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Abstract: Software engineering community often investigates the error concerning software development effort 
estimation as a part, and sometimes, as an improvement of an effort estimation technique. The aim of this 
paper is to propose an approach dealing with both model and attributes measurement error sources whatever 
the effort estimation technique used. To do that, we explore the concepts of entropy and fuzzy clustering to 
propose a new framework to cope with both error sources. The proposed framework has been evaluated 
with the COCOMO’81 dataset and the Fuzzy Analogy effort estimation technique. The results are 
promising since the actual confidence interval percentages are closer to those proposed by the framework.  

1 INTRODUCTION 

Efficient and effective control of software 
development investment is crucial through the 
software development lifecycle. Indeed, the effort 
estimation activity is important and crucial for a 
successful and financially profitable delivery 
(Kirsopp, 2002) (MacDonell, 1997). Over the last 
decades, Software Development Effort Estimation 
(SDEE) has gained increasing attention.  As a 
consequence, many techniques and models have 
been proposed in order to provide project managers 
with accurate effort estimates (Jorgensen, 2007). 
Unfortunately, the proposed techniques are not 
always accurate and the software industry is still 
plagued with unreliable estimates. In this context, 
error control helps improving projects running 
performances by capturing uncertainty and accessing 
it more efficiently. Organizations can then better 
design adapted financial risk buffers, to ensure a 
controlled project running and a successful delivery. 

As error and uncertainty sources are various, 
error assessment becomes a challenging and 
complex task. According to (Kitchenham, 1997), 
there are four different sources of error estimates: 
(1) attributes measurement error; (2) model error, (3) 
assumption error; and (4) scope error. Therefore, 
error seems inherent to the effort estimation process. 
Based on a systematic mapping study in which 19 
selected articles have been analyzed and discussed 

(El-Koutbi, 2016), two main approaches when 
dealing with effort estimation error have been 
identified.  While the first category (58% of the 
selected studies) proposes to handle error concerning 
a specific effort estimation technique, the second 
category of approaches (42% of the selected studies) 
explores new designs, frameworks or methods 
dealing with error components themselves and 
handles error for any SDEE technique.  In fact, 
effort estimation techniques are multiple and 
diverse, many studies have compared the 
performance of various SDEE techniques and no 
clear conclusions were drawn (Idri, 2015). In this 
context, it is valuable to develop an error evaluation 
approach independently of the effort estimation 
technique. The objective is to generate an effort 
probability distribution rather than one effort 
estimate.  

This paper proposes such error approach and 
considers two error sources of (Kitchenham, 1997) 
to enable estimates adjustment and risk control more 
efficiently. To the best of our knowledge, the 
concept of entropy has not been investigated in order 
to deal with error in SDEE. However, 
(Papatheocharous, 2009) used this concept in order 
to propose a novel SDEE approach that attempts to 
cluster empirical project data samples via an 
entropy-based fuzzy k-modes clustering algorithm. 
This study proposes an entropy-based approach 
dealing with the two sources of uncertainty: 
attributes measurement and model errors, for any 
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SDEE technique. This approach consists of two 
main steps. First, entropy is computed, over a 
historical set of projects, based on the Fuzzy C-
Means (FCM). Over the same historical set, effort 
deviation is calculated in order to generate a 
relationship function between entropy and effort 
deviation. At a second stage, to generate an effort 
distribution for a new project, we compute the 
corresponding entropy. The new project deviation is 
then induced using the relationship inferred over the 
historical set. The estimated deviation is finally used 
to set up the Gaussian effort distribution parameters. 
The proposed approach is evaluated over the 
COCOMO’81 dataset under Fuzzy Analogy as an 
estimation technique (Idri, 2002), (Amazal, 2014) 
and using JackKnife as an evaluation method. 

The paper is organized as follows. Section 2 
provides insights into the concepts of entropy and 
FCM. Section 3 presents the modeling of the 
attributes and model error. Section 4 describes the 
proposed framework steps. Section 5 focuses on the 
experiment design. Section 6 evaluates the proposed 
framework on the COCOMO’81 dataset and 
discusses the results. Finally, Section 7 presents 
conclusions and outlines perspectives and future 
work. 

2 BACKGROUND 

2.1 Shannon Entropy 

The concept of entropy of information was first 
introduced by Shannon in 1948 (Shannon, 1948). By 
defining a mathematical function describing the 
statistical nature of information lost over a 
transmission line, Shannon sets up a fundamental 
base of Information Theory (Gray, 1990). As 
entropy is a measure of unpredictability  
 of information content, it is a key idea for 
describing random variables, processes and dynamic 
systems (Borda, 2011). For a discrete random 
variable X and probability mass 
function P(X), Shannon proposed the formal 
definition of the entropy Η given in Eq.1.  H(X) = EሾI(X)ሿ (1) 
where E is the expected value operator, and I is 
the information content of X.  
As I(X) is itself a random variable, the entropy can 
explicitly be written as given in Eq.2. H(X) = −P(x୧)logP(x୧)୬

୧ୀଵ  (2) 

The Eq.2 can be generalized in the case of a 
continuous distribution as given in Eq.3.  H(X) = −නP(x)logP(x)dx  (3) 

where P(x) represents a probability density function. 
In the case of n variables (X1,…, Xn), entropy is 
defined as follows (Han, 2002): H(Xଵ, . . , X୬) = H(Xଵ) + H(Xଶ|Xଵ) + ⋯+ H(X୬|Xଵ, . . X୬ିଵ) (4) 

where lm and ln are respectively Xi and Xj possible 
values and H(X୧│X୨) is the conditional entropy. 

It worth notice that for independent variables, 
entropy has an additive property: H(Xଵ, . . , X୬) = H(Xଵ) +⋯+ H(X୬)   (5) 

2.2 Fuzzy Clustering 

Fuzzy logic was introduced by Zadeh in 1965 with 
his proposal of fuzzy set theory (Zadeh, 1965). 
Since, the fuzzy logic has been applied to many 
fields such as clustering and classification. Fuzzy 
clustering is a well-known clustering strategy that 
used the concept of fuzziness. Based on membership 
functions, it proposes an alternative approach of the 
hard clustering. As a result, a data point belongs to a 
cluster with a membership value between 0 and 1. 
Therefore, a data point could belong to different 
clusters with different membership values.  

In SDEE, fuzzy clustering was investigated in 
order to deal with uncertainty of attributes. 
Especially: (Liao, 2003) generates convex fuzzy 
terms with a variant of the original Fuzzy C-Means 
(FCM) Algorithm; and (Idri, 2006) combines FCM 
with a Real Coded Genetic Algorithm (RCGA) in 
order to generate membership functions from 
numerical software project attributes. 

This study uses the FCM algorithm which is the 
fuzzy version of the hard C-means algorithm that 
aims to group elements into clusters so that items in 
the same cluster are as similar as possible (Bezdek, 
1981). FCM generates cluster centers (centroids) 
that minimize the function of Eq.6.  Min J୫(U, C) =u୧୨୫	ฮx୧ − c୨ฮଶ	ୡ

୨ୀଵ
୬
୧ୀଵ  (6) 

Subject to:  ݑ = 1, ∀ ݆ ∈ ۤ1, ۥ݊
ୀଵ  (7) 

where (x1 ,..., xn) are points of a data set; c is the 
desired number of clusters; m is the control 
parameter of fuzziness; U = (uij) is the partition 
matrix, containing the membership values of all data 
in all clusters; and C = (ci) is the set of cluster 
centers.  
Updating iteratively the cluster centers and the 
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membership values improves the cluster centers 
location by minimizing the objective function of 
Eq.6. The number of clusters might be determined 
based on the Xie-Beni validity criterion (Xie, 1991).  
A brief description of the FCM algorithm is shown 
in Fig.1. 
 

Step 0. Randomly initialize the membership 
matrix (U) respecting Eq.6. 

Step 1. Calculate centroids  using the formula: 

ܿ =ݑݔ
ୀଵ ݑ

ୀଵ൙  

Step 2. Compute dissimilarity between centroids 
and data points using Eq.7.  

Stop if improvement over previous iteration is 
below a threshold.  

Step 3. Compute a new U using the formula : 

ݑ = 1 ቆฮݔ − ܿฮ‖ݔ − ܿ‖ቇଶ/(ିଵ)
ୀଵ൘  

Go to Step 1.  

Figure 1: Fuzzy C-Means algorithm. 

3 ATTRIBUTES MEASUREMENT 
AND MODEL ERROR IN SDEE 

SDEE aims to provide accurate effort estimates 
based on project attributes description. To achieve 
this objective, the use of a historical projects dataset 
with known attributes and actual effort values is 
needed. Fig. 2 shows the classical SDEE dataset 
form, where Eacti is the actual effort of a project Pi, 
Xjs are the attributes describing the projects Pis, xij 
are their values, n and k are the number of projects 
and attributes respectively. Based on entropy and 
FCM concepts, presented in Section 2, we describe 
in this section the two approaches to deal with both 
attributes measurement and model errors in SDEE. 

 Actual effort X 1 X2 … Xk 

Project 1 Eact1 x11 x12 … x1k 

Project 2 Eact2 x21 x22 … x2k 

… … … … … … 

Project n Eactn xn1 xn2 … xnk 

New project Unknown xN1 xN2 … xNk 

Figure 2: Software projects dataset form. 

 

3.1 Attributes Measurement Error 

Attributes measurement error is caused by accuracy 
limitations of input variables. It concerns especially 
uncertainty associated to attributes Xjs (Kitchenham, 
1997). As uncertainty is caused by attribute biases, it 
seems plausible to consider that it depends of 
attribute information rather than the attribute values. 
In this context, a mathematical function quantifying 
information uncertainty can help managing attributes 
measurement error in SDEE. This study proposes to 
use the well-known Shannon entropy, presented in 
Section 2.1, as a measure of attribute uncertainty. 
Since attribute values present an inherent 
imprecision, especially categorical data 
(Kitchenham, 1997), we use the continuous version 
of Shannon entropy (Eq.3). This enables us to take 
into account neighbor values while calculating 
attributes entropy. The following formalization is an 
adaptation of the entropy equation (Eq.3 and Eq.5) 
to the SDEE context. 
Based on Eq.3, we define the entropy of an attribute 
Xj of a project Pi, as follows: H୧୨ = −න f୨(x) log ቀf୨(x)ቁ dx୶ౠା୰ౣౠ୶ౠି୰ౣౠ  (8) 

where xij are the values of the attribute Xj of a 
project Pi, rmj is an average neighborhood distance 
and fjs are  the membership functions generated by 
the FCM algorithm for the attribute Xj.  
For a project Pi, the entropy value Hi is calculated by 
means of Eq.9. H୧ =H୧୨୩

୨ୀଵ = −න f୨(x) log ቀf୨(x)ቁ dx୶ౠା୰ౣౠ୶ౠି୰ౣౠ
୩
୨ୀଵ  (9) 

where k is the number of attributes. For the other 
parameters description, refer to Eq.8. 

3.2 Model Error 

Model error occurs because all empirical SDEE 
models are abstractions of reality. Factors that affect 
effort but are not included explicitly in the model 
contribute to the model error. Model error concerns 
then the inherent limitation of the theoretical abstract 
approach of effort estimation. Since model error is 
related to effort estimation, absolute error is used to 
measure the estimates deviation from the actual 
effort. Hence, we define for each project Pi a 
deviation 	∆ୣ୧ as follows:  ∆ୣ୧ = หEୟୡ୲ −	Eୣୱ୲ห (10) 
where Eୟୡ୲	and Eୣୱ୲ are respectively the actual and 
estimated efforts of project Pi. 
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3.3 SDEE Error Formulation 

As shown in Fig. 2, the SDEE formulation is 
characterized by k+1 elements, where k corresponds 
to the number of attributes used to describe projects. 
By means of entropy and effort deviation, 
respectively described by Eq.9 and Eq.10, it is 
possible to reduce the SDEE problem dimension of 
Fig. 2 to deal with both attributes measurement and 
model error. Fig. 3 illustrates the proposed 
transformed dataset form in order to handle both 
measurement and model errors. In comparison with 
the dataset form of Fig. 3, we note that the k project 
attributes are replaced by a single variable that is 
their entropy. This dimensional reduction of the 
number of variables is due to the fact that attribute 
measurements error is an uncertainty concern and 
then depends of information uncertainty (measured 
here with entropy) rather than attributes values 
them-selves (Kitchenham, 1997). 

 Deviation Entropy 
Project 1 ∆eff1 H1 
Project 2 ∆eff2 H2 
… … … 
Project n ∆effn Hn 
New project Unknown HN 

Figure 3: Software projects dataset form to deal with 
attribute measurement and model errors. 

In the rest of this paper, a project Pi is described by 
its entropy Hi and its deviation ∆effi. 

4 ENTROPY-BASED APPROACH 
FOR ERROR IN SDEE 

This paper proposes a novel entropy-based 
framework in order to deal with both attributes 
measurement and model error whatever the effort 
estimation technique used. Based on entropy and 
effort deviation, the proposed approach consists of 
two main steps.  In the following subsections, Steps 
1 and 2 are detailed. 

4.1 Step 1: Constructing Relationship 
of Entropy and Effort Deviation 

The objective of this step is to use the learning set 
projects in order to generate the function g that 
associates entropy and effort deviation. This 
function is then used to estimate effort deviation of a 
new project knowing its entropy. The function g 
construction process is as follow: 

(1) Attributes fuzzy clustering consists of applying 
the FCM Algorithm to generate fuzzy clusters of 
each attribute Xj. The Xie-Beni validity criterion is 
used to decide on the optimal number of these 
clusters (Xie, 1991). Thereafter, the membership 
functions fjs were constructed for each attribute Xj 
by means of a Real Coded Genetic Algorithm 
(RCGA) (Idri, 2006). 
(2) Projects entropy Hi of each project Pi is 
computed based on fj and rmj, of all attributes Xj 

(Eq.9). 
(3) In order to generate the effort deviation values, 
we apply an effort estimation technique on each 
project Pi to obtain its effort estimate. Thereafter, we 
calculate the Pi effort deviation ∆effi by means of 
Eq.10. 
(4) We infer the function g modelling the entropy Hi 
and the deviation ∆effi 

4.2 Step 2: Generating Error 
Distribution 

This step aims to generate an estimation error 
distribution for a new project PN. To achieve this 
objective, we use entropy and effort deviation 
computed in Step 1 as well as the in function g. 

As function g represents a relationship between 
entropy and effort deviation, we first compute the 
new project entropy HN by means of Eq.9. Then, we 
interpolate the effort deviation ∆effN of PN using 
function g. Based on the interpolated deviation a 
Gaussian error distribution is generated.  

The choice of a Gaussian error distribution was 
motivated by the fact that: (1) Gaussian function is 
the result of Gamma function convergence which 
has been suggested by (Kitchenham, 1997); and (2) 
Gaussian function is often used to model waiting or 
service times in queuing theory and it makes sense 
in SDEE context since estimating a project effort 
concerns the required time for software development 
tasks.  

The classical Gaussian formula is given by Eq.11 
(Bromiley, 2003). ݂(x) = 1σ√2π eି(୶ିஜ)మଶమ  (11) 

where ߤ is the distribution expectation and ߪits 
standard deviation. 

Finally and in order to set up the parameters μ 
and σ to determine the error distribution of PN, we 
consider that:   

(1) μ= EestN: this implies that the effort 
distribution is centered around the estimated effort 
of PN, EestN, and there is neither overestimation nor 
underestimation preference. 

(2)  ∆effN ≅ σ: this means for example that the 
actual deviation which corresponds to absolute 
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difference with EestN is at 68.3% (Bromiley, 2003) in 
the interval of ±∆effN that corresponds to ±ߪ. 

The Gaussian error distribution used is then: f(x) = 1∆ୣ√2π eି(୶ି౩౪ొ)మଶ∆ొమ  (12) 

5 EXPERIMENT DESIGN 

5.1 Dataset Description 

This study uses the COCOMO’81 historical dataset 
available in the PRedictOr Models In Software 
Engineering (PROMISE) data repository (Menzies, 
2012). The original COCOMO’81 contains 63 
projects. The version used in this study consists of 
252 projects described by 13 attributes (refer to (Idri, 
2016) for details). It’s worth precise that 
COCOMO’81effort drivers are measured using a 
rating scale of six linguistic values (very low, low, 
nominal, high, very high and extra-high). In this 
experiment, for each couple of project and linguistic 
value, four numerical values have been randomly 
generated according to the classical interval used to 
represent the linguistic value. 

5.2 Projects Entropy Computation 

For each attribute Xj, we used the FCM Algorithm 
to determine the number of clusters which has been 
varied between 2 and 7. The Xi-Benni criterion has 
been used to choose the best clustering. Fig. 4 
reports the trapezoidal membership functions 
defined for three attributes of the COCOMO’81 
dataset: PCAP, LEXP and VIRTMIN. In addition to 
that and in order to take into account neighbour 
values while calculating entropy, we compute the 
mean radium rm, defined in Eq.8. In this 
experimentation, for attribute Xj, rmj is defined as 2 ×	Min୪,୦∈ሾଵ,୬ሿฮx୪୨ − x୦୨ฮwhere n is the number of 
projects, rm corresponds to two times the minimal 
distance between values of attribute Xj in order to 
take into account superior and inferior neighbours. 
For each attribute, the selected clusters number 
corresponds to the integer minimizing the Xi-Benni 
criterion. Based on attribute membership functions 
and radii, we compute entropy of each project based 
on Eq.9. Table 1 summarizes the descriptive 
statistics of entropy distribution over the 
COCOMO’81 dataset. We can notice a wide 
dispersion of entropy values. Median entropy is 
relatively low around 2.25 in comparison with mean 
and maximal entropy: 7631.73 and 175997.79 
respectively. 

 

 

Figure 4: Membership functions for VIRTMIN, LEXP 
and PCAP attributes. 

Table 1: COCOMO’81descriptive statistics of entropy. 

Mean 

Entropy 

Median 

Entropy 

Minimal 

Entropy 

Maximal 

Entropy 

Skewness Kurtosis 

7631.73 2.24 0.10 175997.79 4.14 19.74 

5.3 Effort Deviation Calculation 

The proposed approach to deal with SDEE error is 
adapted whatever the effort estimation technique 
used. This study uses the Fuzzy Analogy (FA) 
SDEE technique which has been developed by Idri 
et al. (Idri, 2002). FA has been evaluated and proven 
to outperform Classical Analogy in several studies 
(Idri, 2016), (Idri, 2015), (Amazal 2014). Fuzzy 
Analogy involves three steps: fuzzy identification of 
cases, fuzzy retrieval of similar cases, and fuzzy 
case adaptation (Idri, 2002). Each step is a 
fuzzification of its equivalent in the Classical 
Analogy procedure of Shepperd et al. (Shepperd, 
1997). Based on the estimate and actual effort 
values, effort deviations were computed by means of 
Eq.10. Table 2 details COCOMO’81 effort deviation 
descriptive statistics under FA. 

Table 2: COCOMO’81 descriptive statistics of FA effort 
deviation. 

Mean 

deviation 

Median 

deviation 

Minimal 

deviation 

Maximal 

deviation 
Kurtosis 

Skewn

ess 

138.35 50.29 0 2434.38 36.46 5.09 

5.4 JackKnife Evaluation Method 

In order to overcome the bias due to the learning set 
selection, we adopt the JackKnife evaluation 
method. The JackKnife, or “leave one out" 
(LOOCV), is a cross-validation technique 
(Quenouille, 1956) in which the target project is 
excluded from the dataset and estimated by the 
remaining projects in the historical dataset. The 
main reason behind using this method over n-folds 
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cross-validation is that LOOCV generates lower bias 
and it produces a higher variance estimate. Also, 
LOOCV can generate the same results in a particular 
dataset if the evaluation is replicated, which is not 
the case for n-folds cross validation (Kocaguneli, 
2013). 

6 EMPIRICAL RESULTS 

6.1 Construction and Evaluation of the 
Function g 

We computed the entropy and effort deviation data 
over COCOMO’81 dataset (Sections 5.2 and 5.3) by 
means of LOOCV evaluation method. Thereafter, 
four interpolation techniques were applied to 
determine the effort deviation of each project: 
Linear, Cubic, Spline and Nearest. The distributions 
of effort deviation are represented in Fig. 5. Taking 
into account median values and outliers spreading, 
Cubic, Linear and Nearest interpolations seems more 
interesting approximators of actual deviations than 
Spline method.  

In order to analyze the interpolation technique 
accuracy, we adopt the z-score metric as proposed 
by Kitchenham et al. in their article about accuracy 
statistics (Kitchenham, 2001). The variable z is 
defined for a project Pi as: z୧ = d୧ d୧⁄ , where d୧  and 
di are the estimated and actual effort deviations of 
project Pi respectively. Fig. 6 represents z variable 
boxplots of the distributions of the four interpolation 
techniques. In addition to that, Table 3 gives 
numerical statistics concerning the z variable 
distributions. As can be seen in Fig. 6, the medians 
of the z variable of Cubic and Linear interpolations 
are closer to 1 (0.88 and 0.89 respectively) instead of 
Nearest and Spline ones (0.58 and 2.43 
respectively). We recall that a closer value of z to 1 
indicates better estimation accuracy. It can also be 
noticed that the distributions of z variable for the 
four interpolation techniques indicate a positive 
skewness, since the medians are closer to the lower 
quartile, in particular for Cubic, Linear and Nearest 
methods (4.07; 5.82 and 4.10 respectively). In 
addition, z values have high variations for Nearest 
and Spline methods since the lower and upper 
quartiles are far from one another. Therefore, their 
boxes are taller than those of Cubic and Linear 
interpolations. In addition, Cubic interpolation has a 
bit low mean values than Nearest one (6.55 instead 
of 6.61).Moreover, we use Mean Magnitude 
Relative Error (MMRE) and Pred(25) of the four 
interpolation techniques to measure the accuracy of 
their estimated effort deviations since (Kitchenham, 
2001) have demonstrated that MMRE and Pred(25) 

are, respectively, measures of the spread and the 
kurtosis of the variable z. 

 

Figure 5: Boxplots of the four interpolation methods effort 
deviation distribution. 

MMRE corresponds to Mean Magnitude of 
Relative Error where the Magnitude Relative Error 
(MRE) is defined as |Actual deviation – Estimated 
deviation|/Actual deviation. Pred(25)  represents the 
percentage of projects with an MRE that is less or 
equal to 25%.  

 

Figure 6: Boxplots of the four interpolation methods z 
variables. 

6.2 Error Distribution Evaluation 

Based on (El-Koutbi, 2016), we notice a large 
divergence of metrics used for SDEE error measue. 
In fact, MRE was the most widely used one (47%), 
followed by both Hit Rate and Confidence Intervals 
(21%) and Pred (16%). Since this study is interested 
in proposing an error probability distribution, 
confidence  intervals  are  the most adapted criterion, 
in this context, to measure the performance of the 
proposed error distribution. 
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Table 3: Descriptive statistics of Cubic, Linear, Nearest and Spline z variables. 

 Mean Median Min Max Skewness Kurtosis MMRE Pred(25) 

Spline 343.60 2.43 0 39580.48 11.91 151.27 343.49 0.06 

Cubic 6.55 0.88 0 104.30 4.07 17.80 6.30 0.08 

Nearest 5.75 0.58 0 170.27 5.82 41.04 5.65 0.12 

Linear 6.61 0.89 0 107.68 4.10 18.36 6.30 0.09 

 
In fact, Stamelos and al. used a similar approach for 
error management over a portfolio of projects 
(Stamelos, 2001). 

Based on Gaussian properties (Bromiley, 2003), 
we define three confidence intervals: 

Ii = [Eact-i.∆eff ,Eact +i.∆eff] 
where ݅ ∈ ሼ1,2,3ሽ, Eact is project actual effort and 
∆eff the estimated deviation. Table 4 shows, for each 
interval, the achievement percentage that represents 
the number of projects for which the actual effort 
was within the considered confidence interval.  

Table 4: Achievement percentages over I1, I2 and I3. 

 Achievement percentages 

I1 I2 I3 

Spline 65.25% 77.46% 83.57% 

Cubic 46.95% 60.56% 66,67% 

Nearest 40.37% 52.11% 57.74% 

Linear 46.48% 61.50% 68.54% 

To evaluate the performance of the proposed 
Gaussian error distribution, entropy-based 
framework actual achievement percentages were 
compared to those of Gaussian function over the 
predefined confidence intervals. In fact over I1, 
Spline interpolation has a close behavior of Gaussian 
function (68.30%) with an achievement percentage 
of 65.25%. Cubic and Linear interpolation have both 
an achievement percentage of almost 50% while 
Nearest is around 40%. Over I2 and I3, Spline 
outperformed the other interpolation techniques with 
77% and 83% respectively. Linear interpolation 
outperformed slightly Cubic one with 61% instead 
of 60% and 68% instead of 66%; Nearest has 
achievement percentages of 52% and 58% over I2 
and I3 respectively while Gaussian function is 
around 95% and 99%.  

Then, we conclude that the achievement 
percentages vary depending on the interpolation 
method used and that Spline interpolation 
outperforms the other interpolation techniques since 
its achievement percentages are the closest to those 
of a Gaussian distribution. Moreover, even if Spline 
interpolation has better achievement percentages 
over the three confidence intervals, the other 
interpolation techniques provide a better deviation 
approximation. In fact, median values of Cubic and 

Linear interpolations are around 62 Man/month for 
145Man/month for Spline knowing that the actual 
median value of effort deviation is 50 Man/Month. 
Then, the performance of Spline interpolation in 
terms of achievement percentages can be explained 
by an overestimation of effort deviation.  

Considering the four interpolation methods, the 
proposed entropy-based approach gave interesting 
results since almost 50% to 65% of COCOMO’81 
dataset projects are within interval I1 and 50% to 
77% within interval I2. Spline interpolation has a 
comparable results with those of Gaussian function 
which leads us to consider that the Kitchenham and 
Linkman (Kitchenham, 1997) assumption is a 
plausible one. It worth notice that outliers removal 
before interpolation improves the achievement 
percentages of 10% to 18%. 

7 CONCLUSION 

This paper proposed an entropy-based approach in 
order to deal with measurement and model errors for 
any SDEE technique. Based on Shannon entropy 
concept, the approach consists in two main steps. 
The first step aims to construct a relationship of 
entropy and effort deviation. Projects entropy is 
computed over a learning set, based on the FCM 
clustering algorithm which enables constructing 
attributes membership functions. Moreover, 
deviation is calculated to infer a relationship 
between entropy and deviation. The second step 
consists on estimating a new project effort deviation 
knowing its entropy and using the relationship 
function inferred over the learning set. The 
estimated deviation is then used to set up the 
Gaussian effort distribution parameters.  

The proposed approach is evaluated over the 
COCOMO’81 dataset with the FA SDEE technique, 
the Jackknife evaluation method and with four 
different interpolation methods. The obtained results 
are interesting. Indeed, almost 50% to 65% of the 
projects met the first confidence interval of 
estimated effort deviation width. The effort 
distribution of the proposed approach had also 
comparable achievement percentage to the Gaussian 
distribution especially over the first confidence 
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interval. These results confirm the relevance of 
entropy as an uncertainty measure and Gaussian 
function as a plausible effort distribution. Still, the 
results presented in this work are only preliminary. 
Ongoing work explores other datasets and different 
entropy formulas than Shannon one. 
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