
RSLingo4Privacy Studio
A Tool to Improve the Specification and Analysis of Privacy Policies

André Ribeiro and Alberto Rodrigues da Silva
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

Keywords: Privacy Policy, Requirements Specification, Domain Specific Language, Software Tool.

Abstract: Popular software applications collect and retain a lot of users’ information, part of which is personal and
sensitive. To assure that only the desired information is made public, these applications have to define and
publish privacy policies that describe how they manage and disclose this information. Problems arise when
privacy policies are misinterpreted, for instance because they contain ambiguous and inconsistent
statements, what results in a defective application of the policy enforcement mechanisms. The
RSLingo4Privacy approach aims to improve the specification and analysis of such policies. This paper
presents and discusses its companion tool, the RSLingo4Privacy Studio, which materializes this approach
by providing the technological support for users being able to specify, analyze and publish policies based on
the RSL-IL4Privacy domain specific language. We validated its feasibility using popular websites policies
such as Dropbox, Facebook, IMDB, LinkedIn, Twitter and Zynga. We conclude this paper with a discussion
of the related work, namely a comparative analysis of pros and cons of RSLingo4Privacy Studio with other
previous proposals.

1 INTRODUCTION

Popular web and mobile applications attract and
support a huge number of users. They collect data
from these users without ensuring traceability
between privacy policies and application design
decisions. A particular challenge for policy authors
and application developers is the need to use a
common language and companion tools that
supports translating important privacy policy
statements into actionable requirements. For
example, European Union and United States employ
privacy policies as “notices” to end users and, in the
U.S., these policies are often the sole means to
enforce accountability. Given the pressure to post
privacy policies and the pressure to keep policies
honest, companies must do more to align their
policies and practices. More should be accomplished
by enabling developers with new tools to better
specify their data needs while policy authors, who
are typically legal professionals, can work with
those specifications to create more accurate policies.

A privacy policy (or just “policy” for the sake of
brevity) is a technical document that states multiple
privacy-related requirements that a system should
satisfy. These requirements are usually defined as

ad-hoc natural language (NL) statements. NL is an
ideal medium to express these policies, because it is
flexible, universal, and humans are proficient at
using NL to communicate. Moreover, NL has
minimal adoption resistance as a requirements
documentation technique (Ferreira and Silva, 2012)
(Ferreira and Silva, 2013). However, NL has
intrinsic characteristics that become the root cause of
quality problems, such as incorrectness,
inconsistency and incompleteness (Pohl, 2010)
(Silva, 2015a).

Caramujo and Silva proposed the definition of a
domain-specific language for the specification of
privacy-aware requirements, called RSL-IL4Privacy
language (Caramujo and Silva, 2015). Recently this
language evolved for a more updated and consistent
version available as a technical report (Caramujo et
al, 2017). This language provides several constructs
such as statements, private data, recipients and
enforcement mechanisms, which are necessary to
specify and document privacy-related requirements.

The goal of the proposed approach is to use this
language as the necessary mechanism for the
specification of policies while providing features for
better analyzing and validating the corresponding
policies.

52
Ribeiro, A. and Silva, A.
RSLingo4Privacy Studio - A Tool to Improve the Specification and Analysis of Privacy Policies.
DOI: 10.5220/0006310400520063
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 2, pages 52-63
ISBN: 978-989-758-248-6
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

The adoption of this language was defined in the
RSLingo4Privacy approach by the integration of
the following key processes (Silva et al., 2016): (i)
automatic classification, extraction and translation of
statements from policies written in NL into RSL-
IL4Privacy specifications; (ii) visualization and
authoring; (iii) analysis and validation; and (iv)
(re)publishing in a structured and both human and
machine-readable formats.

This paper extends that prior work with the
following novel contributions: description of a tool
(RSLingo4Privacy Studio) that materializes the
RSLingo4Privacy approach and uses RSL-
IL4Privacy as an intermediate language for the
specification of privacy policies, and an extensive
discussion on how this tool supports several
transformations to support the multiple policies
representations.

RSLingo4Privacy Studio is mainly targeted for
requirement engineers, policy authors and software
developers so they can edit, analyze and (re)publish
privacy policies in different formats using a single
tool. The major merit of this tool is that it allows
both technical and non-technical users to easily
author and analyze policies using a language close to
NL, but that is simultaneously readable and
executable by machines and so providing automatic
validation.

This work was validated using six privacy
policies extracted from popular web sites and social
networks (Dropbox, Facebook, IMDB, LinkedIn,
Twitter and Zynga). For the sake of brevity we only
consider here Dropbox’s policy to support the
discussion and exemplify the usage of
RSLingo4Privacy Studio.

The paper is organized as follows: Section 2
introduces the background, namely providing an
overview of the RSL-IL4Privacy language and
explains the scope of this research. Section 3
introduces RSLingo4Privacy Studio, highlighting its
principal features and technological aspects; and in
particular the transformations supported by this tool.
Section 4 refers and discusses the related work.
Finally, Section 5 presents the conclusion and future
work.

2 BACKGROUND

RSLingo is a long-term research initiative in the RE
area that recognizes that natural language, although
being the most common and preferred form of
representation used within requirements documents,
is prone to produce such ambiguous and inconsistent

documents that are hard to automatically validate or
transform. Originally RSLingo proposed an
approach to use simplified Natural Language
Processing (NLP) techniques as well as human-
driven techniques for capturing relevant information
from ad-hoc natural language requirements
specifications and then applying lightweight parsing
techniques to extract domain knowledge encoded
within them (Ferreira and Silva, 2012). This was
achieved through the use of two original languages:
the RSL-PL (Pattern Language) (Ferreira and Silva,
2013a), designed for encoding RE-specific linguistic
patterns, and RSL-IL (Intermediate Language), a
domain specific language designed to address RE
concerns (Ferreira and Silva, 2013). Through the use
of these two languages and the mapping between
them, the initial knowledge written in natural
language can be extracted, parsed and converted to a
more structure format, reducing its original
ambiguity and creating a more rigorous SRS
document (Silva, 2015a).

In the scope of the RSlingo initiative we have
developed a focused analysis of privacy policies to
discover common linguistics patterns found
throughout these policies. As a consequence, we
defined most of these patterns as a privacy-aware
profile based on software language technologies
(Mernik et al., 2005; Voelter et al., 2013; Silva,
2015; Ribeiro et al., 2016): the RSL-IL4Privacy
language.

RSL-IL4Privacy enables a more rigorous
specification of privacy requirements than writing in
just NL. The adoption of a language such as RSL-
IL4Privacy allows that its specifications become
simpler to read and understand which facilitates the
communication between the involved stakeholders
(Silva et al., 2016). Figure 1 depicts a partial view of
the RSL-IL4Privacy metamodel including its core
elements: Statement, Recipient, PrivateData, Service
and Enforcement.

Statement describes what rules or actions are
specified in a policy, thus it can be seen as a privacy
requirement. A policy comprises a set of statements.

Each statement can be classified into five
different categories, according to its features or
qualities: Collection defines which data is collected;
Disclosure defines which data is disclosed and to
what entities; Retention defines for how long data
will be stored; Usage defines what is the purpose of
having the data; and Informative is a statement with
just generic information. It is also noteworthy that
one statement may refer to multiple services and act
on different private data.

PrivateData represents the users’ data that is

RSLingo4Privacy Studio - A Tool to Improve the Specification and Analysis of Privacy Policies

53

Figure 1: RSL-IL4Privacy metamodel (partial view).

collected and managed by the software application
(or service provider). A PrivateData can be defined
as personal or usage depending on the source of the
information: personal, if such information clearly
identifies a given user (e.g., name, email); or usage,
if the data is gathered based on the user’s activity on
the system (e.g., device specifications).

Service describes the multiple high-level services
that are provided through the users’ point of view. It
is important to point out the association between
Service and PrivateData because it makes possible to
track what personal information is being employed
in each service.

Finally, Enforcement element is particularly
useful because through the description of the
mechanisms and tools that are documented in a
policy, one can have some insight about how it can
be possible to enforce privacy requirements of such
privacy policies. On the other hand, it also
encompasses rules and specific actions with regard
to the use of the system that are important for the
enforcement of a given privacy policy.

The RSL-IL4Privacy language is implemented
with different technologies to provide multiple
representations depending on the respective
formality, namely: tabular, graphical, and textual
representation.

The tabular representation is supported by a
MS-Excel template that includes some predefined
sheets. For example, it includes a specific sheet with
the statements, other sheet with the private data, etc.
It might also include some analysis reports and
graphics on top of that source information.

The graphical representation is based on UML

tools, such as Sparx Systems Enterprise Architect
that has been used. In this case, RSL-IL4Privacy is
implemented as a UML profile and consequently we
can represent any policy as a UML package with its
associated elements and respective relations.

The tabular and graphical representations
provide a structured overview of the arrangements
among all the constructs that exist in a policy.
However, these representations do not easily support
integration with other types of requirements (such as
use case specifications) nor do they easily support
automatic validation of such requirements.
Therefore, the RSL-IL4Privacy language is also
formalized and defined with a rigorous and textual
representation using the Xtext framework (Bettini,
2016). Figure 2 shows an example of RSL-
IL4Privacy statements specified according to this
representation. On the other hand, Figure 3 shows
partially the Xtext grammar of RSL-IL4Privacy.
(From now on, whenever we refer “RSL-
IL4Privacy”, we mean this textual representation.)

3 RSL-IL4PRIVACY STUDIO

RSLingo4Privacy Studio (or simply “Studio” for the
sake of brevity) is a software tool that supports and
materializes the RSLingo4Privacy approach
providing the technological support for a user being
able to perform the processes proposed. Studio
allows a user to specify, analyze and publish privacy
policies into multiple formats. Studio is built on top
of the Eclipse IDE, more specifically leveraging the
Eclipse Modeling Framework (EMF). It relies on a

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

54

Figure 2: Structure of Dropbox RSLingo project (1) and RSLingo4Privacy Main Menu bar (2).

Enforcement:
'Enforcement' name=ID '{'
'Name' enforcementName=STRING
'Description' description=STRING
'Type'

type=('Action'|'Algorithm'|'Config'|'Process'|'Tool')
'}';

Service:

'Service' name=ID '{'
'Name' serviceName=STRING
('Description' description=STRING)?
('RefersTo PrivateData'

(refPrivateData+=RefPrivateData* | refPDAll='All'))?
('Service_Part' servicePart+=ServicePart*)? '}';

Recipient:

'Recipient' name=ID '{'
'Name' recipientName=STRING
'Description' description=STRING
('Recipient_Part' recipientPart+=RecipientPart*)?
'Scope'

scope=('Internal'|'External'|'Internal/External')
'Type'

type=('Individual'|'Organization'|'Individual/Organizati
on') '}';

Figure 3: Part of the Xtext grammar of RSL-IL4Privacy.

multi-transformation approach where the RSL-
IL4Privacy language acts as an intermediate
language used to represent the policies and then,
from that specification, being able to generate more
readable representations of these policies (e.g. Excel
or Word files) or to check their quality using the
Eddy engine.

Eddy is a formal language based on Description
Logics (DL) (Baader et al., 2003) that allows
specifying privacy requirements, actors, data, and
data-use purpose hierarchies based on the DL
subsumption. It also allows specifying the deontic
modality (i.e., permission and prohibition) of such

data purposes and then automatically detects
conflicts between what it is permitted and what it is
prohibited, and traces permissible, required and
prohibited data flows within the specification. Eddy
language is supported by the Eddy engine, which is
implemented using two OWL reasoners. Eddy’s
source code is available on GitHub1.

Subsection 3.2 provides a detailed description of
the model transformations involved, namely based
on three main features: Import, Export and Check
Quality. The Import feature allows a user to import
an Excel file or an ad-hoc natural language text file
containing the policy and produce its corresponding
RSL-IL4Privacy files. The Export feature allows
transforming a RSL-IL4Privacy file to other file
formats, namely Word, Excel, JSON, Eddy and Text
(controlled NL). The Check Quality feature is only
applicable to Eddy files and allows running the Eddy
engine to check if there are any conflicts in the
policy specified as an Eddy file. The output of this
process is a log file, containing the possible
conflicts, an OWL (Web Ontology Language)
(Bechhofer et al., 2004) file with the representation
of the rules used, and an image with the graphical
hierarchical representation of the equivalent
ontologies (produced using the OwlViz plugin2).

As an Eclipse-based tool, Studio takes advantage

1 https://github.com/cmu-relab/eddy
2 https://github.com/protegeproject/owlviz

RSLingo4Privacy Studio - A Tool to Improve the Specification and Analysis of Privacy Policies

55

of Eclipse’s extension points3 in order to offer
custom menus, commands and project wizards. It
provides a menu in the Main Menu bar, Context
Menus for RSL-IL4Privacy and Eddy files, and
wizards to ease the creation of RSL-IL4Privacy files
or RSLingo4Privacy projects. The Main Menu bar
option provides features such as (see Figure 2):
import of Excel files and generation of the
corresponding RSL-IL4Privacy files; transformation
of RSL-IL4Privacy files to all the supported formats;
and launch of the Eddy engine for the existing
equivalent Eddy files.

In addition, a Context Menu is shown by right-
clicking a RSL-IL4Privacy file or an Eddy file in the
Package Explorer View. The Context Menu of a
RSL-IL4Privacy file provides the options to export
that file to all the supported formats. This menu also
shows up when the user right-clicks inside the editor
of an open RSL-IL4Privacy file. The Context Menu
of an Eddy file allows to validate this file by
launching the Eddy engine.

The “New RSL-IL4Privacy file” wizard creates a
new file containing an example structure of a file
complying with the RSL-IL4Privacy grammar
defined in Xtext. The user can then freely edit this
file with all the capabilities offered by the RSL-
IL4Privacy editor. The “New RSLingo4Privacy
project” wizard allows the creation of a new project
with the Xtext nature with a source folder containing
one or more RSL-IL4Privacy files.

3.1 RSL-IL4Privacy Editor

Studio’s textual editor allows creating and editing
RSL-IL4Privacy files. This editor was developed
using the Xtext framework4. From a grammar
definition it is possible to automatically generate the
language infrastructure (e.g. parser and typechecker)
and a fully customizable Eclipse plugin containing
the DSL editor with helpful features like syntax
highlighting, error checking, auto-completion or
source-code navigation (Bettini, 2016). Xtext-based
DSLs have Ecore as metamodel. Since Xtext relies
on EMF, it can be combined with other popular
Eclipse plugins, like Xtend, Sirius or Acceleo. The
grammar of a Xtext-based language is composed of
rules that describe its key entities and their relations.
Figure 3 shows a fragment of the RSL-IL4Privacy
grammar definition for the Enforcement, Service and
Recipient elements.

3 http://goo.gl/jBRVuM
4 https://eclipse.org/Xtext

The RSL-IL4Privacy editor is able to deal with
two file structure modes to specify a privacy policy:
(1) single file; or (2) multiple files with one file per
element. In the single file mode, there is only one
file that contains all the privacy policy concepts.
This strategy is recommended when the privacy
policy is small, otherwise will be hard to maintain it.
In the multiple files mode, there is a main file
which is used to reference all the other files through
“import” statements. The main file also includes
metadata that describes the policy, like its name,
authors, version and date. This strategy can enhance
the maintenance of the policy specification, because
the different concepts are not mixed in a unique file,
but instead defined in separated and different files
with different purposes.

3.2 Transformations

This section must be in one column. Studio relies on
several transformations to support multiple
representations of a policy based on the common
and intermediate RSL-IL4Privacy language. Figure
4 summarizes this multi-transformation approach,
which involves T2M, M2M and M2T
transformations.

According to the proposed approach, Studio
deals with policies represented in multiple
representations, namely: ad-hoc and controlled NL
text, Excel, Word, JSON and Eddy. We considered
an Excel file as model, since it is a tabular and
highly structured representation. In contrast, we
considered that a Word file is similar to a NL text, in
the sense that it contains plain text, but with just
low-level formatting information. However, since it
is not that structured as an Excel file we considered
it as text and not a model (despite being both
internally organized in an archive of multiple XML
files). Below we describe each transformation type
and then we explain their implementation issues,
which are grouped by the technology used to support
them. For instance, JSON, Eddy and Text are
generated using Xtend5, while Word and Excel are
generated using the Apache POI library6.

T2M Transformations. Studio performs a T2M
transformation during the import process of an ad-
hoc NL text file. This transformation involves the
execution of automatic text classification and
extraction processes. The classification process
identifies the set of statements in the policy provided

5 http://www.eclipse.org/xtend
6 https://poi.apache.org

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

56

and classifies them into a set of five distinct
categories (Collection, Disclosure, Retention, Usage
and Informative). The second process extracts the
relevant elements from the original statements into
their equivalent representation in RSL-IL4Privacy.
These processes are implemented using
RapidMiner7, which is a popular open source
platform for predictive analytics and data mining
(Kotu and Deshpande, 2014). The implementation of
this transformation is a complex task that involves
the integration and tuning of feature models and
tools, and it is still a working in progress task.

M2M Transformations. M2M transformations are
used both during the import and export of a policy in
Studio. The import of an Excel file specifying a
policy (transformation M2M-1) generates its
corresponding RSL-IL4Privacy file(s), depending on
the file structure mode the user has selected (single
or multiple). M2M-1 is implemented using the
Apache POI library, which simplifies the processing
of Microsoft Office file formats. M2M-2 performs
the reverse transformation (from RSL-IL4Privacy to
Excel) and is also implemented using the Apache
POI library, but uses an Excel template file. The
remaining transformations consist in the export of a
privacy policy specified in RSL-IL4Privacy for
JSON (M2M-3) and Eddy (M2M-4).

M2T Transformations. These transformations
occur when a RSL-IL4Privacy file is exported to
Word (transformation M2T-1) and controlled NL
text file (transformation M2T-2).

3.2.1 JSON and Text

The transformations from RSL-IL4Privacy into
JSON (M2M-3) and Text (M2T-2) are performed
using Xtend. Xtend is a general purpose high-level
programming language derived from Java that is
commonly used with Xtext to develop code
generators. More specifically, a code generator stub
written in Xtend is one of the artifacts that is
automatically generated from a Xtext grammar
definition and automatically integrated into the
produced Eclipse plugin. Xtend simplifies the usage
and maintenance of the code generator, because it
allows the definition of code templates. Code
templates are portions of code that contain dynamic
parts that change according to the Xtext-based
model given as input.

7 http://rapidminer.com

3.2.2 Word and Excel

The transformations from RSL-IL4Privacy into
Word (M2T-1) and Excel (M2M-2) are performed
using the Apache POI library and two companion
template files (one for each format). We use this
library with Java, because Apache POI highly
abstracts the complex XML structure that underlies
Microsoft Office files. Additionally, we used
template files to give more flexibility for a user to
customize the style and formatting of the generated
files.

Both Word and Excel templates have special tag
annotations that represent the dynamic part of the
template and identify which property should be
placed there during the generation. They are defined
using the style (e.g. font type, size or color) that
should be reflected in the generated file.

The Word template is a document organized in
sections, one for each concept of the RSL-
IL4Privacy language (e.g. Statements, Services and
Private Data) and contains subsections for the
Services and Recipients, which can contain Sub-
Services and Sub-Recipients, respectively. Each
section and subsection is delimited by a start tag and
an end tag. During the transformation, each section
is copied as many times as the number of elements
of that type that exist, and the tags are replaced by
the value of the respective property of each element.

The Excel template is a workbook organized in
sheets, one for each concept of the RSL-IL4Privacy
language. Each sheet name identifies the set of
elements that describes (e.g. Statements, Services
and Recipients) and contains a head row identifying
the content of each column and then an example row
containing the tags annotations.

During the transformation, the example row is
copied as many times as the number of elements of
that type that exist, and the tags are replaced by the
value of the respective property of each element. As
can be noted, this process is analogous to the one
applied for the sections in the Word template.

3.2.3 Eddy (and OWL)

The transformation from RSL-IL4Privacy into Eddy
(M2M-4) is performed using Xtend, similarly to
what is done for transformations M2M-3 and M2T-
2. Silva et al. provide a detailed description on how
RSL-IL4Privacy concepts are mapped into
equivalent Eddy concepts in what concerns the
transformation M2M-4 (Silva et al., 2016). In
addition, the transformation from Eddy into OWL
(M2M-5) is performed internally and at the

RSLingo4Privacy Studio - A Tool to Improve the Specification and Analysis of Privacy Policies

57

Figure 4: RSLingo4Privacy Studio model transformations.

execution-time by the Eddy engine that we integrate
as a third-party tool. These Eddy statements are
mapped to action and roles in DL based on OWL
reasoners (Breaux et al., 2014).

In what respect the Dropbox case study, we
generated the corresponding Eddy file and then ran
it using the Eddy engine. The result of that execution
did not detect any conflicts; that means that there are
not any contradictory statements in what concerns
the deontic modality analysis. This can be explained
by the fact that Dropbox’s policy is relatively small
and simple (for instance, when compared to
Facebook’s policy) and so it is easier to maintain
manually by a person and to detect any contradiction
between each statement.

4 RELATED WORK

As far as we know from the literature analysis, there
are not any tool like RSL-IL4Privacy Studio that
addresses simultaneously the same goals and
provides the proposed features. Despite that, there
are some initiatives focused on security or privacy
policy specification and analysis. From our analysis
we identify three types of initiatives. First, initiatives
concerned with web and authorization privacy
policies. Second, semantic web approaches that
mainly allow specifying and validating privacy

policies based on ontologies and modal logic.
Finally, we still mention other relevant work.

Table 1 summarizes the RSLingo4Privacy
features and contrasted it with other approaches
taking into account their base languages and the tool
support they offer. With the exception of
RSLingo4Privacy, none of these approaches provide
a tool that simultaneously supports visualization and
authoring, multiple types of model transformations
(T2M, M2M and M2T) and publishing of policies.
Despite that, RSLingo4Privacy does not support
authorization enforcement. Adding the support to
this feature constitutes a possible future research
direction, namely by supporting the transformation
into languages used for that purpose or even
extending RSL-IL4Privacy with concepts commonly
used for policy authorization enforcement.

4.1 Web and Authorization Approaches

The commonly mentioned approaches for defining
website’s data privacy management and/or
authorization/access control policies are the ones
involving the standards P3P (Cranor et al., 2006),
XACML (OASIS, 2013) and EPAL (Ashley et al.,
2003). These languages appeared as an attempt to
automate the data management practices of a
website, due to their XML-based syntax that could
be more easily processed by computers. However,

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

58

their application domain is broader than the data
privacy domain, which is the focus in our work. For
instance, P3P is focused on the users’ privacy
preferences, while XACML and EPAL are focused
on access control aspects, i.e., authorization.
Therefore, they address slightly different concerns
comparing with RSL-IL4Privacy.

Several tools support the creation of policies
written in P3P, XACML and EPAL, but the majority
of them were discontinued. IBM P3P Policy Editor8
is a proprietary tool that permits creating from a
template or editing a website’s privacy policy using
a drag-and-drop graphical user interface (GUI)
(Cranor, 2003). JRC Policy Workbench is an open-
source tool that provides a GUI for creating,
managing and testing P3P policies through a form-
based policy editor where the user configures and
fills some input fields by following wizards. This
editor provides other useful features like viewing the
corresponding XML structure in a tree view, a
human-readable summary of the policy and the
possibility to carry out tests with the default APPEL
(Cranor et al., 2002) configuration. The JRC Policy
Workbench provides an extendable API for building
editing and testing environments for other types of
XML-based privacy and access control policies like
XACML or EPAL. P3PEdit website9 allows the
generation of a P3P policy by following a web-based
wizard. All these tools abstract the XML syntax, but
users still need to properly understand these
languages’ concepts and how these apply to their
website. For this reason these approaches are often
considered too complex and difficult to adopt in
practice. Also the fact that nor websites neither
browsers (only Internet Explorer used) are obliged to
use P3P, has contributed to its decreasing use.

4.2 Semantic Web Approaches

The commonly mentioned approaches for defining
website’s data privacy management Semantic web
approaches are commonly used to both specify and
analyze privacy policies. The use of ontologies,
represented using formal knowledge representation
languages (e.g. OWL, DAML10, RDF11), allows the
use of reasoners that can determine if the privacy
policy is consistent and check if there are any
conflicts between its rules that typically adopt
deontic modal logic.

8 https://www.w3.org/P3P/imp/IBM
9 https://www.p3pedit.com
10 http://www.daml.org
11 https://www.w3.org/RDF

Eddy’s website12 provides three examples using
an editor where the user can specify a privacy policy
in a free text area. Then, it is possible to run the
Eddy engine to analyze the policy for detecting any
possible conflicts or for tracing the flow and
showing it in a network chart. There is also an
option to export the equivalent OWL file resulting
from the analysis. The Eddy engine code and some
examples of its invocation using Java are publicly
available on Eddy’s GitHub repository.

KAoS (Uszok et al., 2003) is goal-oriented
software requirement language that can also be used
to express high-level goals of a privacy policy.
KAoS supports a formal specification based on
DAML. KPAT (KAoS Policy Administration Tool)
is a graphical tool that allows users to specify,
analyze, modify and test policies using KAoS.
KPAT also detects policy conflicts and allows
managing sets of ontologies. KPAT offers a set of
views of KAoS (e.g. Domains, Actor Classes,
Policies, Policy Templates). Since the policies are
specified using the GUI, the corresponding DAML
representations are generated automatically using a
generic template, avoiding the user to master
DAML. Other language-specific templates or
domain-specific templates for common classes of
policies can be defined. KPAT also offers a wizard
to guide the user throughout the policy creation
process.

The Rei policy language (Kagal et al., 2003) is
another logic-based language that relies on the
deontic concepts of rights, prohibitions, obligations
and dispensations. Beside the general purpose text
editors, there are three tools that support the
specification of Rei policies. The first tool is a
plugin for the Protégé-2000 ontology editor that
provides features for creating policies, rules, meta-
policies and queries through a custom tab and dialog
boxes. The second is a text-based editor for
specifying policies for Rei using the Notation3 (N3)
language (Berners-Lee, 2005), in order to make the
policies easier to read. This editor provides content
assistance and context information while a user is
typing a Rei policy. Finally, RIDE (Rei Integrated
Development Environment) (Shah, 2005) is an
Eclipse plug-in that uses a wizard-based approach.
The creation wizard guides the creation of a policy
and in the end automatically generates the
corresponding policy file in OWL, based on the user
input and selections. Once the policy file is created,
the user can launch the test wizard that provides an

12 https://gaius.isri.cmu.edu:8080/eddy

RSLingo4Privacy Studio - A Tool to Improve the Specification and Analysis of Privacy Policies

59

Table 1: Comparison of privacy-aware specification approaches.

Approach Languages

Tool Support
Visualization &

Authoring
Transformations

Publishing
Authorization
Enforcement T2M M2M M2T

W
eb

 a
n

d

A
u

th
or

iz
at

io
n

 P3P/APPEL P3P/APPEL

Yes (IBM P3P,
JRC Policy
Workbench,

P3PEdit)

No No To HTML No No

XACML XACML
Yes (UMU

XACML Editor)
No No To HTML No Yes

EPAL EPAL
Yes (Privacy

Authoring Editor,
EPAL Editor)

No No To HTML No Yes

S
em

an
ti

c
W

eb

Eddy Eddy
Yes (General-

purpose text editor)
No Yes No No No

KAoS DAML Yes (KPAT) No No No No Yes

Rei
Rei (OWL-

based)

Yes (Protégé-
Plugin, N3 text
editor, RIDE)

No No No No No

O
th

er

Ponder Ponder
Yes (Ponder Policy

Editor)
No To XML To Java No Yes

PATRN
PATRN &

FORMULA
Yes (GME-based

editor)
No No To FORMULA No No

SPARCLE
NL or structured

form
Yes (Policy Editor) No To EPAL No No No

PRiMMA-Viewer Datalog
Yes (Datalog

editor)
No No No No Yes

RSLingo4
Privacy

RSL-IL4Privacy
Yes (Eclipse Xtext-

based Plugin)

Ad-hoc NL to
RSL-

IL4Privacy

Excel,
JSON and

Eddy

Word and
Controlled NL

Yes No

interface for testing the policy and querying the Rei
engine.

4.3 Other Approaches

Damianou described a set of tools for Ponder,
another goal-oriented language that can be applied in
the privacy policy domain (Damianou et al., 2002).

Han and Lei analyzed and compared eleven
policy languages grouped in two sets: network and
security management (Han and Lei, 2012).

Nadas presented a model-based policy authoring
framework called PATRN applied to the health
information systems domain. PATRN uses a
graphical DSL, defined using GME, for policy
authoring, and the FORMULA specification
language, based on logic programming, for policy
analysis (Nadas et al., 2014).

Karat proposed a privacy policy workbench
named SPARCLE to support privacy policy
authoring, implementation and compliance
monitoring. SPARCLE allows users to specify a
privacy policy using natural language or using a
structured format (tabular and form-based). It
supports the transformation of privacy policies

written in natural language into the structured form
(and vice-versa), as well as the transformation to a
machine-readable format like EPAL (Karat et al.,
2005).

Wishart developed a tool called PRiMMA-
Viewer to support the collaborative specification of
privacy policies, specified in Datalog, for shared
content on Facebook (Wishart et al., 2010).
PRiMMA-Viewer uses an architecture aligned with
the Policy Core Information Model (PCIM) (Moore
et al., 2001).

5 CONCLUSIONS

This paper proposes RSLingo4Privacy Studio, a
software tool for better supporting the specification,
analysis and documentation of privacy-aware
requirements in the scope of privacy policies. This
work complements the current state-of-the-art by
providing a versatile tool designed around the RSL-
IL4Privacy language, with multiple representations
while taking into account the importance of having
requirements documented in a format as close to
natural language as possible. Studio is built on top of

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

60

the Eclipse IDE, and particularly leveraging and
integrating technologies such as: Xtext, Xtend,
Eclipse Modeling Framework (EMF), RapidMiner,
Eddy engine and Apache POI library.

The validation with six real-world policies
(Dropbox, Facebook, IMDB, LinkedIn, Twitter and
Zynga, available at the GitHub repository) shows the
potential of RSL-IL4Privacy as a rigorous language
for expressing privacy requirements and, in addition,
shows the relevance of the provided interoperability
features. Figure 5 shows the model transformations
that are performed in each process of the
RSLingo4Privacy approach.

First, T2M transformations intend to
automatically classify NL statements and extract
from them text snippets using text mining and text
extraction algorithms. The implementation of such
transformations is a complex task that involves the
integration and tuning of tools like RapidMiner, and
is still a working in progress research.

Second, M2T transformations produce a
consistent and easy-to-read version of a privacy
policy. These versions can be produced in multiple
formats, such as structured NL in Word, plain text or
even HTML.

Third, M2M transformations may include two
variants: M2M transformations that support multiple
representations of the RSL-IL4Privacy; for example,
from plain text format (defined with Xtext) into
tabular format in Excel, and vice-versa; and finally,
M2M transformations between RSL-IL4Privacy
with other languages and formats, such as JSON or
Eddy.

The major merit of Studio is that it allows both
technical and non-technical users to easily author
and analyze policies using a language close to NL,
but that is simultaneously readable by machines and

so providing automatic validation at both syntactic
and semantic levels. This fact permits RSL-
IL4Privacy to act as an intermediate language that
when supported by an environment that integrates
multiple representations of a privacy policy
addressing concerns of multiple stakeholders.

As future work we plan to conduct other case
studies and laboratory-controlled sessions with end-
users (e.g. software developers, policy authors and
requirement engineers).

In addition, we intend to apply and integrate
these privacy-related concerns with other concerns,
namely those defined in the original RSL-IL
language (Ferreira and Silva, 2013), or more
recently with RSLingo’s RSL (Silva, 2017), which
are related to requirements engineering in a broader
perspective. Consequently, these privacy policies
and respective requirements should be combined
with other security concerns such as authorization,
confidentiality, integrity, authenticity, and
accountability requirements (Haley et al, 2008).

Other interesting research directions are dealing
with modularity and variability aspects (e.g. using
OMG’s CVL (Haugen et al., 2012)) and with other
privacy-related aspects, like: domain-specific
privacy definitions for multiple domains (e.g.
healthcare, finance, government), accountability
mechanisms for detecting privacy violations,
mechanisms for tracking data flow and privacy and
authorization enforcement at application level
(Landwehr, 2016).

6 CALL FOR ACTION!

Download the ready-to-use Eclipse IDE version of

Figure 5: RSLingo4Privacy Approach versus the supported model transformations.

RSLingo4Privacy Studio - A Tool to Improve the Specification and Analysis of Privacy Policies

61

RSLingo4Privacy Studio, that it is available at its
GitHub repository13.

Furthermore, the concrete artifacts of the RSL-
IL4Privacy representations for Dropbox, Facebook,
IMDB, LinkedIn, Twitter and Zynga privacy
policies, as well as the analysis of other case studies
under the scope of RSLingo4Privacy are available
and can be found on its GitHub repository14.

ACKNOWLEDGEMENTS

This work was partially supported by national funds
under FCT projects UID/CEC/50021/2013, and
CMUP-EPB/TIC/0053/2013.

REFERENCES

Ashley, P. et al., 2003. Enterprise Policy Authorization
Language 1.2 (EPAL) Specification, W3C. https://
www.w3.org/Submission/2003/SUBM-EPAL-
20031110.

Baader, F. et al., 2003. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge
University Press.

Bechhofer, S. et al., 2004. OWL: Web Ontology Language
Reference. W3C Recommendation.

Berners-Lee, T., 2005. An RDF language for the Semantic
Web. https://www.w3.org/DesignIssues/Notation3.

Bettini, L., 2016. Implementing Domain-Specific
Languages with Xtext and Xtend. Packt Publishing
Ltd.

Breaux, T. D., Hibshi, H. and Rao, A. 2014. Eddy, a
formal language for specifying and analyzing data
flow specifications for conflicting privacy
requirements. Requirements Engineering. 19, 3, 281-
307.

Caramujo, J., Silva, A.R., 2015. Analyzing Privacy
Policies based on a Privacy-Aware Profile: the
Facebook and LinkedIn case studies. In Proc. of the
17th CBI conference. IEEE, 1, 77-84.

Caramujo, J., et al., 2017. A Domain-Specific Language
for the Specification of Privacy-Aware Requirements.
INESC-ID Technical Report.

Cranor, L., 2002. P3P Preference Exchange Language 1.0
(APPEL) Specification, W3C, https://
www.w3.org/TR/P3P-preferences.

Cranor, L., 2003. P3P: Making privacy policies more
useful. IEEE Security & Privacy. 1, 6, 50-55.

Cranor, L. et al., 2006. Platform for Privacy Preferences
1.1 (P3P) Specification, W3C, https://
www.w3.org/TR/P3P11.

13 https://github.com/RSLingo/RSLingo4Privacy-Studio
14 https://github.com/RSLingo/RSLingo4Privacy

Damianou, N. et al., 2002. Tools for domain-based policy
management of distributed systems. Network
Operations and Management Symposium. IEEE, 203-
217.

Ferreira, D., Silva, A. R, 2012. RSLingo: An Information
Extraction Approach toward Formal Requirements
Specifications. In Proc. of the 2nd MoDRE workshop.
IEEE, 39-48.

Ferreira, D., Silva, A. R., 2013. RSL-IL: An Interlingua
for Formally Documenting Requirements. In Proc. of
the 3rd MoDRE workshop. IEEE CS.

Ferreira, D., Silva, A. R. 2013a. RSL-PL: A Linguistic
Pattern Language for Documenting Software
Requirements, in Proceedings of RePa’13, IEEE CS.

Haley, C., Laney, R., Moffett, J., Nuseibeh, B., 2008.
Security requirements engineering: A framework for
representation and analysis. IEEE Transactions on
Software Engineering, 34(1), 133-153.

Han, W., Lei, C., 2012. A survey on policy languages in
network and security management. Computer
Networks. 56, 1, 477-489.

Haugen, Ø., Wasowski, A., Czarnecki, K., 2012. CVL:
Common Variability Language. In SPLC. ACM, 2,
266-267.

Kagal, L., Finin, T., Joshi, A., 2003. A policy language for
a pervasive computing environment. In Proc. of the 4th
POLICY workshop. IEEE, 63-74.

Karat, J. et al., 2005. Designing natural language and
structured entry methods for privacy policy authoring.
Human-Computer Interaction - INTERACT 2005.
Springer, 671-684.

Kotu, V. and Deshpande, B., 2014. Predictive Analytics
and Data Mining: Concepts and Practice with
RapidMiner. Morgan Kaufmann.

Landwehr, C., 2016. Privacy research directions.
Communications. ACM, 59, 2, 29-31.

Mernik, M., Heering, J., Sloane, A. 2005. When and how
to develop domain-specific languages. ACM
Computing Surveys, 37(4):316-344.

Moore, B. et al., 2001. Policy Core Information 1.0
Specification, RFC 3060, http://www.ietf.org/
rfc/rfc3060.

Nadas, A. et al., 2014. A model-integrated authoring
environment for privacy policies. Science of Computer
Programming. 89, Part B, 105-125.

OASIS, 2013. eXtensible Access Control Markup
Language 3.0 (XACML) Specification. .http://
docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-
os-en.pdf.

Pohl, K. Requirements Engineering: Fundamentals,
Principles, and Techniques. Springer, 2010.

Ribeiro, A., Sousa, L., Silva, A. R., 2016. Comparative
Analysis of Workbenches to Support DSMLs:
Discussion with Non-Trivial Model-Driven
Development Needs, in Proceedings of
MODELSWARD’2016, SCITEPRESS.

Shah, A.B., 2005. An integrated development environment
for policies. Master Thesis. University of Baltimore.

Silva, A. R., 2015. Model-Driven Engineering: A Survey
Supported by a Unified Conceptual Model, Computer

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

62

Languages, Systems & Structures 43 (C), 139–155.
Silva, A. R., 2015a. SpecQua: Towards a Framework for

Requirements Specifications with Increased Quality,
in Lecture Notes in Business Information Processing
(LNBIP), LNBIP 227, Springer.

Silva, A. R., et al., 2016. Improving the Specification and
Analysis of Privacy Policies: The RSLingo4Privacy
Approach. In Proc. of the 8th ICEIS conference.
SCITEPRESS, 336-347.

Silva, A. R., 2017. RSLingo’s RSL: Requirements
Specification Language Based on Linguistic Patterns.
INESC-ID Technical Report.

Uszok, A. et al., 2003. KAoS policy and domain services:
Toward a description-logic approach to policy
representation, deconfliction, and enforcement. In
Proc. of the 4th POLICY workshop. IEEE, 93-96.

Voelter, M., Benz, S., Dietrich, C., Engelmann, B.,
Helander, M., Kats, L. C., Visser, E., Wachsmuth, G.
2013. DSL engineering: Designing, implementing and
using domain-specific languages, dslbook.org.

Wishart, R. et al., 2010. Collaborative privacy policy
authoring in a social networking context. In Proc. of
the POLICY symposium. IEEE, 1-8.

RSLingo4Privacy Studio - A Tool to Improve the Specification and Analysis of Privacy Policies

63

