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Abstract: The Cloud computing paradigm has kept its promise to transform computing resources into utilities ready
to be consumed in a dynamic and flexible way, on an “as per need” basis. The next big challenge cloud
providers are facing is the capability of automating the internal operational processes that need to be run in
order to efficiently serve the increasing customers’ demand. When a new cloud service request has to be
served, there is a bunch of operations the provider needs to carry out in order to get the requested cloud service
up and ready for usage. This paper investigates the automation of the “provisioning” activities that must be
put into place in order to build up a cloud service. Those activities range from the procurement of computing
resources to the deployment of a web application, passing through the installation and configuration of third
party softwares and libraries that the web application depends upon in order to properly work. Leveraging
on a well-known specification used for the representation of a cloud application’s structure (TOSCA), we
designed and implemented an orchestrator capable of automating and putting in force, in the correct timing,
the sequence of tasks building up the cloud application in a step-by-step fashion. The novelty in the followed
approach is represented by the definition of a converter which takes as input a TOSCA template and produces
a workflow that is ready to be executed by a workflow engine. The BPMN notation was used to represent both
the workflow and the data that enrich the workflow. To support the viability of the proposed idea, a use case
was developed and discussed in the paper.

1 INTRODUCTION

In the past five years the scientific community has
shown a growing interest around the topic of cloud
provisioning and orchestration (Ranjan et al., 2015;
Bousselmi et al., 2014). The appeal of this topic is
further witnessed by the investments that big cloud
players have been making to develop tools and soft-
wares that support the automation of cloud services’
delivery and maintenance. Also, many commercial
players have been engaged in the definition of inter-
national standards that would foster the widespread
adoption of technological solutions for the orchestra-
tion of portable (i.e., provider-agnostic) cloud appli-
cations.

In the panorama of standard initiatives, OASIS
TOSCA (Topology and Orchestration Specification
for Cloud Applications) (OASIS, 2013) has become
very popular. It is supported by many big cloud play-
ers and promises to cater for the cloud providers’
need of streamlining cloud service orchestration and
provisioning operations. Also, the standardization
body has released a version of the specification which

makes use of a very simple and human understand-
able language (YAML) that has contributed to speed-
up the standard adoption process.

The work described in this paper grounds on the
TOSCA specification. It leverages the TOSCA fea-
tures to build up a cloud service orchestrator capa-
ble of automating the execution of tasks and opera-
tions required for the provisioning of a cloud appli-
cation. The strategy adopted by the cloud orchestra-
tor is to convert a TOSCA cloud application model
into its equivalent BPMN workflow and dataflow
model (OMG, 2011). The orchestrator will then use
a BPMN engine to enforce the operations specified in
the BPMN model. The approach we propose clearly
separates the orchestration of the provisioning tasks
from the real provisioning services (i.e., the e-services
that enforce the provisioning). In this paper, we
present the design of a cloud service provisioning
framework, and discuss the design and implementa-
tion of a cloud orchestrator prototype. Further, we
discuss a real use case of a cloud application provi-
sioning.

The remainder of the paper is organized in the fol-
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lowing way. In Section 2 a survey of the literature is
proposed. Section 3 provides a bird’s eye view of the
TOSCA specification. The core ideas of this work,
along with the design and implementation details of
the cloud orchestrator, are discussed in Section 4. A
real use case showing the potential of the proposed
idea is discussed in Section 5. Section 6 draws some
final considerations and suggests some future direc-
tions.

2 RELATED WORK

This section presents a survey of all the recent and au-
thoritative initiatives, both commercial and scientific,
that address the cloud provisioning and orchestration
topic.

Many cloud industry players have developed
cloud management platforms (Cisco, 2016; Amazon,
2016; Rightscale, 2016; RedHat, 2016; HP, 2016;
IBM, 2016; GigaSpaces, 2016) for automating the
provisioning of cloud services. All platforms, to vary-
ing degrees, promise to provide automation in three
fundamental steps: cloud configuration, cloud provi-
sioning and cloud deployment. The more advanced
platforms also offer services and tools for the manage-
ment of cloud applications’ lifecycle. None of these
commercial products are open to the community, and
the solutions they offer are not portable across third-
party providers either.

The open source world has shown interest on this
topic as well. Taking a look at the category of con-
figuration management tools, DevOps Chef (Chef,
2016) is a software used to streamline the task of
configuring and maintaining server applications and
utilities. It is based on the concept of configuration
“recipes”, which are instructions on the desired state
of resources (software packages to be installed, ser-
vices to be run, or files to be written). Chef takes
care of those recipes and makes sure that resources
are actually in the desired state. Chef can integrate
with cloud-based platforms such as Amazon EC2,
Google Cloud Platform, OpenStack, Microsoft Azure
and Rackspace to automatically provision and con-
figure new virtual machines. Similar recipe-based
approaches are proposed by other open-source so-
lutions like Puppet (Puppet, 2016) with its Puppet
manifests and Juju (Juju, 2016) with its Juju charms.
Speaking of cloud orchestration tools, OpenStack
Heat (OpenStack, 2016) is a service to orchestrate
composite cloud applications using a declarative tem-
plate format - namely, the Heat Orchestration Tem-
plate (HOT) - through both an OpenStack-native
REST API and AWS CloudFormation-compatible

API (Amazon, 2016). HOT describes the infrastruc-
ture for a cloud application in text files which are
readable and writable by humans and by software
tools as well. Also, it integrates well with software
configuration management tools such as Puppet and
Chef. Very recently, orchestration concepts have been
analyzed also in the context of containers (Tosatto
et al., 2015). Even if containers represent a portable
unit of deployment, when an application is built out
of multiple containers the setting up of a cluster of
containers can become actually complex, because it
is needed to make one container aware of another and
expose several details required for them to commu-
nicate. As an example, Docker Compose, currently
under active development, is one of the first tools for
defining and running multi-container Docker applica-
tions (Docker, 2017).

With respect to standardizing initiatives, OASIS
is the most active on the topic. TOSCA (OASIS,
2013) is an OASIS open cloud standard supported
by a large and growing number of international in-
dustry leaders. It defines an interoperable descrip-
tion of applications, including their components, re-
lationships, dependencies, requirements, and capabil-
ities, thus enabling portability and automated man-
agement across multiple cloud providers regardless of
underlying platform or infrastructure. No commer-
cial solution supports processing of the TOSCA spec-
ification at this moment. OpenTOSCA (Binz et al.,
2013) is a famous open source TOSCA runtime en-
vironment. Although authors have been working on
adding support to the TOSCA Simple Profile (Open-
TOSCA, 2015), only a few YAML elements are sup-
ported by the converter. At this moment, imports, in-
puts, outputs and groups are not supported, thereby
limiting the description of application components.
The reader may find some insight on the technical as-
pects of TOSCA in Section 3.

In the scientific literature a few works have ad-
dressed the TOSCA specification. In (Kopp et al.,
2012), BPMN4TOSCA was proposed as a domain-
specific BPMN (OMG, 2011) extension to ease mod-
eling of management plans by enabling convenient
integration and direct access to TOSCA topology
and provided management operations. Since the
BPMN4TOSCA extension introduces new function-
alities which are not natively supported by workflow
engines, it leads to a non-standards-compliant BPMN
and, therefore, needs special treatment, i.e., a trans-
formation to plain BPMN. In (Katsaros et al., 2014),
a proof of concept for the actual portability features of
TOSCA on OpenStack and Opscode Chef has been
presented. To that end, an execution runtime envi-
ronment named TOSCA2Chef was developed to auto-
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mate the deployment of TOSCA-based cloud applica-
tion topologies to OpenStack by employing Chef and
BPEL processes. In (Wettinger et al., 2014), a unified
invocation bus and interface to be used by TOSCA
management plans has been presented. Based on
OpenTOSCA’s architecture, a service bus (Operation
Invoker) was implemented to provide a unified in-
vocation interface for TOSCA plans to invoke op-
erations. In (Wettinger et al., 2016), with the goal
of achieving a seamless and interoperable orches-
tration of arbitrary artifacts, an integrated modelling
and runtime framework has been introduced. Af-
ter executable DevOps artifacts of different kinds get
discovered and stored in DevOps knowledge repos-
itories, they are transformed into TOSCA-based de-
scriptions. In (Breitenbücher et al., 2015), a process
modelling concept to enable the integration of pro-
visioning models has been introduced. The general
modelling approach is based on extending imperative
workflow languages such as BPMN and BPEL (OA-
SIS, 2007) by means of Declarative Provisioning Ac-
tivities, which enable to specify declarative provision-
ing goals directly in the control flow of a workflow
model. The data flow between provision activities is
defined through input parameters, output parameters
and content injection. A prototype based on the Open-
TOSCA ecosystem and the BPEL workflow language
was implemented.

Several EU funded research projects, such as
ARTIST (Menychtas et al., 2014), SeaClouds (Brogi
et al., 2015), PaaSage (Rossini, 2016), MODAClouds
(Ferry et al., 2017) and PaaSport (Bassiliades et al.,
2017), also addressed cloud application portability in
its essence. Most of these projects, instead of build-
ing a TOSCA engine, transform the TOSCA-based
application specification into a single orchestration
script, such as YAML, and execute it by a correspond-
ing management tool, such as CAMP (OASIS, 2014),
Brooklyn (The Apache Software Foundation, 2016),
etc.

The work we propose grounds on the TOSCA
standard as well. A distinctive feature of our approach
is the clear separation between the orchestration of
the provisioning tasks, intended as the scheduling of
the logical steps to be taken, and the provisioning ser-
vices, which are the services implementing the tasks’
instructions. As for the orchestration aspect, we de-
vised a mechanism that automatically builds a plain
BPMN orchestration plan starting from a cloud appli-
cation’s TOSCA model.

3 THE TOSCA SPECIFICATION

TOSCA is the acronym for Topology and Orchestra-
tion Specification for Cloud Applications. It is a stan-
dard put together by OASIS that can be used to en-
able the portability of cloud applications and related
IT services. This specification permits describing the
structure of a cloud application as a service template,
that is in turn composed of a topology template and
the types needed to build such a template. The topol-
ogy template is a typed directed graph, whose nodes
(called node templates) model the application com-
ponents, and edges (called relationship templates)
model the relations occurring among such compo-
nents. Each node of a topology can also be asso-
ciated with the corresponding component’s require-
ments, the operations to manage it, the capabilities
it features, and the policies applied to it. Inter-node
dependencies associate the requirements of a node
with the capabilities featured by other nodes. TOSCA
supports the deployment and management of applica-
tions in two different flavors: imperative processing
and declarative processing. The imperative process-
ing requires that all needed management logic is con-
tained in the Cloud Service Archive (CSAR), which
stores all software artifacts required to provision, op-
erate, and manage the application. Management plans
imperatively orchestrate low-level management oper-
ations that are either provided by the application com-
ponents themselves or by publicly accessible services
(e.g., the Amazon Web Services API). These plans
are typically implemented using workflow languages,
such as BPMN or BPEL (OASIS, 2007). The declar-
ative processing shifts management logic from plans
to runtime, therefore no plans are actually required.
TOSCA runtime engines automatically infer the cor-
responding logic by interpreting the application topol-
ogy template. This requires a precise definition of
the semantics of nodes and relations based on well-
defined Node Types and Relationship Types. The set
of provided management functionalities depends on
the corresponding runtime and is not standardized by
the TOSCA specification.

The TOSCA Simple Profile is a rendering of the
TOSCA specification in the YAML language (OASIS,
2015). It aims to provide a more accessible syntax as
well as a more concise and incremental expressive-
ness of the TOSCA language in order to speed up the
adoption of TOSCA to describe cloud applications in
a portable manner. The work described in this paper
heavily grounds on the TOSCA standard and, specifi-
cally, on the TOSCA Simple Profile.
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4 DESIGN OF A CLOUD SERVICE
PROVISIONING FRAMEWORK

This work addresses the design and implementation
of a software framework that aims at easing and au-
tomating the processes that support the operational
management of cloud services. The stakeholders that
may have interest in the services provided through
the framework are the Customers in need of cloud re-
sources and cloud applications (in a nutshell, “cloud
services”) and the Providers of cloud services. To
the former, the framework offers tools to clearly state
functional requirements of the cloud service they are
in need of; from those requirements, the framework
puts in force the actions necessary for the service
delivery to take place. The latter have the chance
to offer their cloud services through the framework,
while playing no active role in the service orchestra-
tion which, instead, is in charge of the framework it-
self.

The focus of this work is put on the automation
of the cloud service provisioning process, i.e., the
process which is entrusted with the procurement and
the set-up of all the resources that build up the cloud
service requested by the Customer. We point out that
the framework has been designed to integrate the sup-
port for more sophisticated operations such as, to cite
a few, resource monitoring, resilience and scaling.
Those specific operations are though out of the scope
of the current work, and will be part of our future
work’s investigation. As for the service provision, the
objective of this work will be the design and imple-
mentation of an orchestrator which, starting from the
Customer requirements, is capable of generating on
the fly a cloud provisioning process made up of tasks
that build up the ready-to-use service to be delivered.
Specifically, the orchestrator will be in charge of co-
ordinating the overall process by making sure that ev-
ery task’s activity is carried out in accordance with the
proper timing.

We surveyed the literature in search of a well es-
tablished and broadly accepted way of representing
the cloud application requirements, i.e., a language
or a meta-model the Customer may use to express
the stack of resources (from the virtual machine up
to the top level libraries and softwares) they need in
order to set up their application, and also, the way
those resources need to get configured and coupled
together in order to ensure that the final service de-
livered to the Customer will meet the Customer ex-
pectation. As mentioned before, the approach we
propose grounds on the OASIS TOSCA standard and,
more specifically, on the TOSCA Simple Profile ren-
dering. The choice of TOSCA was driven by the fact

that TOSCA is a mature standard which embeds all
the features which we deem useful to our purpose.
In particular, the TOSCA Simple Profile provides a
meta-model written in YAML (a human friendly data
serialization standard) which the Customer may use
to define their cloud application model, i.e., to de-
scribe both the application topology and the artifacts
needed by the application itself. Since the objective
we pursue is to automate the application provisioning,
we opted for a workflow-based solution which, start-
ing from the cloud application model description, is
capable of devising and orchestrating the flow of the
provisioning operations to execute. Instead of devel-
oping a workflow engine from scratch, we decided to
make use of a BPMN engine, i.e., an engine capa-
ble of executing workflows represented in the BPMN
language. Since a YAML application model is not
executable by a BPMN engine, we developed an ad-
hoc YAML-to-BPMN converter. The reader may dis-
cover the details of the converter in Section 4.1. We
opted on the BPMN as workflow language since it is
a robust standard and it also provides support for data
modelling, a feature that we exploited to represent the
application artifacts needed along the workflow.

A novelty introduced by this approach is the sep-
aration between the orchestration of the provisioning
tasks and the provisioning services themselves. We
propose a solution where the provisioning services
may be supplied by third party service providers,
while the provisioning tasks orchestrated by the work-
flow engine will draw on those services in a SOA
(Service Oriented Architecture) fashion. This enables
a scenario of a market of services in which many
providers are allowed to participate and where Cus-
tomers can get the best combination of services that
meet their requirements. The overall scenario de-
scribed so far is best depicted in Figure 1.

Cloud Orchestrator
BPMN Engine

Create VM
Service #1

Create VM
Service #2

Deploy DB
Service #1

Deploy App Container
Service #1

BPMN

Service BUS

YAML-TO-BPMN

YAML

Figure 1: Cloud Orchestrator scenario.

We have designed and implemented a TOSCA
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Orchestrator which takes as input the application
model and deploys the concrete application in the
cloud. The Orchestrator takes the YAML model and
transforms it into an equivalent BPMN model. The
BPMN model, in its turn, is fed to a BPMN engine
that will instantiate and coordinate the relative pro-
cess. The process will put in force all the provision-
ing activities needed to build up the application stack
(e.g., getting a virtual machine from a cloud provider,
installing all the required libraries and third party soft-
wares on it, configuring the software dependencies,
and so on); as the reader may notice, the provision-
ing activities access a service bus in order to get the
required services which, in their turn, are supplied by
third party service providers. Finally, once the cloud
application is up and running, the Customer is invited
to take the control.

The framework we propose aims to offer tools and
services that enable the scenario depicted in Figure
1. To date, only a subset of those services has been
implemented. Specifically, the implementation of the
service bus and the invocation of the provisioning ser-
vices will be addressed in future work. Customers
can use the YAML representation to express applica-
tion requirements and push those requirements to the
framework. Providers can design their services ac-
cording to specific templates and offer them to Cus-
tomers through the framework. The framework is en-
trusted with orchestrating the provisioning activities
and matching the services’ offer and demand. In the
current implementation, the framework cares just for
functional requirements, i.e., it provides matches be-
tween what the Customer needs in terms of functional
needs (gets a given virtual machine, installs a specific
database, etc.). Non-functional requirements, which
call for enhanced service matchmaking mechanisms,
are out of the scope of this work and will be addressed
in future work.

4.1 Converting YAML to BPMN

This section discusses the features and the techni-
cal details of the software component we devised
to convert a TOSCA Simple Profile into its equiva-
lent BPMN process model. Starting from a TOSCA
Simple Profile compliant service template, our soft-
ware creates a Provisioning Plan which is fed into
the workflow engine for the automated application de-
ployment. This approach brings considerable bene-
fits, among which a) reusability of the process logic,
since components of the same type use the same logic;
b) portability of the Plan, as the application can be
deployed on a generic Cloud Provider; c) efficiency
in terms of streamlining Customer’s work, because

they only have to define their templates and fill them
with the management functions of their choice, with-
out caring about how Provisioning Plans will be cre-
ated and executed on the Cloud Provider.

The proposed solution consists of three com-
ponents: TOSCA-Parser, BPMN-Generator, and
BPMN-Validator. The TOSCA-Parser deals with the
service template by providing means to load, parse
and validate the YAML file, and creates the depen-
dency graph, a data structure containing the rela-
tionships between all of the nodes in the TOSCA
template. Vertices in the graph represent Nodes,
while edges represent relationships occurring be-
tween them. The BPMN-Generator grounds the cre-
ation of the Provisioning Plan on the parsed service
template and the dependency graph. The BPMN-
Validator validates the automatically generated Plan
against the BPMN specification. The following Sec-
tions will provide more details about these compo-
nents.

4.1.1 TOSCA-Parser

The TOSCA Parser takes a TOSCA YAML template
as input, with an optional dictionary of needed pa-
rameters with their values, validates it, and produces
in-memory objects of different TOSCA elements with
their relationship to each other. It also creates an in-
memory graph of TOSCA node templates and their
relationships. This software component is widely
based on the OpenStack parser for TOSCA Simple
Profile in YAML (OpenStack, 2016), a Python project
licensed under Apache 2.0. In agreement with the
overall structure of a service template, the parser con-
tains various Python modules to handle it including
topology templates, node templates, relationship tem-
plates, data types, node types, relationship types, ca-
pability types, artifact types, etc. The ToscaTemplate
class is an entry class of the parser and is of great
importance, along with TopologyTemplate, NodeTem-
plate and RelationshipTemplate, in the construction
of the ToscaGraph, which keeps track of all nodes
and dependency relationships between them in the
TOSCA template. This in-memory graph is, in its
turn, a milestone in the generation of the BPMN Pro-
visioning Plan, and the entire process is covered in
Section 4.1.2.

4.1.2 BPMN-Generator

The BPMN-Generator takes the aforementioned
ToscaGraph and ToscaTemplate elements (e.g., In-
puts, Outputs, NodeTemplates, RelationshipTem-
plates) as input and automatically generates the
BPMN Provisioning Plan for the designated Cloud
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application. For clarity purposes, the service template
shown in Listing 1 will be taken as an example to
show what needs to be done to reach the goal. The
BPMN generation is composed of the following two
steps: (1) the creation of a Workflow modelling a de-
tailed sequence of business activities to perform; (2)
the creation of a Dataflow modelling the data to be
read, written or updated during the Workflow execu-
tion.
t o s c a d e f i n i t i o n s v e r s i o n : t o s c a s i m p l e y a m l 1 0

d e s c r i p t i o n : >
TOSCA s i m p l e p r o f i l e w i th a s o f t w a r e component .

t o p o l o g y t e m p l a t e :
i n p u t s :

cpus :
t y p e : i n t e g e r
d e s c r i p t i o n : Number o f CPUs f o r t h e s e r v e r .
c o n s t r a i n t s :

- v a l i d v a l u e s : [ 1 , 2 , 4 , 8 ]
d e f a u l t : 1

n o d e t e m p l a t e s :
sw:

t y p e : t o s c a . nodes . Sof twareComponent
p r o p e r t i e s :

c o m p o n e n t v e r s i o n : 1 . 0
r e q u i r e m e n t s :

- h o s t : s e r v e r
i n t e r f a c e s :

S t a n d a r d :
c r e a t e : s o f t w a r e i n s t a l l . sh
s t a r t : s o f t w a r e s t a r t . sh

s e r v e r :
t y p e : t o s c a . nodes . Compute
c a p a b i l i t i e s :

h o s t :
p r o p e r t i e s :

d i s k s i z e : 10 GB
num cpus: { g e t i n p u t : cpus }
mem size: 1024 MB

os:
p r o p e r t i e s :

a r c h i t e c t u r e : x86 64
t y p e : Linux
d i s t r i b u t i o n : Ubuntu
v e r s i o n : 1 4 .04

Listing 1: SW Component - Service Template.

The Workflow basically comprises a BPMN pro-
cess made of Service Tasks, Sequence Flows and
Gateways used to control how the process flows,
with every single component being derived from
all the node templates and their requirements in the
YAML Service Template. In particular, taking inspi-
ration from normative node states and lifecycle oper-
ations of the Standard interface (OASIS, 2013), each
node template in the YAML scenario leads to a new
Service Task for every operation specified on that
node. Such Service Tasks are related to each other
by means of Sequence Flows and possible Gateways,
whose creation depends on Service Tasks dependen-
cies, which, in their turn, depend on node templates
requirements. The ToscaGraph is the reference point
to determine such requirements. In this regard, the
graph is traversed and for each node, represented by
a vertex, the whole set of requirements is constructed
in terms of relationships with other nodes, represented

by related edges. Service Tasks dependencies are then
obtained by taking into account the node requirements
and the lifecycle operations they represent. Starting
from such dependencies, it is possible to compute the
execution order of all Service Tasks in the Provision-
ing Plan, i.e., the deployment order of all Cloud appli-
cation components. This information is represented
by numerical data: the lower the number is, the less
priority that Service Task gets. Service Tasks with
the lowest execution order, hereby collectively called
Service Tasks Endpoint, don’t feature in between any
Service Task’s required dependencies, whereas Ser-
vice Tasks with the highest execution order, hereby
collectively called Service Tasks Startpoint, don’t fea-
ture any Service Task as a required dependency. With
reference to our example scenario, the resulting data
structures are shown in Listing 2.
service_tasks = [’server’, ’sw_create’, ’sw_configure’,

’sw_start’]

service_tasks_requirements = {’sw_create’: [’server’],
’sw_configure’: [’sw_create’],
’sw_start’: [’sw_configure’]}

service_tasks_order = {’server’: 4, ’sw_create’: 3,
’sw_configure’: 2, ’sw_start’: 1}

service_tasks_startpoint = [’server’]

service_tasks_endpoint = [’sw_start’]

Listing 2: SW Component - Tasks, Requirements, Order.

Figure 2: Output of the BPMN generator - Workflow.

Figure 3: Output of the BPMN generator - Workflow and
Dataflow.

Service Tasks Endpoint and Startpoint are of
paramount importance to define a proper execution
flow, because they may lead to some degree of par-
allelism in the Workflow through Parallel Gateways,
which are used to synchronize or create parallel flows.
Specifically, they play a role in the creation of Start
Event, End Event and Service Tasks. Service Tasks
and related Sequence Flows are created by proceed-
ing in ascending Service Tasks priority fashion (i.e.,
in their reverse execution order). From lowest to high-
est priority, each Service Task is created and then their
incoming and outgoing paths are determined by dis-
tinguishing three further cases: a) the Service Task
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Figure 4: Wordpress Deploy - TOSCA Template.

belongs to Service Tasks Endpoint set, b) the Service
Task belongs to Service Tasks Startpoint set, c) the
Service Task belongs to neither of them. As to our
example scenario, the resulting BPMN Workflow is
shown in Figure 2.

The Dataflow simply consists of Data Inputs, Data
Outputs and Data Objects, which are derived from
node templates and their data requirements in the
YAML Service Template. Speaking of data require-
ments, the TOSCA standard allows template authors
to customize Service Templates through the inputs
section in the Topology Template, which represents
an optional list of input parameters for the Topology
Template. In a complementary way, the outputs sec-
tion represents an optional list of output parameters
for the Topology Template. Inputs and outputs can
be used to parameterize node templates properties or
node templates and relationship templates lifecycle
operations. Data Inputs, which capture input data that

Activities and Processes often need in order to exe-
cute, are utilized to model such inputs; Data Outputs,
which capture data that they can produce during or
as a result of execution, are utilized to model such
outputs. It should be noted that node templates at-
tributes can be used as parameters in the lifecycle op-
erations as well. Data Objects are utilized to model
this kind of data requirements, with Data Associations
determining how information stored in Data Objects
is handled and passed between Process flow elements.
With reference to our sample template in Listing 1,
there is only one input variable specified in the server
num cpus property. This leads to a Data Input and
a Data Association between the Start Event and the
server Service Task, as depicted in Figure 3.
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Figure 5: Wordpress Deploy - Workflow.

4.1.3 BPMN-Validator

The BPMN-Validator validates the BPMN Plan gen-
erated in the previous step against the BPMN XML
Schema (OMG, 2011), with both of them being taken
as input parameters. The validation is performed by
means of etree module in Python lxml package (lxml,
2016). More specifically, the BPMN XML Schema
gets parsed and turned into an XML Schema valida-
tor, which checks if the previously parsed BPMN plan
complies with the provided schema. If that is not the
case, then a validation error is going to be raised.

5 USE CASE

The Application modelling use case taken into con-
sideration aims to deploy a WordPress web applica-
tion on an Apache web server, with a MySQL DBMS
hosting the database content of the application on a
separate server. Figure 4 shows the overall architec-
ture compliant with the TOSCA Simple Profile spec-
ification (although wordpress, php and apache node
types are non-normative). There are two separate
servers: app server for the web server hosting and
mysql server for the DBMS hosting. Both servers
are configurable on hardware side (e.g., disk size,
number of cpus, memory size and CPU frequency)
and software side (e.g., OS architecture, OS type, OS
distribution and OS version). The apache node fea-
tures port and document root properties, and is de-
pendent upon the app server via a HostedOn rela-
tionship as well. In the same way, the php node
is dependent upon the app server via a HostedOn
relationship. The mysql dbms node features port
and root password properties, and a HostedOn de-
pendency relationship upon the mysql server. The
mysql database node features name, username, pass-
word and port properties, and a HostedOn depen-
dency relationship upon the mysql dbms. Finally,
the wordpress node features the context root property,

and depends on mysql database and php by means
of two ConnectsTo relationships and on apache by
means of a HostedOn relationship, respectively.
apache :

t y p e : t o s c a . nodes . WebServer . Apache
p r o p e r t i e s :

p o r t : { g e t i n p u t : a p a c h e p o r t }
d o c u m e n t r o o t : { g e t i n p u t : a p a c h e d o c r o o t }

r e q u i r e m e n t s :
- h o s t : a p p s e r v e r

i n t e r f a c e s :
S t a n d a r d :

c r e a t e :
i n p u t s :

i p : { g e t a t t r i b u t e : [ a p p s e r v e r , p r i v a t e a d d r e s s ]}
p o r t : { g e t p r o p e r t y : [ SELF , p o r t ] }
d o c r o o t : { g e t p r o p e r t y : [ SELF , d o c u m e n t r o o t ]}

i m p l e m e n t a t i o n : s c r i p t s / i n s t a l l a p a c h e . sh
s t a r t :

i n p u t s :
i p : { g e t a t t r i b u t e : [ a p p s e r v e r , p r i v a t e a d d r e s s ]}

i m p l e m e n t a t i o n : s c r i p t s / s t a r t a p a c h e . sh

Listing 3: Wordpress Deploy - Apache node.

For the sake of clarity, Listing 3 shows the apache
node declaration in YAML. As mentioned above, the
node takes the app server as requirement and has port
and document root properties, whose values are re-
trieved from apache port and apache doc root input
parameters, respectively, by means of the get input
intrinsic function. Two lifecycle operations are
also defined (i.e., create and start), with both of
them taking ip as input parameter, whose value is
retrieved from the private address attribute of the
app server through the get attribute intrinsic func-
tion. In conformity with Section 4.1.2, the node
transformation from YAML to BPMN leads to the
creation of: (1) three Service Tasks (apache create,
apache configure and apache start); (2) two Data In-
puts (doc root and port) with their respective Data
Input Associations in apache create; (3) one Data
Object (app server.private address) with its Data In-
put Associations in apache create and apache start.
Figure 5 and Figure 6 show the overall Workflow
and Dataflow-decorated Workflow, respectively. The
workflow represented in Figure 6 is then fed to a
BPMN engine that will actually enforce the work-
flow’s tasks.
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Figure 6: Wordpress Deploy - Workflow and data flow.

6 CONCLUSION

The challenge of automating the operational manage-
ment and orchestration of cloud services has attracted
many cloud industry players. The open source world
too is very active in this topic. Very recently an open
standard for the representation of the cloud applica-
tion structure (TOSCA) has boosted the interest in
the research environment and has fostered the flour-
ishing of many more cloud automation products even
from small cloud players. This work leverages on the
TOSCA potential to propose the definition of a cloud
orchestration and provisioning framework that auto-
mates the cloud service deployment operations. Ba-
sically, the automation is carried out by a two-step
process: 1) transforming a TOSCA cloud application
model into a BPMN workflow; 2) getting the work-
flow executed on a workflow engine. The novelty of
the approach also consists in the definition of a data
model that enriches the workflow. In the future, the
framework will be enhanced with an ecosystem of

services that can be invoked by the workflow engine
and that will actually carry out the deployment tasks.
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