
ROP Defense in the Cloud through LIve Text Page-level Re-ordering
The LITPR System

Angelo Sapello1, C. Jason Chiang1, Jesse Elwell1, Abhrajit Ghosh1, Ayumu Kubota2

and Takashi Matsunaka2

1Intelligent IA Systems Research, Vencore Labs, Inc., Basking Ridge, NJ, U.S.A.
2Network Security Laboratory, KDDI R&D Laboratories, Saitama, Japan

Keywords: Return Oriented Programming, ROP Mitigation, Program Randomization.

Abstract: As cloud computing environments move towards securing against simplistic threats, adversaries are moving
towards more sophisticated attacks such as ROP (Return Oriented Programming). In this paper we propose
the LIve Text Page-level Re-ordering (LITPR) system for prevention of ROP style attacks and in particular
the largely unaddressed Blind ROP attacks on applications running on cloud servers. ROP and BROP, re-
spectively, bypass protections such as DEP (Data Execution Prevention) and ASLR (Address Space Layout
Randomization) that are offered by the Linux operating system and can be used to perform arbitrary malicious
actions against it. LITPR periodically randomizes the in-memory locations of application and kernel code, at
run time, to ensure that both ROP and BROP style attacks are unable to succeed. This is a dramatic change
relative to ASLR which is a load time randomization technique.

1 INTRODUCTION

Cloud computing environments currently implement
several standard security protections such as network
firewalls to protect against simplistic threats. With
the incorporation of such protection and the increas-
ing number of IT operations moving to the cloud, ad-
versaries are exploring more sophisticated means to
breach these environments. Typically such breaches
occur via privilege escalation attacks. While privilege
escalation is a concern on any system, it is even more
so on cloud systems where an attacker gaining ele-
vated privileges in one domain could potentially dam-
age the hypervisor and other domains running on the
system. Return-Oriented Programming(ROP) attacks
are one way that an attacker can bypass defenses of a
running system to gain elevated privileges. We pro-
pose a two tiered system called LIve Text Page-level
Re-ordering (LITPR) to defend domain applications
from within the domain’s kernel and also defend the
domain’s kernel from within the hypervisor (see fig-
ure 1).

At a high level, the LIve Text Page-level Re-
ordering (LITPR) system randomizes the location of
the code segment (i) periodically (not just at load
time) and (ii) at the fine grained page-level rather than
at segment-level while the cloud based application is

executing (see figure 2). ROP attacks rely on the iden-
tification of specific code blocks at specific memory
locations. These code blocks are used to perform at-
tack specific actions. LITPR relocates code blocks in
a randomized fashion. Therefore, an attacker is un-
likely to discover even a single address and even if
they do, they learn nothing about the layout of the re-
mainder of the application. They are restricted to a
single code page. To ensure that the randomized code
continues to run the LITPR system must ensure that
all pointers from the code to other parts of the code,
shared libraries and data are updated during the ran-
domization process.

1.1 Return Oriented
Programming(ROP) Attacks and
Related Work

Return-Oriented Programming (ROP) was first dis-
cussed by Hovav Shacham in his seminal paper
(Schacham, 2007) as a technique that can cause Intel
x86 CPUs to interpret unmodified binary code in an
unintended manner and expanded upon later in (Roe-
mer et al., 2012). ROP controls the execution se-
quence of binary code through manipulating the con-
tent of the call stack in the memory. It starts with

Sapello, A., Chiang, C., Elwell, J., Ghosh, A., Kubota, A. and Matsunaka, T.
ROP Defense in the Cloud through LIve Text Page-level Re-ordering - The LITPR System.
DOI: 10.5220/0006305402190228
In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 191-200
ISBN: 978-989-758-243-1
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

191



Figure 1: High level view of LITPR operating in a cloud machine.

Figure 2: Visual representation of page-randomized program execution. The arrows on the left side of the figure show the
normal execution path of a simple executable. On the right side of the figure is a randomized version of the same executable
with arrows on the right showing the new exection path.

identifying code blocks (a.k.a. gadgets) ending in re-
turn instructions, and then uses the call stack to chain

together a sequence of these gadgets to execute unin-
tended logic. Each gadget starts with a byte with a

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

192



value (in the range of 0x00 - 0xff) that can be inter-
preted by the CPU as a legitimate opcode and ends
with the value of the opcode of a return instruction
(e.g., 0xc3 on the Intel platforms), of a call instruc-
tion (0xff on the Intel platforms), or of any instruc-
tion with the semantics of return in their execution
context (Onarlioglu et al., 2010). These gadgets are
like short subroutines, always ending in a return, so
that when CPU hits the return instruction of a gadget
it fetches the return address on the stack to execute the
next gadget. If the stack is purposely filled with data
of malicious intent as a result of system vulnerability
such as buffer overflow being exploited, a sequence
of gadgets can be chained up to execute unintended
logic.

To thwart ROP attacks, it is critical to prevent at-
tackers from exploiting gadgets. Previous work has
focused on gadget removal (Onarlioglu et al., 2010)
and analysis of program execution sequences (Wang
and Jiang, 2010)(Abadi et al., 2009). Gadget removal
has been shown to be an inadequate protection since
gadget removal is not always possible (Checkoway
et al., 2010). Program execution sequence analysis
can be prone to inaccuracies as well as system effi-
ciency issues. The high-level idea of the LITPR sys-
tem is that by changing the memory locations of pages
containing code (resulting in changed gadget loca-
tions) frequently enough, an attacker could be pre-
vented from identifying the memory locations of all
the gadgets needed for composing an attack. With
this approach, there is a high likelihood of ROP at-
tack failure since memory locations of at least some
of the discovered gadgets would be obsolete by the
time attacks are launched.

ROP attacks require some amount of time invest-
ment from an attacker attempting to exploit an ar-
bitrary application. Address space layout random-
ization (ASLR) (Team, 2016) and gadget removal
(Onarlioglu et al., 2010) represent means to protect
against such attacks but recent research (Bittau et al.,
2014) on BROP (Blind ROP) has shown that the for-
mer is not sufficient protection while the latter is not
always feasible. Even more recent work (Gras et al.,
2017) shows that ASLR side-channel attacks can by-
pass ASLR without detection (crashes, exceptions,
etc.). However, searching for Page Table Entries
(PTEs) as suggested still suffers two flaws against
the LITPR system, namely the attack as demonstrated
took approximately 25 seconds to obtain a single ad-
dress and the attack assumes that knowledge of a sin-
gle data buffer location is sufficient to defeat the ad-
dress randomization defense. Our system deals with
both issues by periodically re-randomizing the code
and ensuring that knowledge of a data location does

not provide adequate knowledge about specific code
locations. Other attacks against ASLR include using
branch predictors (Evtyushkin et al., 2016), memory
de-duplication (Bosman et al., 2016), and other tim-
ing based attacks (Hund et al., 2013). However, these
too assume knowledge of a single address at a mo-
ment in time is sufficient to bypass ASLR and while
this is true for ASLR, it is not sufficient to defeat the
proposed LITPR system.

Other systems have been proposed to perform
fine-grained address randomization even including re-
randomization such as (Giuffrida et al., 2012). How-
ever, these systems rely on the availability of source
code, heavy integration into a specific compiler and
have significant overhead associated with relinking
code at runtime. Our proposed LITPR system can
be run against binary code for which the source is
unavailable, does not rely on the compiler used to
perform the original compilation of the source and
should perform significantly faster at runtime (includ-
ing the ability to partially reorder code to minimize
impact on the running system).

1.2 ELF and Position Independent
Execution (PIE) Preliminaries

The LITPR system exploits and extends an existing
concept in the operating system known as dynamic
linking. Dynamically linked executables use a feature
called Position Independent Execution (PIE) provided
by the compiler to generate code that is not required
to be loaded at a fixed memory address (either physi-
cal or virtual). On the Linux operating system, these
executables are stored in the Executable and Linkable
Format (ELF). Knowing the details of the information
stored in this format allows us to make use of the dy-
namic linking information to change the ordering of
the code pages of the executable.

Dynamic linking at a high level works as fol-
lows. At the time a compiler generates object code,
it does not know where the subroutines will be loaded
into the memory. As a result, the resulting object
code generated by the compiler contains a number of
symbols that need to be replaced by the starting ad-
dresses of the subroutines after the object code has
been loaded into memory. This process is called dy-
namic linking. In fact, what we propose to do, in a
sense, can be regarded as dynamic re-linking. This is
because code pages in the physical memory will be
pointed to by different virtual pages due to page table
updates. Whenever a new virtual page replaces the
current virtual page as the index for a physical page,
it is necessary to update all the subroutine references
pointing to the current virtual page with the new vir-

ROP Defense in the Cloud through LIve Text Page-level Re-ordering - The LITPR System

193



tual page. Symbol tables can be used to quickly iden-
tify the references affected by the change. The sym-
bol tables and relocation tables are stored in the ELF
binary.

2 LITPR DESIGN

Figure 3 shows the overall system design for LITPR
application randomization. The system can be split
into two parts, static analysis preformed offline to
prepare an application binary and live re-ordering in
which an application is loaded, executed and periodi-
cally randomized.

This system implementation discussion deals with
the application level randomization, but similar tech-
niques can be applied to randomize virtual machine
kernels. In this case, static analysis is essentially the
same except it acts on the kernel image and random-
ization is carried out by the hypervisor. The two tech-
niques (application and kernel randomization) can be
combined to create an even more secure system.

2.1 Static Analysis

The static analysis stage of the LITPR system per-
forms the offline task of preparing application bina-
ries for live randomization (see figure 4). While some
of the information needed for randomization is pro-
vided by the compiler in the ELF binary in the form
of symbol and relocation tables, additional informa-
tion must be discovered. The steps involved in static
analysis are:

• Binary Parsing: the statically linked binary is
loaded and parsed, collecting up text and data sec-
tions and interpreting special sections including
relocations, symbols, exception handler frames
and string tables.

• Disassembly: the libcapstone disassembler is
used to interpret the machine code in the text sec-
tions of the binary. Since this process can some-
times be error prone (non-code in code sections,
padding with zeros instead of nops), the static an-
alyzer uses simple information to break the disas-
sembly at function boundaries so each function in
the program is disassembled independently.

• Symbol Relocation Mapping: special reloca-
tions are added to the relocation table to update
the binaries symbol table. This is necessary to en-
sure the resulting binary provides valid informa-
tion to a debugger such as gdb.

• Exception Frame Relocation Mapping: special
relocations are added to the relocation table to up-

date the exception handle frame (.eh frame) sec-
tion of the resulting binary. Again this ensures
that the resulting binary is properly loadable by
a debugger. In particular, the exception handler
frame provides the debugger the information it
needs to parse the stack and provide a back trace.

• Relocation Translation: the relocations stored in
the binary are interpreted and translated into the
format required by the randomizer. This involves
finding the source and target of the relocation and
linking them to the relocation so that any changes
in their addresses can be reflected in the output
relocation.

• Code Relocation Discovery: the disassembled
text sections are searched for relocations that may
not have been included in the relocation table.
These typically include short jumps and hard-
coded addresses in the startup code. The linker as-
sumes that even if the code is loaded at a different
virtual address the relative relationship between
jumps and their targets will not change and there-
fore providing relocation information is unneces-
sary. Since the static analyzer and randomizer do
change these relative relationships, we must know
about these relocations.

• Data Relocation Discovery: some binaries con-
tain hard-coded addresses that are not associated
with any relocation information. This is some-
what rare and this stage is therefore optional.

• Code Rewriting: the text sections are translated
in multiple passes, each time finding short jumps
whose targets are now too far away due to a pre-
vious pass (short jump targets can be at most 127
bytes away) or cross a page boundary (since ran-
domization will move these targets out of range).
Also during each pass no-operation (nop) instruc-
tions are inserted at the end of each page as neces-
sary to leave room for jumps to the next page and
cleanup nops that have been pushed onto the top
of the following page. After the code stabilizes
(which is guaranteed to happen in a finite number
of passes), a final pass replaces the nops at the end
of each page with a long jump to the next page and
relocations for these jumps are added to the relo-
cation table.

• Relocation Site Updating: since the code has
moved around relocations must by reapplied to
the code and data to ensure that they point to the
correct targets in the code. During this stage relo-
cations that were only needed for code rewriting
but not for randomization are deleted to minimize
the time required to randomize the binary later.
For example, short jumps within a page will re-

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

194



Figure 3: Block diagram of LITPR system.

Figure 4: Transform diagram of static analysis.

ROP Defense in the Cloud through LIve Text Page-level Re-ordering - The LITPR System

195



main valid even if the page is relocated, so these
relocations can be deleted.

• Binary Writing: the results of the previous stages
are re-linked into a new binary. The relocation
table is written to the section .pjtdata in a custom
format so as not to be confused with standard ELF
relocations and also to simplify the randomization
process.

2.2 Live Re-ordering

The kernel module will obtain and store the relocation
information from the binary at application load time
and start a timer. (Alternatively, this timer could be
dynamically driven by application behavior such as
accepting a new connection.) Each time the timer fires
the module will:

1. Pause the application.

2. Re-order the pages of the text segment (or a subset
of the pages of the text segment): This randomiza-
tion is done on the page table entries mapping vir-
tual to physical addresses. Updating these map-
pings is significantly faster than copying/moving
the pages in physical memory.

3. Update the relocation sites in memory: Utilizing
the relocation data generated during static analy-
sis, code references are updated to reflect the new
page mapping.

4. Scan and update the stack: Return addresses and
temporary variables referencing code are held in
the stack and not part of the relocation data. These
pointers need to be discovered and updated to pre-
vent the program from crashing.

5. Update kernel structures referencing the applica-
tions code: The kernel keeps pointer to applica-
tion code for things such as exception and signal
handling and system callbacks for asynchronous
I/O. These pointers need to be updated as well.

6. Resume the application.

Of course, depending on system requirements the
time to complete this task could be significantly short-
ened by only doing a partial re-ordering on only a sub-
set of the text pages. Doing this partial re-ordering
frequently enough should provide the same protec-
tion as a full re-ordering, although further study of
this claim would be needed.

During implementation we are likely to find other
code references that need to be captured and updated
during randomization. As a catch all, randomization
can move the code to an entirely new location in vir-
tual address space. Attempts to execute code at the
old addresses will be caught by exception handlers

and analyzed to determine if these attempts were le-
gitimate or part of an attack.

2.3 Experiments

The current implementation of the LITPR system
takes a statically linked binary with relocations and
jump tables disabled (–static and –emit-relocs flags
passed to the linker and -fno-jump-tables flag passed
to the compiler), analyzes it and outputs a page-level
randomized version of the program. By doing this
any gadgets an attacker might find with static anal-
ysis of the same binary will be located not only in
different locations (commonly thwarted by Address
Space Layout Randomization (ASLR)) but also with
different offsets relative to each other making it sig-
nificantly harder to launch an attack. Ultimately, it
is envisioned that this randomization can be done re-
peatedly at run-time to thwart blind ROP attacks as
well.

2.3.1 User Space Experiment Setup

The testing environment was provided by an AMD
FX(tm)-8350 Eight-Core Processor @4.0GHz, with
16MB RAM running Ubuntu Linux 12.04.5 LTS.

We were interested in the following metrics:
• Randomization time: In the final product, ran-

domization will occur in real time on the running
system. In the initial solution this will require
pausing the system. We have taken three sub-
measurements:

– Page list randomization: the time required to
select random numbers and generate the per-
muted list of pages. This is separated from the
rest as it may improve with a better shuffle al-
gorithm.

– Virtual memory remapping: the time required
to issue the full set of requests to remap the
code pages of the target program to achieve the
new layout. Currently this is done with three
mremap syscalls per page swap (the extra call
is due to the use of a temporary virtual address
since the physical address is unknown in user-
space). This may improve by offloading the
entire task to the kernel rather than issuing it
piecemeal. This would avoid repeated context
switches and reduce the number of remap oper-
ations by 33%.

– Relocation rewriting: the time required to iter-
ate through the relocation table, compute and
rewrite the relocation in the reordered code.
This is straight forward and not likely to im-
prove.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

196



• Test program task completion time: This is a com-
parison of the time required for the unmodified
test program to complete a deterministic task on a
fixed input with the average time required for ran-
domized variants of the test program to complete
the same task with the same input. This will give
the performance penalty for randomizing the test
programs.

hash page static: This was the initial test pro-
gram due to its simple yet predictable behavior. This
program computes a SHA-1 hash of the standard in-
put using an assembly optimized SHA-1 hash im-
plementation. It is an entirely CPU-bound pro-
cess which provides a worst-case performance indi-
cator. The inputs used for testing the performance
of hash page static were random chunks of memory
generated by /dev/random, saved to disk and then
reloaded and fed to hash page static and each of its
variants with the “dd” application. The input sizes
were powers of 2 starting at 1MB and going up to
64MB. 11 variants were generated (the initial recoded
but not reordered output of the static analyzer and 10
randomized versions). Each variant was tested with
100 different random memory chunks of each input
size.

ffmpeg: This test program was selected for two
purposes. First, its complexity provided a good stress
test of the static analyzer to help find bugs in user-
space before attempting to analyze a Linux kernel.
Secondly, it is again a very CPU intensive applica-
tion with highly optimized code intended for high per-
formance while at the same time behaving very pre-
dictably. The input to ffmpeg and its variants was an
M2TS (MPEG-2 Transport Stream) formatted video
file with a H.264 encoded video stream and AAC en-
coded audio stream with a combined encoding rate of
11Mbps VBR (variable bitrate). ffmpeg was tasked
with converting the first 60 seconds of this input to
a mp4 formatted file with AC3 encoded audio and
MPEG-2 encoded video at the default encoding rate.

2.3.2 Kernel Experiment Setup

Kernel testing was performed on a Dell R620 server
with two Intel Xeon E5-2600 6 core processors run-
ning CentOS 5 XEN virtual machines with kernel
3.13.9. Each virtual machine was assigned two cores
to test symmetric multiprocessing (SMP) behavior.
Kernel experimentation was split into two experi-
ments. In the first experiment a ROP attack was
launched against a kernel with a fabricated vulner-
ability. This attack was then performed again on a
randomized version of the same kernel to determine
whether this is an adequate defense against kernel

ROP attacks. The second experiment was a series
of performance evaluations to determine the perfor-
mance impact of randomized execution on the kernel.

To test our kernel defense against ROP attacks we
first constructed a ROP attack that works in kernel
space. The goal of the attack was to clear the non-
executable (NX) bit of the supported pte mask vari-
able in the kernel. Doing so disables non-executable
page protection on all subsequently created virtual
memory pages. This allows an attacker to launch stan-
dard buffer overflow attacks (non-ROP attacks) on the
system by making all newly created data pages exe-
cutable.

The goal of our experiment was to determine if
we could prevent a ROP attack against the kernel
assuming some buffer overflow vulnerability exists.
To this end we created a new system call with such
a buffer overflow vulnerability. We then ran the
ROPgadget(Salwan, 2016) script on the newly cre-
ated vmlinux kernel binary image. This tool locates
and reports the locations of ROP gadgets. The out-
put of this script is then searched for gadgets that
could be used to build an attack that is equivalent
to “ supported pte mask &= 0x7fffffffffffffff”. From
these gadgets a payload is constructed to attack the
kernel.

The experiment then uses two user programs to
launch the attack. The first program which we
will call shellcode is a toy program that contains a
buffer overflow vulnerability and launches a tradi-
tional (non-ROP) buffer overflow attack against itself
to try to obtain a shell. The second program which we
will call kernel attack calls the vulnerable system call
in the kernel and delivers the previously constructed
attack payload.

Performance was evaluated by running the Trinity
v1.6 system fuzzer (Jones, 2016) 150 times set to run
1000 random non-blocking system calls. Measure-
ments were taken using three separate timing meth-
ods:

• Bash time function: measures the total wall clock
time the process executed.

• rdtsc: measures the CPU ticks elapsed for each
system call (from the user application’s perspec-
tive)

• strace: measures the elapsed time of each system
call from the kernel’s perspective (using kernel
profiling)

ROP Defense in the Cloud through LIve Text Page-level Re-ordering - The LITPR System

197



Table 1: file statistics of the hash page static program before and after static analysis.

Binary size
(bytes)

Text segment
size (bytes)

“.text” section
size (bytes)

“.data” section
size (bytes)

Number of
relocations

Input 1320691 828233 612616 39007 N/A

Output 2089531 828233 615374 39007 24026

Table 2: file statistics of the ffmpeg program before and after static analysis.

Binary size
(bytes)

Text segment
size (bytes)

“.text” section
size (bytes)

“.data” section
size (bytes)

Number of
relocations

Input 25408763 18296744 13131784 862660 N/A

Output 35185027 18296744 13324265 862660 305508

Table 3: breakdown of times involved in randomization of
hash page static.

Mean (µs) Standard
deviation (µs)

Page list
randomization 7.3205 0.562

Virtual
memory

remapping
968.2 15.6

Relocation
rewriting 500.7 7.67

Table 4: breakdown of times involved in randomization of
ffmpeg.

Mean (µs) Standard
deviation (µs)

Page list
randomization 57.452 1.42

Virtual
memory

remapping
7599.1 68.3

Relocation
rewriting 4047.2 32.0

2.4 Results

2.4.1 User Space

Tables 1 and 2 show the sizes of hash page static
and ffmpeg before and after static analysis. Ran-
domization performs reasonably well taking a total of
11.7ms for ffmpeg as can be seen in table 4 and 1.5ms
for hash page static (table 3). The final application
performance results were a little surprising. In table
5 we see that for hash page static it turned out that

in many cases the randomized version performs bet-
ter than the original program. We believe this is likely
due to more efficient L1 instruction cache utilization.
This did not happen with ffmpeg (table 6), and that
makes sense since the code base is much larger and
less likely to benefit from the randomization. What
we see instead is the expected result, that by moving
code around we de-optimize some compiler optimiza-
tions and this along with the added page jumps causes
CPU intensive applications to incur an additional 2-
3% performance drop. In particular the static analyzer
replaces a large number of 8-bit jumps with 32-bit
jumps to allow jump across page boundaries. Also,
moving the code causes jump targets that had previ-
ously been aligned to the 64-byte cache boundary to
no longer be so aligned. In the future we could im-
prove this by realigning jump targets as part of static
analysis. In any case we believe these performance
results are reasonable.

2.4.2 Kernel

To test whether our system provides adequate pro-
tection against kernel ROP attacks, prior to launch-
ing kernel attack we attempt to run shellcode. On
both the undefended and defended kernel, the shell-
code program causes a SIGSEG and fails. On the
undefended kernel, launching kernel attack causes a
SIGBUS appearing to fail. However, subsequently
launching shellcode succeeds demonstrating that the
kernel attack was in fact successful. On the defended
kernel, launching kernel attack causes a SIGSEG.
In this case however, subsequent attempts to launch
shellcode continue to cause a SIGSEG indicating that
the kernel attack has been thwarted.

Multiple methods of measurement were used for
measuring the kernel’s performance since the impact
of our system was quite small and difficult to measure.
Even so, the raw numbers made little sense. Instead

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

198



Table 5: runtime performance of hash page static.

Input size 1MB 2MB 4MB 8MB 16MB 32MB 64MB

Unmodified 0.185700 ±
0.017044

0.374100 ±
0.027932

0.753900 ±
0.033163

1.496900 ±
0.053023

3.014800 ±
0.111476

6.004500 ±
0.187154

11.986300 ±
0.309292

Analyzed 0.187500 0.381400 0.769200 1.513300 3.049800 6.095600 12.160400

Randomized 0.182109 ±
0.019783

0.365818 ±
0.028135

0.773082 ±
0.044338

1.461582 ±
0.073405

2.929191 ±
0.129238

5.845982 ±
0.237880

11.689209 ±
0.491306

Performance drop -1.93% -2.21% -2.76% -2.35% -2.84% -2.64% -2.48%

Table 6: runtime performance of ffmpeg.

Mean
(seconds)

Standard
deviation

Unmodified 123.958000 13.995810
Analyzed 127.042000 13.591639

Randomized 127.082000 14.098960

Performance drop 2.52%
Not

computed

we chose to bin the performance differences into his-
tograms for each measurement method. Figures 5, 6
and 7 show the percent performance degradation as
measured by bash time, strace and rdtsc respectively.

Figure 5: Histogram of kernel percent performance degra-
dation as measured by bash time.

Figure 6: Histogram of kernel percent performance degra-
dation as measured by strace.

Each measurement method had its own issues of

Figure 7: Histogram of kernel percent performance degra-
dation as measured by rdtsc.

either precision (spread) or outliers. While precision
is a natural issue related to the outputs of bash time
and strace, the outliers, particularly those present in
rdtsc, were a little more concerning. One reason for
the outliers is that while we modified the trinity pro-
gram to be as deterministic as possible, at times it
could still execute the same system call with the same
parameters and have the call be valid in one run, but
not valid on the next (such as accessing a particular
node in the procfs tree and having the the process exit
between runs). Another possibility is that the process
or VM was migrated to a different CPU and there-
fore the tick start and end times were not from the
same source. In any case the three figures clearly
show an approximate 2% average performance degra-
dation which was consistent with the previous user-
space ffmpeg results.

3 FUTURE WORK

The most important piece of future work to be done
is implementing the kernel and hypervisor modules
to perform the application and kernel randomization
at runtime. The results described in this paper give
us confidence that this randomization can be done
quickly and efficiently without damaging the running
system.

While it was originally thought that such attacks
only apply to x86 or variable length encoded ISAs

ROP Defense in the Cloud through LIve Text Page-level Re-ordering - The LITPR System

199



(Instruction Set Architectures), a generalization to
fixed-width ISAs and RISC architectures is possible
(Buchanan et al., 2008). As such, we would like to
extend our work to non-x86 ISAs. This should be
possible with little change to the overall design of the
LITPR system.

REFERENCES

Abadi, M., Budiu, M., Erlingsson, U., and Ligatti, J. (2009).
Control-flow integrity - principles, implementations,
and applications. In ACM Transactions on Informa-
tion and System Security, volume 13.

Bittau, A., Belay, A., Mashtizadeh, A., Mazieres, D., and
Boneh, D. (2014). Hacking blind. In Proceedings of
the IEEE S&P conference, Oakland, CA, USA.

Bosman, E., Razavi, K., Bos, H., and Giuffrida, C. (2016).
Dedup est machina: Memory deduplication as an ad-
vanced exploitation vector. In Proceedings of IEEE
Symposium on Security and Privacy, San Jose, CA,
USA.

Buchanan, E., Roemer, R., Schacham, H., and Savage, S.
(2008). When good instructions go bad: generalizing
return-oriented programming to risc. In Proceedings
of the 15th ACM conference on Computer and commu-
nications security, pages 27–38, New York, NY, USA.

Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.-R.,
Schacham, H., and Winandy, M. (2010). Return-
oriented programming without returns. In ACM Con-
ference on Computer and Communication Security
2010, pages 559 – 572.

Evtyushkin, D., Ponomarev, D., and Abu-Ghazaleh, N.
(2016). Jump over aslr: Attacking branch predictors
to bypass aslr. In Proceedings of IEEE Symposium on
Microarchitecture, Taipei, Taiwan.

Giuffrida, C., Kuijsten, A., and Tanenbaum, A. S. (2012).
Enhanced operating system security through efficient
and fine-grained address space randomization. In Pro-
ceedings of USENIX Security Symposium, Bellevue,
WA, USA.

Gras, B., Razavi, K., Bosman, E., Bos, H., and Giuffrida, C.
(2017). Aslr on the line: Practical cache attacks on the
mmu. In Proceedings of the Network and Distributed
System Security Symposium, San Diego, CA, USA.

Hund, R., Willems, C., and Holz, T. (2013). Practical tim-
ing side channel attacks against kernel space aslr. In
Proceedings of IEEE Symposium on Security and Pri-
vacy, San Francisco, CA, USA.

Jones, D. (2016 (accessed Nov. 18, 2016)). Trin-
ity System Call Fuzzer. https://github.com/
kernelslacker/trinity.

Onarlioglu, K., Bilge, L., Lanzi, A., Balzarotti, D., and
Kirda, E. (2010). G-free: defeating return-oriented
programming through gadget-less binaries. In Pro-
ceedings of the 26th Annual Computer Security Appli-
cations Conference, Austin, Texas, USA.

Roemer, R., Buchanan, E., Schacham, H., and Savage, S.
(2012). Return-oriented programming: systems, lan-

guages, and applications. In ACM Transactions on
Information and System Security, volume 15.

Salwan, J. (2016 (accessed Dec. 12, 2016)). ROP-
gadget. https://github.com/JonathanSalwan/
ROPgadget.

Schacham, H. (2007). The geometry of innocent flesh on
the bone: Return-into-libc without function calls (on
the x86). In ACM Conference on Computer and Com-
munications Security 2007, pages 552 – 561.

Team, P. (2016 (accessed Nov. 18, 2016)). PaX address
space layout randomization (ASLR). http://pax.
grsecurity.net/docs/aslr.txt.

Wang, Z. and Jiang, X. (2010). Hypersafe: A lightweight
approach to provide lifetime hypervisor control-flow
integrity. In Proceedings of the 2010 IEEE Symposium
on Security and Privacy.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

200


