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Abstract: NoSQL data stores are becoming widely used to handle Big Data; these systems operate on schema-less 
data model enabling users to incorporate new data into their applications without using a predefined 
schema. But, there is still a need for a conceptual model to define how data will be structured in the 
database. In this paper, we show how to store Big Data described by conceptual model within NoSQL 
systems. For this, we use the Model Driven Architecture (MDA) that provides a framework for models 
automatic transformation. Starting from a conceptual model describing a set of complex objects, we propose 
transformation rules formalized with QVT to generate NoSQL physical models. To ensure efficient 
automatic transformation and to limit the impacts related to technical aspects of NoSQL systems, we 
propose a generic logical model that is compatible with the three types of NoSQL systems (column, 
document and graph). We provide experiments of our approach using a case study related to the health care 
field. The results of our experiments show that the proposed logical model can be effectively transformed 
into different NoSQL physical models independently of their specific details. 

1 INTRODUCTION 

Company digital transformation is accompanied by 
an exponential growth in data collected which is 
known as Big Data. Generally, we describe Big Data 
according to three vectors (Gartner, 2001): Volume 
(many terabytes of data that need to be processed), 
Variety (different data type including factors such as 
format, structure, and sources) and Velocity (speed 
of data loading and processing). Relational systems 
representing the majority of DBMS, prove to be 
inadequate for all applications, especially these 
involving Big Data (Abello, 2015). As a result, new 
kind of DBMS, known as “NoSQL” (Cattell, 2011), 
has appeared. These systems, with flexible schemas, 
are well suited for managing large volume of data. 
They also offer good performance when scaling up 
(Angadi, 2013). NoSQL encompasses a wide variety 
of different systems that were developed to meet 
specific needs. They can be classified into four basic 
types: key-value, column-oriented, document and 
graph-oriented. In this paper, we exclude the key-
value because column-oriented, document-oriented 
and graph-oriented systems extend the concepts of 
key-value systems (Abadi, 2008).  

Big Data applications developers are faced with 
the problem of storing data in NoSQL systems. To 
address this problem, some solutions dealing with 
model transformation have been proposed. Li et al. 
(Li, 2014) propose MDA-based process to transform 
UML class diagram into column-oriented physical 
HBase model. Daniel et al. (Daniel, 2016) describe 
mapping between an UML conceptual model and a 
NoSQL physical model compatible only with graph-
oriented systems. In these works, the adopted 
processes depend only on one type of NoSQL 
systems (column-oriented in (Li, 2014) and graph-
oriented in (Daniel, 2016)). However, users need to 
choose the system type most suited to their needs. 
For example, processing operations require access to 
hierarchically structured data, document-oriented is 
the most adapted solution.   

The main purpose of our work is to assist 
developers in implementing Big Data on NoSQL 
systems. For this, we propose a new MDA-based 
process that transforms a conceptual data model 
describing Big Data into several NoSQL physical 
models. This automatic process allows developer to 
choose the system type he wants to use.   

The rest of the paper is structured as follows: 
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Section 2 motivates our work using a case study in 
the healthcare field, Section 3 introduces our MDA-
based approach, Section 4 presents a first 
transformation that creates a NoSQL logical model 
starting from UML class diagram, Section 5 presents 
a second transformation that generates NoSQL 
physical models from the logical model, Section 6 
details our experiments and Section 7 reviews 
previous work on models transformation. Finally, 
Section 8 ends up with the conclusion and future 
work. 

2 MOTIVATION 

To motivate and illustrate our work, we present a 
case study in healthcare filed. This case study 
concerns national or international scientific 
programs for monitoring patients having serious 
diseases. The main goal of this program is (1) to 
collect data about disease development over time, 
(2) to study interactions between different diseases 
(3) to evaluate the short and medium-term effects of 
their treatments. The medical program can last up to 
3 years. Data collected from establishments involved 
in such a program have the characteristics of Big 
Data (the 3 V): Volume: The amount of data 
collected from all the establishments in three years 
can reach several terabytes. Variety: Data created 
while monitoring patients come in different types ; 
they can be (1) structured like patient's vital signs 
(respiratory rate, blood pressure, temperature, etc.), 
patient name, diagnosis codes, etc. (2) unstructured 
such as patient histories, consultation summaries, 
paper prescriptions, radiology reports, and (3) semi-
structured document such as the package leaflets of 
medicinal products that provide a set of 
comprehensible information enabling the use of the 
medicinal product safely and appropriately. 
Velocity: Some data are produced in continuous 
flow by sensors; it must be processed in near real 
time because it can be integrated into time-sensitive 
processes (for example, some measurements, like 
temperature, require an emergency medical 
treatment if they cross a given threshold). 

3 UMLtoNoSQL APPROACH 

Our purpose in this paper is to define, specify and 
automate a process for storing Big Data in NoSQL 
systems. For this, we propose the process called 
UMLtoNoSQL that automatically transforms a 

conceptual model (UML class diagram) provided by 
the developer into the physical model of the NoSQL 
system he wants to use. In UMLtoNoSQL process, 
we introduce a logical level between conceptual 
(business description) and physical (technical 
description) levels in which a generic model is 
developed. This generic logical model has a double 
interest: (1) compatible with the three NoSQL 
systems, which allow developers to choose the 
NoSQL system type that best meets their needs. (2) 
independent of the technical aspects of NoSQL 
systems that can evolve and create new versions. To 
formalize and automate our process, we use the 
Model Driven Architecture proposed by OMG. 

One of the main aims of MDA is to separate the 
functional specification of a system from the details 
of its implementation in a specific platform 
(Hutchinson, 2011). This architecture defines a 
hierarchy of models from three points of view: 
Computation Independent Model (CIM), Platform 
Independent Model (PIM), and Platform Specific 
Model (PSM) (Bézivin, 2001). Among this proposed 
models, we use PIM and PSM. 

 

Figure 1: Overview of UMLtoNoSQL process. 

In our scenario, the UML and generic models 
would conform to the PIM level. UMLtoNoSQL 
process takes care of generating the generic model 
(logical PIM) from the UML class diagram 
(conceptual PIM). At the PSM level, we consider 
three physical models that correspond to Cassandra 
(column-oriented system), MongoDB (document-
oriented system) and Neo4J (graph-oriented system). 
Figure 1 presents the different component of 
UMLtoNoSQL process. UMLtoGenericModel (1) is 
the first transformation (section 4) in UMLtoNoSQL 
process. It is in charge of converting the input UML 
class diagram (conceptual PIM) into the generic 
logical model (2) conforming to the generic logical 
metamodel proposed in Section 4; this metamodel 
describes a data structure compatible with the three 
types of NoSQL systems. 
GenericModeltoPhysicalModel (3) is the second 

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

250



transformation (section 5) in UMLtoNoSQL. It is in 
charge of transforming the generic logical model 
into NoSQL physical models (PSMs) (4).    

We note that UMLtoNoSQL process generates 
several NoSQL physical models from a UML class 
diagram. In order to do this, it’s necessary to 
register, for each physical model, its specific 
parameters (transformation rules). To illustrate our 
work, we have taken as example three physical 
models that correspond to: Cassandra, MongoDB 
and Neo4j systems. If the developer chooses to use 
another system, the process must be completed by 
adding new parameters specific to this system.  

4 UML TO GENERIC MODEL 
TRANSFORMATION 

In this section we present the UMLtoGenericModel 
transformation, which is the initial transformation in 
our approach presented in Figure 2. We first define 
the source (UML Class Diagram) and the target 
(Generic Logical Model), and then we focus on the 
transformation itself. 

4.1 Source: UML Class Diagram 
(Conceptual PIM) 

UML is widely accepted as a standard modelling 
language for describing data. Therefore, we model 
Big Data using UML class diagram. A Class 
Diagram (CD) is defined as a tuple (N, C, L), where: 
N is the CD name,  

C is a set of classes. Classes are composed from 
structural and behavioural constituents. In this paper, 
we consider only the structural part; since the 
operations are linked to the behaviour, we will not 
take them into account. The schema of each class c 
∈	C is a tuple (N, A, IdentO), where:  
 c.N is the class name,  
 c. A = {aଵ

ୡ , … , a୯ୡ} is a set of q attributes. The 
schema of each attribute aୡ ∈ A is a pair (N,C) 
where “aୡ.N” is the attribute name and “aୡ.C” 
the attribute type; C can be a predefined class, 
i.e. a standard data type (String, Integer, Date, 
etc.) or a business class (class defined by 
user), 

 c.IdentO is a special attribute of c; it has a name 
IdentOୡ.N and a type called “Oid”. In this 
paper, an attribute whose type is “Oid” 
represents a unique object identifier, i.e. an 
attribute whose value distinguishes an object 
from all other objects of the same class, 

L is a set of links. Each link l between n classes, 
with n>=2, is defined as a tuple (N, Ty,	ܲݎ௟), where:   
 l.N is the link name. 
 l.Ty is the link type : Association, Composition 

or Generalization. 
 l.Pr୪ = {prଵ୪ , … , pr୬୪ } is a set of n pairs. ∀	i ∈ 

{1,..,n}, pr୧
୪ = (c,cr), where pr୧

୪.c is a linked 
class and pr୧

୪.cr is the cardinality placed next 
to c. Note that pr୧

୪.cr can contain a null value 
if no cardinality is indicated next to c (like in 
generalization link).  

Class diagram metamodel is shown in figure 2. 
This metamodel is adapted from the one proposed 
by OMG. 

 

Figure 2: Source Metamodel. 

4.2 Target: Generic Logical Model 
(Logical PIM) 

This section aims to define a generic logical model 
that describes data according to the common 
characteristics to the three types of NoSQL systems: 
column-oriented, document-oriented and graph-
oriented. In the generic logical model, DataBase 
(DB) is defined as a tuple (N, T, R), where:    
N is the database name,  

T is a set of tables. The schema of each table t ∈
	T is a tuple (N, A, IdentL), where:  
 t.N is the table name,  
 t.A = {aଵ

୲ , … , a୯୲ } is a set of q attributes that will 
be used to define rows of t; each row can have 
a variable number of attributes. The schema of 
each attribute a୲ ∈ A is a pair (N,Ty) where 
“a୲.N” is the attribute name and “a୲.Ty” the 
attribute type. 

 t.IdentL is a special attribute of t; it has a name 
IdentL୲.N and a type called “row-key”. In this 
paper, an attribute whose type is “row-key” 
represents a unique row identifier, i.e. an 
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attribute whose value distinguishes a row from 
all other rows of the same table, 

R is a set of relationships. A relationship is a link 
between two tables. In the generic logical model 
there are only binary relationships between tables. 
Each relationship r ∈	R between ݐଵ and ݐଶ is defined 
as a tuple (N, Ty,	ܲݎ௥), where:   
 r.N is the relationship name. 
 r.Ty is the relationship type : Association, 

Composition or Generalization. 
 r.Pr୰ = {prଵ୰, prଶ

୰} is a set of two pairs. ∀	i ∈ 
{1,2}, pr୧

୰ = (t,cr), where pr୧
୰.t is a related 

table and ݎ݌௜
௥.cr is the cardinality placed next 

to t.  
Metamodel of the proposed generic logical 

model is shown in figure 3.  

 

Figure 3: Target Metamodel. 

4.3 Transformation Rules 

R1: each CD is transformed into a database DB, 
where DB.N = CD.N. 
R2: each class c ∈ C is transformed into a table t ∈ 
DB, where t.N = c.N, IdentL୲.N = IdentOୡ.N. 
R3: each attribute aୡ ∈ c.A is transformed into an 
attribute	a୲, where a୲.N = aୡ.N, a୲.Type = aୡ.C, and 
added to the attribute list of its transformed 
container t such as a୲ ∈ t.A. 
R4: each link l ∈ L between two classes cଵ and cଶ is 
transformed into a relationship r ∈ R between two 
tables tଵ	and tଶ, where r.N = l.N, r.Ty = l.Ty et r.Pr୰ 
= l.Pr୪, where tଵ and tଶ are the tables representing cଵ 
and cଶ. 
R5: each link l ∈ L between n classes {cଵ, … , c୬} 
(n>=3) is transformed into (1) a new table t୪, where 
t୪.N = l.N, and (2) n relationships {rଵ, … , r୬}, ∀ i ∈ 

{1,..,n} r୧ links t୪ to another table t୧ representing a 
related class c୧, where r୧.N = (t୪.N)_(t୧.N), r୧.Type = 
Association and r୧.	Pr୰ = {(t୪, cr), (t୧, cr)}.  
R6: each association class cୟୱୱ୭		between n classes 
{cଵ, … , c୬} (n>=2) is transformed like a link 
between multiple classes (R5) using (1) a new table 
tୟୡ, where tୟୡ.N = l.N, (2) n relationships 
{rଵ, … , r୬}, ∀ i ∈ {1,..,n} r୧ links tୟୡ to another table 
t୧ representing a related class c୧, where r୧.N = 
(tୟୡ.N)_(t୧.N), r୧.Type = Association et r୧.	Pr୰ = 
{(tୟୡ, cr), (t୧, cr)}. Like any other class, tୟୡ contain 
also a set of attributes A, where tୟୡ.A = cୟୱୱ୭.A.  

These transformation rules have been formalized 
with QVT (figure 4.b), which is a standard defined 
by OMG for expressing models transformation.   

5 GENERIC MODEL TO 
PHYSICAL MODEL 
TRANSFORMATION 

In this section we present the second transformation 
in our approach UMLtoNoSQL (figure 2). It is in 
charge of creating NoSQL physical models from the 
proposed generic logical model. 

5.1 Source: Generic Logical Model 
(Logical PIM) 

The source of this transformation is the target of the 
previous UMLtoGenericModel transformation.   

5.2 Target: NoSQL Physical Models 
(PSMs) 

To illustrate our approach, we have chosen three 
NoSQL systems: Cassandra, MongoDB and Neo4j; 
three well known NoSQL systems.     

5.2.1 Cassandra Physical Model 

In Cassandra physical model, KeySpace (KS) is the 
top-level container that owns all the elements. It’s 
defined as a tuple (N, F), where:    

N is the keyspace name,  
F is a set of columns-families. The schema of 

each columns-family f ∈	F is a tuple (N, Cl, 
PrimaryKey), where:     
 f.N is the columns-family name,   
 f.Cl = {clଵ, … , cl୯} is a set of q columns that 

will be used to define rows of f; each row can 
have a variable number of columns. The 

{XOR} 
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schema of each column cl ∈ Cl is a pair 
(N,Ty) where “cl.N” is the column name and 
“cl.Ty” the column type.  

 f.PrimaryKey is a special column of f; it has a 
name PrimaryKey୤. N and a type 
PrimaryKey୤.Ty (standard data type). 
PrimaryKey୤ identifies each row of f.  

5.2.2 MongoDB Physical Model 

In MongoDB physical model, DataBase (DB୑ୈ) is 
the top-level container that owns all the elements. 
It’s defined as a tuple (N, Cll), where:    

N is the database name,   
Cll is a set of collections. The schema of each 

collection cll ∈	Cll is a tuple (N, Fl, Id), where:     
 cll.N is the collection name,   
 cll.Fl = Fl୅ ∪ Flେଡ଼	is a set of atomic and 

complex fields that will be used to define 
rows, called documents, of Cll; each 
document can have a variable number of 
fields. The schema of each atomic field flୟ ∈ 
Fl୅ is a tuple (N,Ty) where “flୟ.N” is the field 
name and “flୟ.Ty” is the field type. The 
schema of each complex field flୡ୶ ∈ Flେଡ଼ is 
also a tuple (N, Fl’) where flୡ୶.N is the field 
name and flୡ୶.Fl’ is a set of fields where Fl’ 
Fl. 

 cll.Id is a special field of cll; it has a name 
Idୡ୪୪.N and a type Idୡ୪୪.Ty (standard data 
type). Idୡ୪୪ identifies uniquely each document 
of cll. 

5.2.3 Neo4j Physical Model 

In Neo4j physical model, Graph (GR) is the top-
level container that owns all the elements. It’s 
defined as a tuple (V, E), where:    

V is a set of vertex. The schema of each vertex v 
∈ V is a tuple (L, Pro, Id), where:     
 v.L is the vertex label,   
 v.Pro = {proଵ,… , pro୯} is a set of q properties. 

The schema of each property pro ∈ Pro is a 
pair (N,Ty), where “pro.N” is the property 
name and “pro.Ty” the property type.  

 v.Id is a special property of v; it has a name 
Id୴.N, a type Id୴.Ty and the constraint “Is 
Unique ”. It identifies uniquely v in the graph.  

E is a set of edges. The schema of each edge e ∈
	E is a tuple (L, Hଵ, Hଶ), where:     
 e.L is the edge label,   
 e.	Hଵ and e.	Hଶ are the nodes related by e. 

 

5.3 Transformation Rules 

Several solutions can ensure the transformation of 
the generic logical model into a NoSQL physical 
model. We provide all transformation possibilities 
available; the developer chooses the one that meets 
better his needs. We note that the set of solutions 
proposed in this section is not inclusive. More 
marginal solutions may be considered.  

5.3.1 To Cassandra Physical Model  

R1: each database DB is transformed into a 
keyspace KS, where KS.N = DB.N. 
R2: each table t ∈ DB is transformed into a 
columns-family f ∈ KS, where f.N = t.N, 
PrimaryKey௙.N = IdentL௧.N. 
R3: each attribute ܽ௧ ∈ t.A is transformed into a 
column cl, where cl.N = ܽ௧.N, cl.Ty = ܽ௧.Ty, and 
added to the column list of its transformed container 
f such as cl ∈ f.Cl. 
R4: each relationship r ∈ R between two tables tଵ 
and tଶ is transformed by using references. Cassandra 
does not support imbrication; the only solution we 
can use to express relations between columns-
families consists in using references.  

Depending on the relationship type, we distinguish 
the following solutions:  
 if r = (N, Association, {(tଵ,cr),(	tଶ,cr)}), we 

transform r according to its cardinalities :  
o if r = (N, Association, {(tଵ,*),(	tଶ,1)}), there 

are two possible solutions: 
Solution 1: r is transformed into a new column cl 
referencing	fଶ (the columns-family representing	tଶ), 
where cl.N = (fଶ.N)_Ref et cl.Ty = 
PrimaryKey୤ଶ.Ty, and added to the columns list of 
	fଵ (the columns-family representing	tଵ) such as cl ∈ 
fଵ.Cl. 
Solution 2: r is transformed into a new multivalued 
column cl referencing	fଵ (the columns-family 
representing	tଵ), where cl.N = (fଵ.N)_Ref et cl.Ty = 
set<PrimaryKey୤ଵ>.Ty, and added to the columns 
list of 	fଶ (the columns-family representing	tଶ) such 
as cl ∈ fଶ.Cl. 

o if r = (N, Association, {(tଵ,1),(	tଶ,1)}) : r is 
transformed into a new column cl referencing 
the columns-family f representing one of the 
two related tables (tଵ or tଶ), where cl.N = 
(f.N)_Ref et cl.Ty = PrimaryKey୤.Ty, and 
added to the columns list of the columns-
family f’ representing the other related table 
such as cl ∈ f’.Cl. 
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o if r = (N, Association, {(tଵ,*),(	tଶ,*)}), two 
solutions could be considered: 

Solution 1: r is transformed into a new multivalued 
column cl referencing the columns-family f 
representing one of the two related tables (tଵ or tଶ), 
where cl.N = (f.N)_Ref et cl.Ty = 
set<PrimaryKey୤>.Ty, and added to the columns list 
of the columns-family f’ representing the other 
related table such as cl ∈ f’.Cl. 
Solution 2: r is transformed into a new columns-
family f, where f.N = r.N, f.Cl = {clଵ, clଶ}, clଵ.N = 
(fଵ.N)_Ref, clଵ.Ty = PrimaryKey୤ଵ.Ty, clଶ.N = 
(fଶ.N)_Ref and clଶ.Ty = PrimaryKey୤ଶ.Ty, where fଵ 
and fଶ	are the columns-families represent tଵ and tଶ.  
 if r = (N, Composition, {(tଵ,1),(	tଶ,*)}) : in 

composition relationship, cardinality of the 
composite is 1 which means that a component 
could be included in at most one composite at 
a time and the cardinality of the component is 
* which means that the composite could have 
multiple components. To transform it, there 
are two possible solutions:   

Solution 1: r is transformed into a new multivalued 
column cl referencing the columns-family fଶ 
representing the component (tଶ), where cl.N = 
(fଶ.N)_Ref and cl.Ty = set <PrimaryKey୤ଶ ൐.Ty , 
and added to the columns list of the columns-family 
fଵ representing the composite (tଵ) such as cl ∈ fଵ.Cl.    
Solution 2: r is transformed into a new column cl 
referencing the columns-family fଵ representing the 
composite (tଵ), where cl.N = (fଵ.N)_Ref et cl.Ty = 
PrimaryKey୤ଵ.Ty , and added to the columns list of 
the columns-family fଶ representing the component 
(tଶ) such as cl ∈ fଶ.Cl.    
 if r = (N, Generalization, {(tଵ,1),(	tଶ, null)}) : in 

generalization relationship between a super-
table tଵ and a sub-table tଶ, cardinality of the 
super-table is 1 which means that each 
instance of the sub-table is also an indirect 
instance of the super-table. Because of this, 
generalization relationship is also informally 
called "Is A" relationship. We transform it into 
a new column cl referencing the columns-
family fଵ representing the super-table (tଵ), 
where cl.N = (fଵ.N)_Ref et cl.Ty = 
PrimaryKey୤ଵ.Ty , and added to the columns 
list of the columns-family fଶ representing the 
sub-table(tଶ) such as cl ∈ fଶ.Cl.    

5.3.2 To MongoDB Physical Model 

R1: each database DB is transformed into a 
MongoDB database ܤܦெ஽, where ܤܦெ஽.N = DB.N. 

R2: each table t ∈ DB is transformed into a 
collection cll ∈ ܤܦெ஽, where cll.N = t.N et Id௖௟௟.N 
=	IdentL௧.N. 
R3: each attribute ܽ௧ ∈ t.A is transformed into a 
field fl, where fl.N = ܽ௧.N, fl.Ty = ܽ௧.Ty, and added 
to the field list of its transformed container cll such 
as fl ∈ cll.	݈ܨ஺. 
R4: a relationship r between two tables ݐଵ and ݐଶ 
could be transformed in MongoDB by using 
references or imbrication. Depending on the 
relationship type, we distinguish the following 
solutions:  

 if r = (N, Association, {(tଵ,cr),(	tଶ,cr)}), we 
transform r according to its cardinalities :  

o if r = (N, Association, {(tଵ,*),(	tଶ,1)}), there 
are two possible solutions: 

Solution 1: r is transformed into a new field fl 
referencing	cllଶ (the collection representing	tଶ), 
where fl.N = (cllଶ.N)_Ref and fl.Ty = Idୡ୪୪మ.Ty, and 
added to the fields list of 	cllଵ (the collection 
representing	tଵ) such as fl ∈ cllଵ.	Fl୅. 
Solution 2: r is transformed into a new multivalued 
field fl referencing	cllଵ (the collection 
representing	tଵ), where fl.N = (cllଵ.N)_Ref and fl.Ty 
= set<Id	ୡ୪୪భ>.Ty, and added to the field list of 	cllଶ 
(the collection representing	tଶ) such as fl ∈ cllଶ.	Fl୅. 

o if r = (N, Association, {(tଵ,1),(	tଶ,1)}) : r is 
transformed into a new field fl referencing the 
collection cll representing one of the two 
related tables (tଵ or tଶ), where fl.N = 
(cll.N)_Ref and fl.Ty = Idୡ୪୪.Ty, and added to 
the field list of cll’ representing the other 
related table such as fl ∈ cll’.	݈ܨ஺. 

o if r = (N, Association, {(tଵ,*),(	tଶ,*)}), two 
solutions could be considered: 

Solution 1: r is transformed into a new multivalued 
field fl referencing the collection cll representing 
one of the two related tables (tଵ or tଶ), where fl.N = 
(cll.N)_Ref and fl.Ty = set<Idୡ୪୪>.Ty, and added to 
the field list of cll’ representing the other related 
table such as fl ∈ cll’.	Fl୅. 
Solution 2: r is transformed into a new collection cll, 
where cll.N = r.N, cll.Fl = {flଵ, flଶ}, flଵ.N = 
(cllଵ.N)_Ref, flଵ.Ty = Idୡ୪୪మ.Ty, flଶ.N = (cllଶ.N)_Ref 
and flଶ.Ty = Idୡ୪୪మ.Ty, where cllଵ and cllଶ	are the 
collections representing tଵ and tଶ. 
 if r = (N, Composition, {(tଵ,1),(	tଶ,*)}) : there 

are three possible solutions:   
Solution 1: r is transformed by embedding the 
collection cllଶ representing the component (tଶ) in the 
collection cllଵ representing the composite (tଵ), 
where cllଶ ∈ cllଵ. Flେଡ଼. 
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Solution 2: r is transformed into a new field fl 
referencing the collection cllଵ representing the 
composite (tଵ), where fl.N = (cllଵ.N)_Ref et fl.Ty = 
Idୡ୪୪ଵ.Ty , and added to the field list of the collection 
cllଶ representing the component (tଶ) such as fl ∈ 
cllଶ.	Fl୅.  
Solution 3: r is transformed into a new multivalued 
field referencing the collection cllଶ representing the 
component (tଶ), where fl.N = (cllଶ.N)_Ref and fl.Ty 
= set <Idୡ୪୪ଶ ൐.Ty , and added to the field list of the 
collection cllଵ representing the composite (tଵ) such 
as fl ∈ cllଵ.	Fl୅.   

 if r = (N, Generalization, {(tଵ,1),(	tଶ, null)}) : 
it’s transformed into a new field fl referencing 
the collection cllଵ representing the super-table 
(tଵ), where fl.N = (cllଵ.N)_Ref and fl.Ty = 
Idୡ୪୪ଵ.Ty , and added to the field list of the 
collection cllଶ representing the sub-table (tଶ) 
such as fl ∈ cllଶ.	݈ܨ஺.    

5.3.3 To Neo4j Physical Model 

R1: each table t ∈ DB is transformed into a vertex v 
∈ V, where v.L = t.N, Id௩.N = IdentL௧.N. 
R2: each attribute ܽ௧ ∈ t.A is transformed into a 
property pro, where pro.N = ܽ௧.N, pro.Ty = ܽ௧.Ty, 
and added to the property list of its transformed 
container v such as pro ∈ v.Pro. 
R3: Each relationship r between two tables tଵ and 
tଶ	is transformed into an edge e, where e.L = r.N, 
e.	Hଵ = vଵ and e.	Hଶ = vଶ, where vଵ and vଶ are the 
vertex representing tଵ and tଶ. 

6 EXPERIMENTS 

In this section, we first provide the implementation 
of UMLtoGenericModel transformation as presented 
in sections 4, and then we show how to generate 
NoSQL physical models starting from the proposed 
generic logical model.    

6.1 Experimental Environment 

We carry out the experimental assessment using: (1) 
Eclipse Modeling Framework (EMF): a modeling 
framework and code generation to support the 
development of tools and model driven applications; 
(2) Ecore: a metamodeling language that we used to 
create our metamodels; (3) XML Metadata 
Interchange (XMI): XML based standard for 
metadata interchange. We use XMI to create models 
as instance of metamodels; and (4) Query / View / 

Transformation (QVT): the OMG standard for 
models transformation.  

6.2 UMLtoGenericModel 
Transformation  

Before proceeding to the implementation of the 
transformation rules, first, we created Ecore 
metamodels corresponding to the source (Figure 2) 
and the target (Figure 3). The next step is to create 
an instance of the source metamodel (Figure 4.a). In 
parallel, we used QVT plugin to implement the 
transformation rules (Figure 4.b); the comments in 
the script indicate the rules used. Finally, we tested 
the transformation by running the QVT script. The 
execution of this script provides the generic logical 
model (figure 4.c). 

 
(a) : Source Model (excerpts). 

 

(b) QVT Rules. (c) Target Model.. 

Figure 4: UMLtoGenericModel transformation. 

6.3 GenericModeltoPhysicalModel 
Transformation 

The generic model proposed in this paper does not 
imply a specific system. Consequently, several 
NoSQL physical models could be generated starting 
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from it. Lack of place, we show only Cassandra 
physical model (figure 5.b) generated from the 
generic logical model (figure 4.a). An excerpt from 
the QVT transformation script is shown in Figure 
5.a. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) QVT Rules. (b) Cassandra Model. 

Figure 5: GenericModeltoCassandraModel transformation. 

7 RELATED WORK 

To the best of our knowledge, there are only few 
solutions that have dealt with NoSQL databases 
conceptual modeling. Chevalier et al. (Chevalier, 
2015) defined a set of rules to map a 
multidimensional model into column-oriented and 
document-oriented models. The links between facts 
and dimensions have been converted using 
imbrications. Although the transformation process 
proposed by authors start from a conceptual level 
(multidimensional model), this specific model is 
different from the UML standard; it contains facts, 
dimensions and one type of links only. Other studies 
investigate the process of transforming relational 
databases into HBase (Li, 2010) and MongoDB 
(Vajk, 2013). However, the relational model does 
not present the semantic richness of UML 
(especially through the several types of relationships 
between classes: association, composition, 
generalization, etc.). Few works have presented 
approaches to implement UML conceptual models 
in NoSQL databases. Li et al. (Li, 2014) propose a 
MDA-based approach to transform UML class 
diagram into HBase. After building the source and 
the target metamodels, the authors have proposed 
mapping rules to realize the transformation from the 
conceptual level to the physical level. These rules 
are applicable to HBase, only. Daniel et al. (Daniel, 
2016) describe the mapping between UML 

conceptual models and graph databases via an 
intermediate graph metamodel. These rules are 
specific to graph databases used as a framework for 
managing complex data with many connections. 
Generally, this kind of NoSQL databases is used in 
social networks where data are highly connected.  

8 CONCLUSION AND 
PERSPECTIVES 

In this paper we have presented a MDA-based 
approach to implement UML conceptual model 
describing Big Data in NoSQL systems. Our 
approach consists of a chain of transformations that 
generate a generic logical model compatible with the 
three types of NoSQL systems (column, document 
and graph) and independent of a specific NoSQL 
platform, which makes it easier to transform it into 
several NoSQL physical models. As future work, we 
plan to complete our transformation process and 
propose a mapping for OCL expressions defined in 
the conceptual model; queries languages provided 
by NoSQL databases could be used for this.  
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main() { 
Source.rootObjects()[DataBase] ‐> 
map toKeySpace(); 
} 
 
mapping 
DataBase::toKeySpace():KeySpace{ 
name := self.name; 
columnsfamily:=self.tables ‐> map 
toColumnsFamily(); 
}  
‐‐ Transforming Ctable to 
ColumnsFamily 
 mapping COLM 
::Table::toColumnsFamily():Cassandr
a::ColumnsFamily{ 
name:=self.name; 
column:=self.columns ‐> map 
toColumn(); 
}  
‐‐ Transforming Attribute to Column 
mapping COLM 
::Column::toColumn():Cassandra::Col
umn{ 
if (self.cType="Rid"){ 
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