
Cost-aware Application Development and Management using
CLOUD-METRIC

Alieu Jallow, Andreas Hellander and Salman Toor
Department of Information Technology, Division of Scientific Computing, Uppsala University, SE-75105, Uppsala, Sweden

Keywords: Cloud Infrastructures, Metering, Cost Estimation, Recommendations.

Abstract: Traditional application development tends to focus on two key objectives: the best possible performance and
a scalable system architecture. This application development logic works well on private resources but with
the growing use of public IaaS it is essential to find a balance between the cost and the performance of an
application. Here we propose CLOUD-METRIC: a lightweight framework for cost-aware development of
applications to be deployed in public clouds. The key functionality of CLOUD-METRIC is to allow users
to develop applications on private IaaS (a dedicated cluster or an in-house cloud) while estimating the cost
of running them on public IaaS. We have demonstrated the strengths of CLOUD-METRIC using two chal-
lenging use-cases orchestrated on SNIC Science Cloud, a community OpenStack cloud in Sweden, providing
recommendation for a deployment strategy and associated cost estimates in Amazon EC2 and Google Com-
pute Platform. In addition to cost estimation, the framework can also be used for basic application monitoring
and as a real-time programming support tool to find bottlenecks in the distributed architecture.

1 INTRODUCTION

Consuming computational and storage resources as
Infrastructure-as-a-Service (IaaS) is one of the fastest
growing trends both in industry and academia. The
major reasons for the adoption of this model is
to reduce upfront investment cost, rapid time-to-
market and availability of large capacity of produc-
tion quality resources. IaaS providers such as Ama-
zon, Google and Azure are offering service-level-
agreements (SLAs) that are favorable for various busi-
ness models. However, in order to realize the bene-
fits and in particular to reduce the cost, it is essential
that applications also adopt adequate design patterns
to become scalable, resilient and vendor-agnostic.

Application architecture is still lagging behind
the advances in modern distributed computing infras-
tructures. A particular challenge is that applications
are traditionally designed with dedicated resources in
mind. This is one of the reasons why users often
fail to see benefits from adopting the cloud comput-
ing resource delivery model. This article highlights
some key challenges in adoption of the cloud model
and proposes a light-weight framework that will help
to address those challenges and aid in the process of
cloud application development. In particular:

1. [C-1.] Porting legacy applications to cloud infras-

tructure as virtual appliances is often trivial but to
provide a cost effective execution environment is
highly challenging.

2. [C-2.] Even if the application is cloud-native,
elastic and fault-tolerant it is often not clear how
to plan the execution environment in order to min-
imize the execution cost.

3. [C-3.] There is disconnect between application
development and cost estimation for the deployed
solution. In the scientific community, this is a ma-
jor bottleneck for cloud adoption.

4. [C-4.] Without having brokering platforms that
can showcase the provided services and a re-
alistic cost comparison between different cloud
providers the risk of getting vendor lock-in will
always be high.

Apart from the above mentioned technical chal-
lenges another factor is the complex and varying
billing models for the wide variety of cloud resources.
For example, AWS offers 11 different high-level cat-
egories (T2, M4, X1 and C3 etc) and when consid-
ering versions of those, there are in total 45 different
options to select one single computational resource
(AWS, 2016). However the cost estimation capa-
bilities are limited as they do not provide the users
the ability to relate the estimated cost to application-

Jallow, A., Hellander, A. and Toor, S.
Cost-aware Application Development and Management using CLOUD-METRIC.
DOI: 10.5220/0006307505150522
In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 487-494
ISBN: 978-989-758-243-1
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

487

specific characteristics that may affect the actual cost
of running an application. For large-scale distributed
applications, and in particular for scientific applica-
tions, this issue is more prominent.

With these challenges in mind, we present
CLOUD-METRIC: A lightweight framework that
adds cost-awareness to the application development
life cycle. Our aim is to provide a framework that
helps in the design of cloud native applications by
making cost considerations an integrated part of the
development life cycle rather than an operational af-
terthought. Importantly, CLOUD-METRIC provides
these cost-estimates both based on the provisioned re-
sources and on an analysis of the actual utilization of
the deployed resources.

The rest of the article is organized as follows: sec-
tion 2 present related work. The functionality of the
framework together with features are presented in-
detail in section 3. Section 4 describes the framework
architecture. An evaluation of the framework is pro-
vided in section 5 where the utility of the framework
is highlighted based on two challenging use cases.
Section 6 illustrates the framework performance and
section 7 presents concluding remarks.

2 RELATED WORK

Several efforts have been made to address the chal-
lenges of metering and cost estimation in cloud envi-
ronments. Liew at al. in (Liew and Su, 2012) used
a queuing model to predict the cloud computing re-
sources used by a targeted application and based on
that it estimates the deployment cost. The cost is es-
timated considering the applications’ resource costs
and services costs. The performance requirements
of the application is predicted using defined policies.
In contrast, CLOUD-METRIC relies on performance
monitoring data for an application running in private
resources.

A related solution to our work is proposed by Hui-
hong He et al. in (He et al., 2012) in which they pro-
pose an approach to estimate the cost of running an
application on AWS during the design phase. They
model the application execution service with an UML
activity diagram. The UML activity is extracted au-
tomatically with a proposed extraction algorithm. In
addition, they propose a cost model to estimate the
operational cost and the performance need of an al-
gorithm during the design phase in order to produce a
suitable deployment.

Recently Cloudorado (Clo, 2016) deployed a web
application that provides cost comparisons for cloud
servers across different cloud service providers in-

cluding Google Cloud, AWS, Microsoft Azure and
Cloudware. They provide an interface that allows
users to specify server capacity requirements and
the application provides matching servers on several
cloud providers together with cost estimates. While
helpful to users to compare cost for virtual private
servers, it does not provide dynamic pricing based on
users’ application resource utilization.

Microsoft, being one of the major cloud services
providers, have developed a tool that helps IT man-
agers to quickly assess the running cost of an existing
on-premise workload on the Azure cloud environment
(Mic, 2016). The tool performs a scan on the exist-
ing on-premise workload and recommends matching
instances on Azure. It also provides a monthly cost
of the matching instances on the Azure environment.
However, the tool is limited to Microsoft and VMware
technologies such as Hyper-V, SCVMM, vCenter and
ESXi. In our proposed framework, we perform an in-
stance matching routine similar to Azures’ matching
routine but we match instances provided by different
providers such at AWS and GCP.

None of above mentioned works address all the
challenges we have highlighted in section 1. The
framework presented in (Liew and Su, 2012) can ad-
dresses C-1, whereas the UML-based framework (He
et al., 2012) provides a limited solution to C-2 and C-
3. Cloudorado is a commercial project, offering ad-
vanced features and covers a range of IaaS providers.
It addresses most of the highlighted challenges but the
requirement of providing manual information seems
unrealistic for applications with dynamic workloads.
The Azure tool (Mic, 2016) addresses most of the
challenges except C-4, since the solution is designed
exclusively for the Azure platform, leaving the risk
for vendor lock-in and a sub-optimal cost for running
the applications.

3 CLOUD-METRIC

CLOUD-METRIC is a light-weight framework with
the capabilities of metering computational and stor-
age resources, cost estimation for clusters, both
micro-(node based) and macro-(application-based,
including all resources) level views of the execution
platform, as well as recommendations for optimized
resource type based on actual usage data.

CLOUD-METRIC currently provides cost-
estimates for Amazon Web Services (AWS) and
Google Cloud Platform (GCP) but it can easily be
extended to different cloud service providers. The
software and deployment guide is available via a
Github repository (CLO, 2016). In order to enhance

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

488

the flexibility and ease of framework deployment,
CLOUD-METRIC components are packaged using
Docker containers (Merkel, 2014). The thesis report
(Jallow, 2016) explains the complete technical
details.

The cost estimation model is one of the core com-
ponents of the framework. The model is subdivided
into static and dynamic estimations. A static estimate
is a one-to-one mapping: it provides the cost of ac-
quiring resources on IaaS that are as similar as possi-
ble to the allocated local execution environment, in-
cluding the number of CPUs, memory and disk size.
Dynamic estimation on the other hand performs this
matching based on the actual utilization level of the
private resources. In the latter case, the framework
uses utilization information together with the static
parameters to recommend a potentially lower execu-
tion cost. For example, while the static estimation
based on allocated resources might suggest an xLarge
flavor of an instance, the actual usage pattern might
show that the instance is under-utilized and the same
performance could be attained by using a Large in-
stance type, leading to a lower cost. Subsection 3.3
explains the process in detail. Here it is important
to note that CLOUD-METRIC cannot be viewed as a
comprehensive monitoring system as the focus is only
on the parameters that have direct influence on the ex-
ecution cost.

3.1 Cost Estimation

The cost estimation module is the principal com-
ponent of the framework. It estimates the cost of
running an application on AWS and GCP platform.
The cost estimation consist of two algorithms: The
matching algorithm which maps the static informa-
tion of nodes to the closest matching instances on
AWS EC2 and GCP CE, and the cost estimator al-
gorithm which implements the following formulas to
calculate a monthly cost estimate for AWS and GCP
respectively:

CostAWS−monthly =Costhourly ∗Tuptime+

Storagesize ∗Storageunitcost
CostGCP−monthly =Costhourly ∗Tuptime ∗Discountsu

+Storageunitcost +OSunitcost ∗Tuptime

Cost∗−monthly is instance monthly cost,Costhourly is
hourly unit cost, Tuptime is uptime in hours per month,
Storagesize is the disk size, and Storageunit cost is unit
cost of disk type per GB per month. In AWS, the cost
includes the operating system cost as well.

Discountsu is the Sustained Usage Discount (cur-
rently amounts to 0.70 for maximum monthly us-
age), OSunitcost is premium Operating System (OS)

unit cost. In GCP, OS cost is not included in the
machine type hourly unit cost. Thus it is separately
added in the GCP cost estimate.

For high availability and economic reasons almost
every IaaS provider offers services in different re-
gions. CLOUD-METRIC uses the default settings US
region for the GCP and US-East-1 region for AWS re-
sources. However the cost of running applications on
other regions are also available. The framework com-
putes only monthly estimates which conforms to the
On-Demand (Pay-as-you-go) subscriptions on AWS
and GCP. We used the Regular VM class1 for monthly
estimation on GCP CE instances and On-Demand in-
stances on AWS EC2.

Cost estimates on Individual Nodes and on
Clusters: CLOUD-METRIC estimates the cost of in-
dividual nodes in the cluster as well as the overall
cluster cost. The overall cluster cost estimation is the
sum of the individual instances’ cost together with
any offered discounts by the service providers. Our
estimation component calculate cost for all regions on
both AWS and GCP. The framework presents all this
information in a user-friendly web interface. Figure
1 illustrates the various estimated costs of running the
master node of the Hadoop cluster in different regions
on the AWS platform.

Figure 1: Master node on AWS regions.

AWS and GCP On-Demand Cost Estimates:
we have used the closest possible matching in-
stances from AWS and GCP. The comparison uses
c3.xlarge from AWS and N1-HighCPU-4 from GCP
over several percentage of usage in a month.

The results of the cost estimation showed a large
difference between the monthly cost. Google cloud
offers automatic discount on the hourly charges of vir-
tual machines for every additional minute of machine
usage on top of the initial 25% usage in a month. This
discount scheme is called Sustained Usage Discount
(SUD) on GCP. AWS, on the other hand, charges a

1GCP provides two virtual machines (VM classes: Reg-
ular and Preemptible). Regular VM runs until terminated
by user whereas Preemptible are short living VMs.

Cost-aware Application Development and Management using CLOUD-METRIC

489

fixed hourly cost for each virtual machine for every
hour of usage in a month. The framework incorpo-
rated these on-demand subscription discounts in its
cost computation algorithm. Users can in the WebUI
see how the hourly unit cost of instances changes over
a monthly period of utilization.

3.2 Resource Monitoring and Metering

The monitoring aspect of the framework provides the
ability to visualize the performance of each node in
the cluster and the overall cluster. The parameters we
monitor in each node are the ones that have direct ef-
fect on the cost. The monitoring data is used in the
implementation of the recommendations, discussed in
subsection 3.3.

Single Node Monitoring: For each node in the
test environment based on Hadoop cluster, there is a
resource monitoring process that sends resource us-
age data to the database in regular intervals.

Cluster Monitoring: The framework provides
the functionality to visualize the overall performance
of an entire cluster. In this case, the stored data of the
individual nodes (mentioned in Single Node monitor-
ing) are grouped and presented as an overall usage of
resources. The monitoring charts display the aggre-
gated percentage usage of the cluster.

The metering activity in the framework is carried
out by the resource miner component. This compo-
nent should run as a deamon on every single compute
node in the application execution environment. The
resource miner component acquires both static and
dynamic information. Static information includes the
hostname, operating system, number of CPUs, mem-
ory size, and disk size. For dynamic information,
the resource miner component uses a Python module
called psutil, a cross-platform library for retrieving
system information such a CPU, network and mem-
ory usage.

3.3 Instance Recommendation

Apart from one-to-one mapping where the aim is to
find the closest possible instances, the framework can
also recommend instances with reduced cost with-
out compromising on the overall application perfor-
mance.

The algorithm for recommendations first query for
average utilization of individual nodes and construct
a hypothetical instance from the data retrieved. This
constructed instance is then matched with similar in-
stances on AWS and GCP as outlined in subsection
3.2. The details of the recommendation shown in Al-
gorithm 1.

Algorithm 1: Recommendation algorithm.
Data: Resource Utilization Data, Pricing Data, Instances Types on

AWS and GCP, Cluster
Output: Recommended Instances, EstimatedMonthlyCost of

Recommended Instances
1 foreach Node in Cluster do
2 get CPUSize, MemorySize, DiskSize, OS,

AverageCPUUtilized and AverageMemoryUtlized
3 estimate CPUCount and Memory
4 ExpVal = log2 (CPUCount);
5 if ExpVal is not an integer then
6 OptimizedCPU = 2dExpVale ;
7 OptimizedMem = Memory

8 end
9 end

10 foreach OptimizedCPU, OptimizedMemory do
11 get MatchingInstances on AWS and GCP
12 end
13 foreach MatchingInstances do
14 Compute cost of instance in AWS and GCP
15 end

4 ARCHITECTURE

The architecture of the framework adopts a modular
approach which leads to flexible deployment options.
Each component of the system is independent and
communicate with other components using well de-
fined interfaces. The deployment model varies from a
single-node setup for a small-scale application meter-
ing to multi-node deployment where multiple appli-
cations can use the framework simultaneously.

The framework is designed to be portable and ef-
ficient. The architecture consist of two main compo-
nents: foreign and native components. The architec-
ture employs a push-based model for external node
registration. This process is carried out by the foreign
components resource miner and resource monitor as
shown in figure 2.

Figure 2: CLOUD-METRIC framework architecture.

Foreign Components are regarded as external be-
cause they are designed to execute on each node of
the application execution environment. The compo-
nents are lightweight python modules, carefully de-
signed not to add significant load on the execution en-
vironment. The resource miner performs the metering
activity and sends the static information of the appli-

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

490

cation setup to the framework. The resource monitor
is responsible for the resource monitoring activity. It
reports resource usage data in regular intervals, con-
figurable according to the requirements.

Native Components of the framework consists of
a database, the backend implementation, and the fron-
tend web-interface written with Flask (fla, 2016). All
native components are implemented using Python,
and external dependencies are limited to Flask, Mon-
goDB and Pymongo2. We chose to use a NoSQL so-
lution to ensure scalability for potentially very large
deployments. MongoDB is a lightweight document
store, does not require a strict database schema, works
well for horizontal scaling and is available as a pro-
duction quality software.

The database consist of three collections, the first
stores clusters’ information, the second stores the me-
tered data and the third stores the resource usage data.
By default the monitored data collection is capped
to store a maximum of 2 day of monitored data for
20 nodes in an environment. This can be modified
depending on the application’s requirements. The
database design supports multiple application devel-
opment environments. This allows experts to com-
pare different strategies with different versions of
their applications. Another key module in the sys-
tem is the IaaS provided price lists. The pricing data
of both GCP and AWS is extracted from (gcp, 2016)
and (aws, 2016) respectively. The framework uses a
JSON format for the pricing data list. GCP pricing list
is available for developers in JSON format. However,
AWS pricing list is not readily available. It is first ex-
tracted as CSV format and than converted to JSON. In
order to validate the framework’s estimates, we have
also developed a testing module called CM-estimator.
Results in section 5 will show the accuracy of our es-
timates in comparison with the GCP Price Calculator
(PC) and AWS Simple Monthly Calculator (SMC).

5 FRAMEWORK EVALUATION

5.1 Cost Estimation

The viability of CLOUD-METRIC framework de-
pends on the accuracy of the cost estimates. CM-
Estimator is the component responsible for cost es-
timation in the framework. It currently supports AWS
and GCP IaaS and exposes well-defined interfaces
to add support for other IaaS providers. Figure 3
presents the accuracy of the provided cost estimates

2Pymongo is a Python distribution containing tools for
working with MongoDB

by comparing the cost calculated by CM-Estimator
with the IaaS providers’ native calculators.

Figure 3: Cost comparison between CM-Estimator, AWS-
SMC and GCP-PC Calculators.

Here it is important to note that AWS and GCP
uses different pricing strategies. GCP has a Sustained
Usage Discount (SUD) both for the compute and stor-
age whereas AWS offers flat rates with fixed hourly
price. Cloud-METRIC incorporates all these details
to provide the closest possible estimations for a vari-
ety of resources.

5.2 Use cases

To evaluate the strengths of CLOUD-METRIC, we
have presented two use cases based on the horizon-
tally scalable execution environments. The use cases
cover both execution platform for an already estab-
lished application (use case-1) and the support of
CLOUD-METRIC framework in the process of ap-
plication development.

For both presented use-cases we have used
SNIC Science Cloud (SSC) (ssc, 2016), an Open-
Stack based community cloud solution for Swedish
academia. SSC is a national-scale cloud with the fo-
cus on providing IaaS.

Use case-1: A small Hadoop cluster. For this
use case we setup a small Hadoop cluster with default
settings. Once CLOUD-METRIC components (For-
eign Components) are deployed on the machines in
the cluster, it first performs a static one-to-one map-
ping of the resources to the public IaaS, i.e. it finds the
closest matching resource flavors available on AWS
and GCP. In this case, each node of the local Hadoop
cluster matched the c4.2xlarge instance on AWS
EC2 and N1-HighCPU-8 on GCP CE. Table1 (first
part) presents the cost estimation of the static one-to-
one mapping. This gives the user of the private IaaS
information on what the cost would be to move the
setup to public IaaS. The calculated cost for GCP in-
cludes the offered discounts.

Further we consider two execution scenarios to
highlight the framework’s strength to recommend cost
effective execution environments. In the first scenario
the resources are under-utilized whereas in the sec-
ond scenario, resources are occupied with a very high
workload. In the first scenario, after monitoring the

Cost-aware Application Development and Management using CLOUD-METRIC

491

local environment for a certain duration, based on the
actual usage the CLOUD-METRIC framework rec-
ommended c3.xlarge and N1-HighCPU-4 for each
node on AWS and GCP respectively. By matching re-
sources in the public IaaS based on the observed ac-
tual usage the framework helps reducing the cost over
a naive static mapping without compromising the per-
formance of the application. In this case, the recom-
mended resource flavors are almost half of the price
compare to the resource flavors recommended based
on the static initial mapping. Table 1 (second part)
presents the individual and the total execution cost of
running the Hadoop cluster. With this test we would
only like to compare the cost of an IaaS before and
after adding the resource utilization metrics. The cal-
culated price of 629.22$ for AWS resources is based
on flat pricing model whereas GCP calculated cost of
324.18$ is based on Sustained Usage Discount pric-
ing model. In case of GCP the prices fluctuate de-
pending on the resource usage but for AWS the prices
are fixed.

Table 1: Price variation for Hadoop cluster based on the
workload. Cost presents the monthly charges on AWS and
GCP in US Dollars. The reduced and increased costs are
based on both static and dynamic information.

AWS Cost $ GCP Cost $
One-to-One mapping (Static information)
C4.2XLARGE 314.61 N1-HighCPU-8 162.09
C4.2XLARGE 314.61 N1-HighCPU-8 162.09
Total Estimate 629.22 324.18
Reduced cost with under utilized resources
C3.XLARGE 161.62 N1-HIGHCPU-4 84.20
C3.XLARGE 161.62 N1-HIGHCPU-4 84.20
Total Estimate 323.24 168.41
Increased cost with full resource utilization
C4.2XLARGE 314.61 N1-HIGHCPU-8 162.09
C4.2XLARGE 314.61 N1-HIGHCPU-8 162.09
Total Estimate 629.22 324.18

In the second scenario we created an exten-
sive workload on the local execution environment.
Since the resources now become completely occu-
pied, CLOUD-METRIC updated the recommenda-
tions. Table 1 (third part) illustrates the increase in
the cost (compare to the second scenario) as the re-
sources are fully utilized. Here, we would expect the
framework to recommend the same deployment strat-
egy as for the static mapping (when it assumes 100%
resource utilization) since the aim is not to compro-
mise on the performance of the application. This be-
havior is confirmed in the table.

While use case-1 highlighted the utility of
CLOUD-METRIC in planning the migration of an al-
ready established application to public resources, the

second use case shows how the service can be used to
support development of interactive parallel comput-
ing applications.

Use case-2: Guiding interactive parallel com-
puting with IPython Parallel MOLNs (mol, 2016)
is an orchestration software that creates dynamically
scalable clusters configured to run parallel computa-
tional experiments with the systems biology simula-
tion software PyURDME (pyu, 2016). MOLNs can
configure and provision virtual clusters in OpenStack
IaaS or Amazon EC2.

To enable a better understanding of the perfor-
mance trade-offs in different parts of commonly ex-
ecuted parallel computations, to potentially suggest
improvement of the implementation and to highlight
cost-considerations we enabled the MOLNs orches-
tration tools with CLOUD-METRIC. We considered
two computationally interesting and different scenar-
ios for a MOLNs cluster comprising of 6 nodes and
a total of 94 vCPUs deployed in AWS: (a) We con-
ducted a Monte Carlo experiment where the PyUR-
DME application is invoked to generate simulation
output in the form of spatio-temporal data. A large
number of independent realizations are generated
(104) and written to a SSHFS file system on the vir-
tual cluster. In the next phase, (b) we read all this data
in parallel and compute a summary statistic. In both
cases, we use CLOUD-METRIC to study the aggre-
gated resource usage of the entire cluster and the cost
aspect of our computations.

Figure 4: Static cost for MOLNs cluster in Amazon EC2.

Fig. 4 shows the projected cost of the cluster for
one month of sustained allocation in AWS. As can be
seen, the cost is $3725. For a typical research group
this is substantial and it highlights the importance of
adopting a dynamic resource usage model when mov-
ing scientific applications to the cloud. Since in this
case the entire computation completed in about 2 min-
utes, by automating the provisioning and tear down
of the cluster MOLNs succeeds in helping scientists
leverages the pay-as-you go model of public IaaS.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

492

Figure 5: Aggregated CPU and memory usage over the en-
tire cluster during a computational experiment.

However, CLOUD-METRIC lets us draw some
more conclusions about our setup. Fig 5 shows the
total aggregated CPU and RAM usage over the en-
tire cluster during the computational phase (first peak)
and the data processing phase (second, smaller peak).
As can be seen, although MOLNs manages to make
use of a large fraction of the cluster resources for
phase (a) it is not optimal and the CPU utilization
fluctuates quite heavily, suggesting idle phases. The
reason for this could be attributed to e.g. bottle-
necks in writing result to disk or delays in the start
of new task by the broker. More detailed applica-
tion level investigations would be needed to determine
the root cause, but CLOUD-METRIC would imme-
diately provide a view on whether any code changes
would improve the utilization level. We also see that
in the second phase (b) we do not come close to lever-
aging the total compute capacity of the cluster. This
suggests that we should consider either refining the
code to use fewer workers during this phase (allow-
ing them to do other work) or seek to improve the
data read performance.

Figure 6: Resource usage for one of the six worker nodes in
the MOLNs cluster.

Finally, zooming in one the detailed usage of an
individual worker node in Fig. 6 reveals some inter-
esting information. Here we executed a second pass
of phase (a) for an even larger number of simulations
(5× 104). This increases the chunk size (amount of

work given to each worker). As can be seen, it does
not improve the fluctuations in CPU utilization even
on a single node, so this makes it more plausible that
it is caused by delays in staging results to storage.

6 PERFORMANCE EVALUATION

In this section the focus is on the resource usage and
the overhead imposed on the analyzed environment
by CLOUD-METRIC itself. For the results presented
in this section, we have used application settings de-
scribed in use case-1 in subsection 5.2.

Foreign Components: resource miner and re-
sources monitor are the components running on each
node in the application’s execution environment. The
frequency of the reports sent by the resources mon-
itor can be tuned depending on the application’s re-
quirements but to illustrate a realistic scenario the pre-
sented results are based on regular reporting with 60
seconds interval. The cumulative overheads created

Figure 7: Resources miner and monitor usage on Hadoop
cluster master node.

by these components are presented in figure 7. The
results shows the percentage usage of less than 0.5%
over a period of 8 hours. The memory usage was con-
sistently under 2MB. The usage pattern affirms that
these components are lightweight and the required
tasks can be achieved with minimal resource usage.

Native Components: The native framework con-
sist of a database component, web front-end, cost esti-
mation and recommendation components. The prefer-
able deployment model is to run the native compo-
nents of the CLOD-METRIC on a dedicated node. In
our use cases, it is deployed on a separate VM in the
same OpenStack tenant as the analyzed application
environment. We have evaluated the CPU, memory,
network and disk utilization on the node hosting the
framework. For database we have used MongoDB
with standard settings. MongoDB has already been
well tested for different deployments models (Nyati
et al., 2013),(Parker et al., 2013).

Figures 8 and 9 present CPU and network con-
sumption of the framework for a fixed window of 8

Cost-aware Application Development and Management using CLOUD-METRIC

493

Figure 8: CPU utilization.

Figure 9: Network consumption while monitoring Hadoop
cluster.

hours. Throughout the experiment the CPU utiliza-
tion was less than 2% and the active memory utilized
by the Python processes was under 300 KB/s. For
these measurements we have monitored the Hadoop
cluster discussed in use case-1. The low usage of
resources show that the framework is stable and ex-
pected to manage and meter multiple execution envi-
ronments simultaneously.

7 CONCLUSION

With CLOUD-METRIC we have presented a frame-
work that eases the transition of applications from a
dedicated or private virtual execution environment to
public cloud infrastructures. CLOUD-METRIC is a
lightweight and easy-to-use framework that can man-
age multiple execution environments simultaneously.
We have also demonstrated how framework can sup-
port the development phase of complex applications.

ACKNOWLEDGMENT

This work was supported by the Swedish strategic re-
search programme eSSENCE(ess, 2016) and Göran
Gustafsson Foundation(ggf, 2016). The development
and testing of CLOUD-METRIC were performed on
resources provided by the Swedish National Infras-
tructure for Computing (SNIC) (sni, 2016) at Upp-
sala Multidisciplinary Center for Advanced Compu-
tational Science (UPPMAX) (upp, 2016).

REFERENCES

(2016). Aws instance type. https://aws.amazon.com/
ec2/instance-types/.

(2016). Aws price calculator. http://a0.awsstatic.
com/pricing/1/ec2/.

(2016). Cloudorado. https://www.cloudorado.com/.
(2016). essence: The e-science collaboration. http://

essenceofescience.se/.
(2016). Flask. http://flask.pocoo.org/.
(2016). Github repository for cloud-metric. https://

github.com/ajallow07/Cloud-Metric.
(2016). Google price calculator. https://cloud.google.

com/products/calculator/.
(2016). Goran gustafssons stiftelser. http://

gustafssonsstiftelser.se/.
(2016). Microsoft azure cost calculator. https://azure.

microsoft.com/en-us/pricing/calculator/.
(2016). Molns. https://github.com/MOLNs/molns.
(2016). pyurdme. www.pyurdme.org.
(2016). Snic science cloud. https://cloud.snic.se.
(2016). Swedish national infrastructure for computing

(snic). http://www.snic.vr.se/.
(2016). Uppsala multidisciplinary center for advanced com-

putational science. http://www.uppmax.uu.se/.
He, H., Ma, Z., Li, X., Chen, H., and Shao, W. (2012). An

approach to estimating cost of running cloud applica-
tions based on aws. In 2012 19th Asia-Pacific Soft-
ware Engineering Conference, volume 1, pages 571–
576.

Jallow, A. (2016). Cloud-metric: A cost effective applica-
tion development framework for cloud infrastructures.
Master’s thesis, Uppsala University, Department of
Information Technology.

Liew, S. H. and Su, Y. Y. (2012). Cloudguide: Helping users
estimate cloud deployment cost and performance for
legacy web applications. In 4th IEEE International
Conference on Cloud Computing Technology and Sci-
ence Proceedings, pages 90–98.

Merkel, D. (2014). Docker: Lightweight linux containers
for consistent development and deployment. Linux J.,
2014(239).

Nyati, S. S., Pawar, S., and Ingle, R. (2013). Performance
evaluation of unstructured nosql data over distributed
framework. In Advances in Computing, Communica-
tions and Informatics (ICACCI), 2013 International
Conference on, pages 1623–1627.

Parker, Z., Poe, S., and Vrbsky, S. V. (2013). Comparing
nosql mongodb to an sql db. In Proceedings of the
51st ACM Southeast Conference, ACMSE ’13, pages
5:1–5:6, New York, NY, USA. ACM.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

494

