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Abstract: This paper presents a prevention method for deadlock situations in Web Services composition. This method
considers the Petri net theory and is based on the analysis of Linear Logic proof trees. Initially, it is necessary
to detect deadlock scenarios by analyzing the Linear Logic proof trees built for each different scenario of the
modules from which the composed system is built. Following on from this, a synchronization rule is proposed
in order to prevent deadlock situations in these deadlock scenarios. The basic principle of such a rule is to
force workflow modules to execute specific tasks respecting a local scheduling policy in order to remove the
situations responsible for the deadlocks. This paper therefore presents a synchronization strategy to prevent
deadlock situations in Web Services composition that are deadlock-free within the local workflow modules
but not necessarily deadlock-free when considering the entire composed system.

1 INTRODUCTION

There exists an increasing acceptance of Service-
Oriented Architecture (SOA) as a paradigm for the
integration of disparate software components within
and across organizational boundaries using Internet
protocols (Klai et al., 2013), (Xiong et al., 2010).
These components, called Web Services (WS), are
available in the distributed environment of the In-
ternet. As consequence, the organizations attempt
to provide their own services through complex tasks
which can be resolved using a combination (or com-
position) of several WS (Klai et al., 2013).

In many cases, multiple WS need to invoke each
other dynamically to accomplish service requestors
manifold requirements (Xiong et al., 2010). Orches-
tration and choreography are two different viewpoints
for WS interactions (Barros et al., 2005). The former
considers one particular service that directs the logical
order of all other services, while the latter considers
the case where individual services work together in a
loosely coupled network (Xiong et al., 2010), (Barros
et al., 2005).

When two services are composed through a kind
of Petri net modeling, the common elements are
merged becoming the new interface of the system
(Martens, 2005). Even if services have a syntactically

compatible interface, the resulting distributed process
may lead to a deadlock situation (Martens, 2005). Ac-
cording to (Klai et al., 2013), this is also due to the
fact that whilst the control flow constructs of WS have
been designed in a way to ensure that no “individual”
service process execution can deadlock, some combi-
nations of structured activities with control links can
lead to situations where some activities are “unreach-
able”.

Many studies have already considered Petri nets
as an appropriate model for specifying and analysing
WS composition. In (Martens, 2005), a framework
for modeling and analyzing WS based business pro-
cesses by help of Petri nets is presented. In this ap-
proach, the services, named modules, are classified as
usable or not usable (modules that can not be used
in any composition). In (Klai et al., 2013), the au-
thors address the problem of abstracting and checking
correctness of WS composition, taking into consid-
eration four variants of Soundness property (van der
Aalst et al., 2011) (Soundness, Weak Soundness, Re-
laxed Soundness and Easy Soundness). For additional
information concerning these variations, see (van der
Aalst et al., 2011). This approach only considers the
analysis of the composed model. Since one criteria
is not satisfied, it is necessary to redesign the whole
model in order to satisfy the required property. In
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(Passos and Julia, 2015), an approach is presented
to ensure that the existing deadlock-free scenarios in
WS composition guarantee the business relationship,
avoiding in particular deadlock situation. In such an
approach, the scenarios that can lead the system to a
deadlock situation are not removed from the model.

In this paper, an approach based on Linear Logic
is proposed to deal with deadlock situations in the
WS composition modeled by Petri nets, where the
workflow modules are deadlock-free but not neces-
sarily the composed system. The method set in this
paper is to replace some of the asynchronous com-
munication places of the composed system (the ones
responsible for the deadlock situation) by a kind of
synchronous communication mechanism, forcing lo-
cal workflow modules to initiate specific tasks at the
same time. In particular, the detection of the com-
munication places of the composed system respon-
sible for the deadlock situations and the non respect
of the deadlock-freeness is based on the analysis of
the proof trees of Linear Logic sequents which corre-
spond to deadlock scenarios in the composed system.

The remainder of this paper is presented as fol-
lows. In section 2 the definitions of WorkFlow net,
module and composed system along with an overview
of Linear Logic are provided. The synchronization
rule based on Linear Logic for deadlock prevention in
composed systems is presented in section 3. Finally,
the last section concludes this work with a short sum-
mary, an assessment of the presented approach and an
outlook for future work.

2 THEORETICAL BACKGROUND

A Web Service (WS) consists, according to (Martens,
2005), of internal structures that realize local pro-
cesses and of an interface that allows for communi-
cation with other WS. Thus, a WS can be modeled
through the help of a WorkFlow net (WF-net) (van der
Aalst et al., 2011) supplemented by an interface; such
a model is called a workflow module (Martens, 2005).
As the definition of a workflow module is based on the
definition of WF-nets, these nets are also presented.

In the following, the formal definition of WF-nets
is presented.
Definition 1 (WorkFlow Net). A Petri net PN =
(P,T,F) is a WF-net if and only if (van der Aalst et al.,
2011):

1. PN has two special places: i and o. Place i is
a source place: •i = φ. Place o is a sink place:
o•= φ.

2. Every node x ∈ P∪T is on a path from i to o.

The formal definition of workflow module is the
following.
Definition 2 (Workflow Module). A finite Petri net
M = (P,T,F) is called a workflow module (module
for short), if and only if (Martens, 2005):

1. The set of places is divided into three disjoint
sets: internal places PN , input places PI and out-
put places PO.

2. The flow relation is divided into internal flow
FN ⊆ (PN × T )∪ (T × PN) and communication
flow FC ⊆ (PI×T )∪ (T ×PO).

3. The net N(M) = (PN ,T,FN) is a WF-net.

4. No transition is connected both to an input place
and an output place.

Figure 1: Modules Customer (C1) and Ticket (T1).

To clarify the concept defined above, consider
the modules C1 and T1 of Figure 1, presented in
(Martens, 2005). The module C1 represents a cus-
tomer and the module T1 models a Ticket service.
The internal places of C1 are places q0, q1 and q2.
The input place of C1 is the place Ticket and the out-
put places of C1 are V ISA and eCash.

According to (Martens, 2005), two modules are
called syntactically compatible if both internal pro-
cesses are disjoint and each common place is an out-
put place of one module and an input place of the
other. By considering the modules C1 and T1 shown
in Figure 1, it is easily recognizable that these mod-
ules are syntactically compatible. In the approach
presented in (Martens, 2005), when two modules are
composed, their common places are merged and the
dangling input and output places become the new
interface. To achieve a syntactically correct work-
flow module, it is necessary to add new components
for initialization and termination. In this context,
(Martens, 2005) defined the composed system con-
cept presented in Definition 3.
Definition 3 (Composed System). Let A =
(Pa,Ta,Fa) and B = (Pb,Tb,Fb) be two syntacti-
cally compatible modules. Let i,o /∈ (Pa ∪ Pb)
be two new places and ti, to /∈ (Ta ∪ Tb) two
new transitions. The composed system A ⊕ B
is given by (Ps,Ts,Fs), such that Ps = Pa ∪ Pb ∪
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{i,o}, Ts = Ta ∪ Tb ∪ {ti, to} and Fs = Fa ∪ Fb ∪
{(i, ti),(ti,αa),(ti,αb),(ωa, to),(ωb, to),(to,o)}.

Figure 2: The composed system C1 ⊕ T1.

As an example, Figure 2 shows the composed sys-
tem C1⊕ T1. Note that the Ticket service (T1) solves
an internal conflict and sends the Ticket to the cus-
tomer module C1. Thereafter, module T1 is either in
state p1 waiting for eCash only, or in state p2 waiting
for V ISA only. The customer (C1) receives the Ticket
and has the choice between either kind of payment,
V ISA or eCash. It is important to note that module C1
does not know the internal state of module T1, i.e. p1
or p2. According to (Martens, 2005), when an inter-
nal decision is made and is not communicated prop-
erly to an external WS, a problem, already well un-
derstood by literature happens - the non local choice
problem that can be responsible for the occurrence of
deadlock situations.

Linear Logic was proposed in 1987 by Girard (Gi-
rard, 1987). In Linear Logic, propositions are consid-
ered as resources which are consumed and produced
at each state change (Riviere et al., 2001). In this pa-
per just two connectives of Linear Logic will be used:
• The times connective, denoted by ⊗, represents

simultaneous availability of resources.
• The linear implies connective, denoted by (,

represents a state change.
The translation of a Petri net into formulas of Lin-

ear Logic (Riviere et al., 2001) is a relatively simple
process: a marking M is a monomial in ⊗ and is rep-
resented by M = A1 ⊗ A2 ⊗ ... ⊗ Ak where Ai are
place names; a sequent M,ti ` M’ represents a sce-
nario where M and M’ are respectively the initial and
final markings, and ti is a list of non-ordered transi-
tions; a sequent can be proven by applying the rules of
the sequent calculus. It was proven in (Girault et al.,
1997) that a proof of the sequent calculus is equiva-
lent to a reachability problem in a Petri net model.

In this paper, just some Linear Logic rules will be
considered. These rules will be used to build proof
trees. To achieve this, F, G, and H will be consid-
ered as formulas and Γ and ∆ as blocks of formulas.
The following rules will be those used in this paper
(Riviere et al., 2001):

• The (L rule,
Γ ` F ∆,G ` H
Γ,∆,F ( G ` H

(L, expresses a

transition firing and generates two sequents, such
that the right sequent represents the subsequent,
which remains to be proven and the left sequent
represents the tokens consumed by this firing.

• The ⊗L rule,
Γ,F,G ` H
Γ,F⊗G ` H

⊗L transforms a

marking in a list of atoms.

• The ⊗R rule,
Γ ` F ∆ ` G
∆,Γ ` F⊗G

⊗R transforms a se-

quent such as A,B ` A ⊗ B into two identity se-
quents A ` A and B ` B.

In the approach presented in this paper, a Linear
Logic proof tree is read from the bottom-up. The
proof stops when the atom that represents the place
o is produced, i.e. the identity sequent o ` o appears
in the proof tree, when there is not any rule that can
be applied or when all the leaves of the proof tree are
identity sequents.

3 SYNCHRONIZATION RULE

The approach proposed in this paper considers the
WS composition modeled by workflow modules that
are deadlock-free. Such a statement does not neces-
sarily mean that the composed system is deadlock-
free. In such systems, the addition of the interface
(common places merged among modules) can lead
to situations where some activities are “unreachable”
(Klai et al., 2013), causing the deadlock situation. Ac-
cording to (van der Aalst, 1998), in the context of WF-
nets, a deadlock situation can be corrected by replac-
ing an asynchronous communication element (a com-
munication place) by a synchronous communication
element (a transition of synchronization).

The approach in this paper consists of replacing
some of the asynchronous communication places (in-
terface) of the composed system with new commu-
nication mechanisms partially synchronous in order
to prevent the occurrence of lost messages that, in
case of deadlock situations, are generally trapped in-
side one of the communication places, thus preventing
the composed system from respecting the deadlock-
freeness property. Such a substitution can be seen
therefore as a kind of synchronization rule.
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To apply such a synchronization rule, it is nec-
essary first to identify scenarios responsible for
deadlock situations and more specifically the asyn-
chronous communication elements that can lead the
system to inconsistent states (terminal states with a
token trapped in one or more of the asynchronous
communication places). The detection of inconsistent
states in this work will be based on Linear Logic se-
quent proof trees that correspond to potential scenar-
ios in a composed system.

Initially, the elements of the composed system
have to be represented through the use of Linear Logic
formulas. For each potencial scenario of the com-
posed system, a Linear Logic sequent is then pro-
duced. The detailed method for the obtaining of all
Linear Logic sequent candidates for possible collab-
orations among two or more workflow processes was
presented in (Passos and Julia, 2013).

As shown in (Passos and Julia, 2013), a scenario in
the context of WF-nets corresponds to a well defined
route mapped into the corresponding module, and if
the module has more than one route (places with two
or more output arcs), it is necessary then to build a
different Linear Logic sequent for each existing sce-
nario. After the definition of the Linear Logic se-
quents that represent all the possible scenarios of the
composed system, these Linear Logic sequents need
to be proven through the building of Linear Logic
proof trees.

If the last sequent of a Linear Logic proof tree
built for a specific scenario is different from the iden-
tity sequent o ` o, then there is no token in the sink
place of the composed system, i.e. a deadlock situa-
tion occurs before the termination of the process (Pas-
sos and Julia, 2013).

In the present method, it is necessary to identify
the last transition fired before the occurrence of the
deadlock situation. This transition will be called td1.
To identify such a transition td1, it is necessary to ver-
ify in a Linear Logic proof tree leading to a deadlock
situation, the transition firing that produces the atom
which remains in one of the communication places
(interface) until the conclusion of the Linear Logic
proof tree. For each transition of type td1, a corre-
sponding transition of type td2 exists. Such a tran-
sition, when a deadlock situation occurs, is the out-
put transition of a marked communication place that
corresponds to an atom trapped in the interface of
the composed system. The deadlock situation corre-
sponds therefore to the death of transition td2 (tran-
sition not enabled until the end of the Linear Logic
proof).

In order to prevent the death of transition td2, it is
necessary to introduce a kind of synchronization rule

that corresponds to the following scheduling strategy:
each time a transition of type td1 is fired, the corre-
sponding transition of type td2 has to be fired in se-
quence in order to empty the communication place
in which an atom was produced. In practice, such
a policy corresponds to the guarantee that for each
message (the activity associated to the transition td1)
sent by a local process WS, the corresponding answer
of the local workflow module (the activity associated
to the transition td2) will occur with certainty. After
the synchronization rule application, the cause of the
deadlock (a token trapped in a communication place)
is removed and the Linear Logic proof can be cor-
rectly finalized with, as the final state, a single atom
produced in the place o (last place of the composed
system).

To illustrate the approach, the composed sys-
tem shown in Figure 2 is considered. As shown
in (Martens, 2005), the modules Customer (C1) and
Ticket (T1) shown in Figure 1 that make up the com-
posed system are deadlock-free but the composed sys-
tem of Figure 2 is not deadlock-free.

For the composed system shown in Figure 2, there
exist four different scenarios to be studied. The first
scenario, Sc1, where transitions t3 and t4 will be fired.
The second scenario, Sc2, where transitions t2 and t5
will be fired. The third scenario, Sc3, where transi-
tions t2 and t4 will be fired. Finally, the fourth sce-
nario, Sc4, where transitions t3 and t5 will be fired.

Each one of these scenarios is then represented by
a specific Linear Logic sequent that considers the ini-
tial and final markings of the composed system and
a non-ordered list of transitions involved in it (Passos
and Julia, 2015).

The transitions of the composed system shown in
Figure 2 are represented by the following formulas of
Linear Logic:
ti = i ( q0⊗ p0, t1 = q0⊗Ticket ( q1,
t2 = q1 (V ISA⊗q2, t3 = q1 ( eCash⊗q2,
t4 = p0 ( Ticket⊗ p1, t5 = p0 ( Ticket⊗ p2,
t6 = p1⊗ eCash ( p3, t7 = p2⊗V ISA ( p3,
to = q2⊗ p3 ( o.

The four different scenarios, and consequently
Linear Logic sequents, are thus the following:
Sc1 = i, ti, t1, t3, t4, t6, to ` o,
Sc2 = i, ti, t1, t2, t5, t7, to ` o,
Sc3 = i, ti, t1, t2, t4, t6, to ` o,
Sc4 = i, ti, t1, t3, t5, t7, to ` o.

Presented in the following are the Linear Logic
proof trees for each of these scenarios. For a better
analysis of the approach, the proof tree for scenario
Sc1 was divided into two parts, remembering that a
Linear Logic proof tree is read from the bottom-up.
Part 1 of the proof tree for scenario Sc1 is in black
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text, while Part 2 of the proof for scenario Sc1 is in
blue text. The proof tree for scenario Sc1 is as follows:

q2`q2 p3`p3
q2,p3`q2⊗p3 ⊗R

o`o (L

p1`p1 eCash`eCash
p1,eCash`p1⊗eCash ⊗R

q2,p3,q2⊗p3(o`o (L

p1,eCash,q2,p1⊗eCash(p3,to`o ⊗L

q1`q1 p1,eCash⊗q2,t6,to`o (L
q0`q0 Ticket`Ticket

q0,Ticket`q0⊗Ticket ⊗R
p1,q1,q1(eCash⊗q2,t6,to`o (L

q0,Ticket,p1,q0⊗Ticket(q1,t3,t6,to`o ⊗L

p0`p0 q0,Ticket⊗p1,t1,t3,t6,to`o (L

q0,p0,t1,t3,p0(Ticket⊗p1,t6,to`o ⊗L

i`i q0⊗p0,t1,t3,t4,t6,to`o (L

i,i(q0⊗p0,t1,t3,t4,t6,to`o

For a better analysis of the approach, the Linear
Logic proof tree for scenario Sc2 was also divided into
two parts. Part 1 of the proof tree for scenario Sc2 is
in black text, while Part 2 of the proof for scenario
Sc1 is in blue text. The proof tree for scenario Sc2 is
as follows:

q2`q2 p3`p3
q2,p3`q2⊗p3 ⊗R

o`o (L

p2`p2 V ISA`V ISA
p2,V ISA`p2⊗V ISA ⊗R

q2,p3,q2⊗p3(o`o (L

p2,V ISA,q2,p2⊗V ISA(p3,to`o ⊗L

q1`q1 p2,V ISA⊗q2,t7,to`o (L
q0`q0 Ticket`Ticket

q0,Ticket`q0⊗Ticket ⊗R
p2,q1,q1(V ISA⊗q2,t7,to`o (L

q0,Ticket,p2,q0⊗Ticket(q1,t2,t7,to`o ⊗L

p0`p0 q0,Ticket⊗p2,t1,t2,t7,to`o (L

q0,p0,t1,t2,p0(Ticket⊗p2,t7,to`o ⊗L

i`i q0⊗p0,t1,t2,t5,t7,to`o (L

i,i(q0⊗p0,t1,t2,t5,t7,to`o

The proof tree for scenario Sc3 is the following:

p1,VISA,q2,t6,to`o ⊗L

q1`q1 p1,VISA⊗q2,t6,to`o (L
q0`q0 Ticket`Ticket

q0,Ticket`q0⊗Ticket ⊗R
p1,q1,q1(VISA⊗q2,t6,to`o (L

q0,Ticket,p1,q0⊗Ticket(q1,t2,t6,to`o ⊗L

p0`p0 q0,Ticket⊗p1,t1,t2,t6,to`o (L

q0,p0,t1,t2,p0(Ticket⊗p1,t6,to`o ⊗L

i`i q0⊗p0,t1,t2,t4,t6,to`o (L

i,i(q0⊗p0,t1,t2,t4,t6,to`o

And finally the proof tree for scenario Sc4 is as
follows:

p2,eCash,q2,t7,to`o ⊗L

q1`q1 p2,eCash⊗q2,t7,to`o (L
q0`q0 Ticket`Ticket

q0,Ticket`q0⊗Ticket ⊗R
p2,q1,q1(eCash⊗q2,t7,to`o (L

q0,Ticket,p2,q0⊗Ticket(q1,t3,t7,to`o ⊗L

p0`p0 q0,Ticket⊗p2,t1,t3,t7,to`o (L

q0,p0,t1,t3,p0(Ticket⊗p2,t7,to`o ⊗L

i`i q0⊗p0,t1,t3,t5,t7,to`o (L

i,i(q0⊗p0,t1,t3,t5,t7,to`o

The last sequent in the proof trees for scenarios
Sc1 and Sc2 is o ` o; then these are deadlock-free sce-
narios. The last sequent for scenario Sc3 is p1, V ISA,
q2, t6, to ` o and the last sequent for scenario Sc4 is
p2, eCash, q2, t7, to ` o; then scenarios Sc3 and Sc4
are the scenarios where the deadlock situations occur.
It is then necessary to apply the synchronization rule
in each of these scenarios to remove the deadlock.

Considering first scenario Sc3, the last transition
that was fired before the deadlock situation is transi-
tion t2 marked in bold type in the proof tree. In partic-
ular, the last atoms q2 and V ISA of the last sequent of
the proof tree for scenario Sc3 are produced when the
transition t2 is fired. However, due to the deadlock sit-
uation, these atoms are not consumed at the end of the
proof. Hence, transition t2 will correspond to a transi-
tion of type td1 of the approach, transition t7 to a tran-
sition of type td2, and the atom V ISA to the marked
asynchronous communication place (interface).

The asynchronous communication place V ISA,
present in the last sequent of the proof tree of scenario
Sc3, is an output place of transition t2 (last transition
fired in the proof tree). This communication place is
the input place of transition t7 of module T1. There-
fore, transition t7 corresponds, in scenario Sc3, to a
dead transition.

Figure 3 shows the synchronization rule applica-
tion in scenario Sc3 of the composed system shown in
Figure 2. The synchronization rule, shown in Figure
3, is not a true transition; it is a transition rule that
synchronizes part of the communication structure be-
tween the modules C1 and T1. The transformation
of the pure asynchronous communication mechanism
into a partial synchronous mechanism after the appli-
cation of the synchronization rule is presented in Fig-
ure 4. In Figure 4A, the firing of transition t2 (transi-
tion of type td1) corresponds only to a necessary con-
dition for the firing of transition t7 (transition of type
td2). Such an asynchronous communication protocol
does not provide a guarantee for the receiving of a
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sent message; in particular, for scenario Sc3, after the
firing of transition t2, a token will remain trapped in
the communication place V ISA.

Figure 3: Applying the synchronization rule in scenario Sc3
of the composed system shown in Figure 2.

On the contrary, in Figure 4B, the fact of synchro-
nizing the execution of the first activity associated to
transition t2 (transition of type td1) on both modules
C1 and T1, corresponds to guaranteeing the execu-
tion of the called activity t7 (transition of type td2). In
fact, the firing of a transition of type td1, after the ap-
plication of the synchronization rule, corresponds to
a necessary and sufficient condition for the firing of
the transition of type td2, and at the end of the associ-
ated scenario, no token will remain in any intermedi-
ary communication place.

Figure 4: Before and after the application of the synchro-
nization rule to scenario Sc3.

After the synchronization rule application, the
deadlock situation is removed and scenario Sc3 will
not be able to occur in the composed system. In prac-
tice, scenario Sc3 is then removed from potential sce-
narios that exist when considering the composed sys-
tem shown in Figure 2.

According to Figure 4B, transitions t2 and t7 of the
composed system are modified after the synchroniza-
tion rule. They are now represented by the following
new formulas of Linear Logic:
t2 = q1⊗ p2 (V ISA⊗q2, t7 =V ISA ( p3.

Transitions t2 and t7 do not appear in the Linear
Logic sequents of scenario Sc1 and Sc4, and the alter-
ation of the model does not modify the proof trees of

the corresponding scenarios. On the other hand, both
transitions appear in scenario Sc2. Part 1 of the proof
tree for scenario Sc2 continues unchanged after the
application of the synchronization rule. Part 2 of the
proof tree needs to be computed again and becomes
then:

q2`q2 p3`p3
q2,p3`q2⊗p3 ⊗R

o`o (L

V ISA`V ISA q2,p3,q2⊗p3(o`o (L

V ISA,q2,V ISA(p3,to`o ⊗L
q1`q1 p2`p2

q1,p2`q1⊗p2 ⊗R
V ISA⊗q2,t7,to`o (L

q0`q0 Ticket`Ticket
q0,Ticket`q0⊗Ticket ⊗R

p2,q1,q1⊗p2(V ISA⊗q2,t7,to`o (L

...

The last sequent in the proof tree for the new sce-
nario Sc2 is o ` o; as a consequence, after the applica-
tion of the synchronization rule, scenario Sc2 is still a
deadlock-free scenario.

Since the model has more than one deadlock sce-
nario, it is also necessary to apply the synchronization
rule to scenario Sc4. Considering now scenario Sc4,
the last transition that was fired before the deadlock
situation is transition t3 marked in bold type in the
proof tree. In particular, the last atoms q2 and eCash
of the last sequent of the proof tree for scenario Sc4
are produced when the transition t3 is fired. How-
ever, due to the deadlock situation, these atoms are
not consumed at the end of the proof tree. Therefore,
transition t3 will correspond to a transition of type td1,
transition t6 to a transition of type td2, and atom eCash
to the marked asynchronous communication place.

The asynchronous communication place eCash
present in the last sequent of the proof tree of scenario
Sc4 is an output place of transition t3 (last transition
fired in the proof tree). This communication place is
the input place of transition t6 of module T1. Hence,
transition t6 corresponds, in scenario Sc4, to the dead
transition.

Figure 5 shows the synchronization rule applica-
tion in scenario Sc4 of the composed system as shown
in Figure 2. As mentioned in scenario Sc3, the syn-
chronization rule, shown in Figure 5, is not a true tran-
sition; it is a transition rule that synchronizes part of
the communication structure between the modules C1
and T1. The transformation of the pure asynchronous
communication mechanism into a partial synchronous
mechanism after the application of the synchroniza-
tion rule is presented in Figure 6. In Figure 6A, the
firing of transition t3 (transition of type td1) corre-
sponds only to a necessary condition for the firing of
transition t6 (transition of type td2). Such an asyn-
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chronous communication protocol is therefore, not a
guarantee for the receiving of a sent message. In par-
ticular, for scenario Sc4, after the firing of transition
t3, a token will remain trapped in the communication
place eCash.

Figure 5: Applying the synchronization rule to scenario Sc4
of the composed system as shown in Figure 2.

On the contrary, in Figure 6B, the fact of synchro-
nizing the execution of the first activity associated to
transition t3 (transition of type td1) on both modules
C1 and T1, corresponds to guaranteeing the execution
of the called activity t6 (transition of type td2).

Figure 6: Before and after the application of the synchro-
nization rule in scenario Sc4.

After the synchronization rule application, the
deadlock situation is removed and scenario Sc4 will
not be able to occur in the composed system. In prac-
tice, scenario Sc4 is then removed from potential sce-
narios that exist when considering the composed sys-
tem as shown in Figure 2.

According to Figure 6B, transitions t3 and t6 of the
composed system are modified after the synchroniza-
tion rule. They are now represented by the following
new formulas of Linear Logic:
t3 = q1⊗ p1 ( eCash⊗q2, t6 = eCash ( p3.

Transitions t3 and t6 do not appear in the Linear
Logic sequents of scenario Sc2 and the alteration of
the model do not modify the proof tree of the corre-
sponding scenario. On the other hand, both transi-
tions appear in scenario Sc1. Part 1 of the proof tree
for scenario Sc1 continue unchanged after the appli-
cation of the synchronization rule. Part 2 of the proof
tree needs to be computed again, and becomes then:

q2`q2 p3`p3
q2,p3`q2⊗p3 ⊗R

o`o (L

eCash`eCash q2,p3,q2⊗p3(o`o (L

eCash,q2,eCash(p3,to`o ⊗L
q1`q1 p1`p1

q1,p1`q1⊗p1 ⊗R
eCash⊗q2,t6,to`o (L

q0`q0 Ticket`Ticket
q0,Ticket`q0⊗Ticket ⊗R

p1,q1,q1⊗p1(eCash⊗q2,t6,to`o (L

...
The last sequent in the proof tree for the new sce-

nario Sc1 is o ` o; then after the application of the
synchronization rule, scenario Sc1 is still a deadlock-
freeness scenario.

Figure 7: Final model after the application of the synchro-
nization rule.

Figure 7 shows the final model after the synchro-
nization rule application in scenario Sc3 and Sc4 of
the composed system shown in Figure 2. Note that
additional places aux1 e aux2 were produces in the fi-
nal model in order to respect the workflow module
definition (as a matter of fact, transitions t6 and t7
need at least one input transition in order to respect
the basic structure of a WF-net). Such places, con-
sidering the Petri net theory (Murata, 1989), are im-
plicit places and do not alter the good properties of
the corresponding model; then the results produced
by the study of Linear Logic proof trees (removal of
the scenarios leading to deadlock situations) will still
be valid. In particular, the deadlock scenarios Sc3 and
Sc4 are removed from the final model, with only the
two deadlock-free scenarios remaining, Sc1 and Sc2.
Remembering here that scenarios Sc1 and Sc2 were
slightly modified after the synchronization rule appli-
cation.

A great advantage of the Linear Logic based ap-
proach presented in this paper is that when a deadlock
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situation occurs, only the asynchronous part of the
net altered by the synchronous rule needs to be repro-
cessed; the rest of the Linear Logic proof tree will re-
main unaltered. Therefore, the analysis of the model
only happens on the modified part of the model.

4 CONCLUSIONS

This paper presented an approach to prevent dead-
lock situations in WS compositions modeled by Petri
nets. In WS Composition where the workflow mod-
ules are deadlock-free, deadlock problems can occur
at the level of a composed system (collaboration be-
tween at least two workflow modules). Generally, it
is the interface (communication places between the
workflow modules) that provokes the deadlock situa-
tion. The synchronization rule presented in this paper
implements a kind of local scheduling strategy that
guarantees that each time a message is sent, the corre-
sponding answer of the local workflow module will,
in fact, occur.

The advantages of such an approach are diverse.
The proposed method is based on the construction and
analysis of proof trees of Linear Logic that represent
scenarios of a composed system. As was shown in
(Passos and Julia, 2009), the time complexity to prove
a Linear Logic sequent that corresponds to a scenario
of a workflow process is linear. The fact of working
with Linear Logic permits the identification of com-
munication places (interface) responsible for the oc-
currence of deadlock situations. Furthermore, work-
ing with Linear Logic, it is possible to reuse unaltered
fragments of a proof tree produced before the appli-
cation of the synchronization rule i.e. the analysis of
the model is only executed on the part of the model
responsible for the deadlock.

As a future work proposal, it will be interesting to
propose a kind of quantitative analysis based on sym-
bolic dates, considering in this manner the proof trees
of Linear Logic with dates, as presented in (Riviere
et al., 2001). Such an analysis will be able to evaluate
the effect of the synchronization rule on the perfor-
mance of the system.
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