usability tests, some pedagogical evaluations must
also be performed. An assumption is that the exis-
tence of different levels of programming modes facil-
itates project-based learning activities, since the same
project can be assigned to the whole class and each
student may chose a level according to his/her prior
individual experience in programming.

The use of a general purpose programming lan-
guage in project-based activities may also become ad-
vantageous because of the expressive amount of third
party libraries, which may help the development of
complex interactive books. In this level, the author is
supposed to be comfortable with programming and,
using the adequate third party library, may for in-
stance create books dealing with mobile devices GPS,
NFC, and so on. Authors in this level, who also want
to customize piBook appearance, may also set CSS
rules to modify colors, fonts and the general book lay-
out. These features should be implemented in next
versions of the tool as a pluggable third-part compo-
nent.

REFERENCES

Albano, G., Iacono, U. D., and Mariotti, M. A. (2016). Ar-
gumentation in mathematics: mediation by means of
digital interactive storytelling. Form@re - Open Jour-
nal per la formazione in rete, 16(1):105–115.

Felicia, P. (2014). Game-based Learning: Challenges and
Opportunities. Cambridge Scholars Publishing, New-
castle upon Tyne, 1st unabridged edition edition.

Fraser, N. (2015). Ten things we’ve learned from Blockly.
In 2015 IEEE Blocks and Beyond Workshop (Blocks
and Beyond), pages 49–50.

Gobel, S., Salvatore, L., and Konrad, R. (2008). StoryTec:
A digital storytelling platform for the authoring and
experiencing of interactive and non-linear stories. In

An Interactive Book Authoring Tool to Introduce Programming Logic in Schools

147

International Conference on Automated solutions for
Cross Media Content and Multi-channel Distribution,
2008. AXMEDIS ’08, pages 103–110.

Hahn, R. (2016). Collaborative creative writing in the l2
classroom using the software Twine. In Proceedings
of the 6th Future of Education International Confer-
ence, pages 137–142. Pixel.

Kafai, Y. B. and Burke, Q. (2014). Connected Code: Why
Children Need to Learn Programming. MIT Press.

Krajcik, J. S. and Blumenfeld, P. C. (2006). Project-
based learning. In Sawyer, R. K., editor, The Cam-
bridge Handbook of the Learning Sciences”, chap-
ter 19, pages 317–34. Cambridge University Press,
Cambridge.

Leonard, L., Mokwele, T., Siebrits, A., and Stoltenkamp,
J. (2016). ‘Digital Natives’ require basic digital liter-
acy skills. In The IAFOR International Conference on
Technology in the Classroom. The International Aca-
demic Forum.

Lye, S. Y. and Koh, J. H. L. (2014). Review on teaching and
learning of computational thinking through program-
ming: What is next for K-12? Computers in Human
Behavior, 41:51–61.

Menezes, H. (2012). Using digital storytelling to improve
literacy skills. In Proceedings of the International
Conference on Cognition and Exploratory Learning
in Digital Age - CELDA’12, pages 299–301. Interna-
tional Association for the Development of the Infor-
mation Society.

Prensky, M. (2009). H. sapiens digital: From digital immi-
grants and digital natives to digital wisdom. Innovate:
journal of online education, 5(3):Art.1.

Quill (2017). Delta documentation. Available at:
https://quilljs.com/docs/delta/. Last access: 2017-02-
27.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk,
N., Eastmond, E., Brennan, K., Millner, A., Rosen-
baum, E., Silver, J., Silverman, B., et al. (2009).
Scratch: programming for all. Communications of the
ACM, 52(11):60–67.

Robin, B. (2006). The educational uses of digital story-
telling. In Proceedings of SITE – Society for Informa-
tion Technology & Teacher Education International
Conference, volume 2006, pages 709–716.

Wing, J. M. (2006). Computational thinking. 49(3):33–35.
Wolber, D. (2011). App inventor and real-world motiva-

tion. In Proceedings of the 42nd ACM technical sym-
posium on Computer science education, pages 601–
606. ACM.

CSEDU 2017 - 9th International Conference on Computer Supported Education

148

