Performance Testing of an Internet of Things Platform

John Esquiagola, Laisa Costa, Pablo Calcina, Geovane Fedrecheski and Marcelo Zuffo

Keywords:

Abstract:

Integrated Systems Laboratory, Sao Paulo University, Sao Paulo, Brazil

Internet of Things, Testing, Performance.

The Internet of Things (IoT) is a network of physical objects, or things, with embedded electronics, soft-
ware, sensors, and connectivity. The connection of all these things leverages value generation, by offering
new services and strategic information. In order to make the Internet of Things possible, the integration of
many technologies is necessary, such as machine-to-machine and cyber-physical systems. The process of test-
ing IoT applications introduces new challenges because it does not only includes typical test strategies and
methodologies. Testing an IoT system depends on its the specific configuration, and it also needs to consider
the hardware platform and the network environment. Currently, industry and academy efforts are focusing
on usability and connectivity tests, such as: simulating the environment where the device is to be used, and
ensuring information is exchanged in a secure manner. In this paper, we use the current version of our IoT
platform to perform stress testing of our IoT platform under different conditions. Our test methodology for IoT
applications is also presented. Three different hardware platforms have been used for performing the stress

testing of our platform.

1 INTRODUCTION

In future IoT networks, the increasing number of de-
vices and services will be reflected in a diversity and
heterogeneity of hardware, software platforms, net-
work protocols, and service providers. The realiza-
tion of the IoT paradigm implies many challenges that
need to be addressed, including availability, reliabil-
ity, mobility, performance, scalability, interoperabil-
ity, security, management, and trust (Al-Fuqaha et al.,
2015).

Recent advances in networking technology, such
as the IP protocol used in embedded devices has
changed the Internet landscape. One of the advan-
tages of the IP technology within embedded devices
is the possibility of using a web services architec-
tures, where things” are wrapped into web services.
This concept is reflected in the Web of Things (WoT)
(W3C-Group, 2016) initiative. Web services can be
used on top of IP stack in order to reduce the com-
plexity of applications and to improve the software
re-usability (Colitti et al., 2011).

Lately, there has been an increasing number of
IoT middleware proposals. (Mineraud et al., 2015)
present a survey of several efforts from academy and
industry; a gap analysis is done too, focusing in the
weakness of current solutions, and aiming to improve

Esquiagola, J., Costa, L., Calcina, P, Fedrecheski, G. and Zuffo, M.
Performance Testing of an Internet of Things Platform.
DOI: 10.5220/0006304503090314

the development of future loT platforms.

Testing IoT systems have complications not
present in traditional system deployments, such as en-
terprise web services, due to the heterogeneous and
massively distributed nature of its components (Reetz
et al., 2013). In order to guarantee the correct func-
tioning of such complex systems, functional tests
and performance evaluation must be done before de-
ploying an IoT system in a production environment.
In such a configuration, the real interaction with
the physical world needs to be observed, differently
from common software testing methods (Reetz et al.,
2013). The heterogeneous nature of IoT components
demands strong testing capabilities to ensure service
performance meets the user requirements as well as
service level agreements between service providers
and consumers. Cognizant et al (Cognizant, 2016)
defined the following types of testing that needs to be
performed within an IoT ecosystem:

e Functional testing, which validates the correct
functionality of the IoT application.

o Connectivity testing, it is responsible for testing
the wireless signal in order to determine what hap-
pens in case of weak connection, or when there
are many devices trying to communicate.

e Performance testing, validates the communication

309

In Proceedings of the 2nd International Conference on Internet of Things, Big Data and Security (loTBDS 2017), pages 309-314

ISBN: 978-989-758-245-5

Copyright © 2017 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

IoTBDS 2017 - 2nd International Conference on Internet of Things, Big Data and Security

and computation capabilities. Stress testing can
be used in order to find how many simultaneous
connections can be supported by a specific device.

e Security testing, focus in privacy, authorization
and authentication features.

e Compatibility testing, verifies the correct func-
tionality under different protocols and configura-
tions.

e FExploratory testing, also called user experience
tests.

There are some industrial reports about IoT testing
procedures (Cognizant, 2016)(Bloem, 2016)(RCR-
Wireless, 2016), however, little academic work has
been found about testing IoT systems, and most of
them concentrate in performance evaluation(Lunardi
et al., 2015)(Thangavel et al., 2014)(Vandikas and
Tsiatsis, 2014), IoT resource emulation, and IoT
testbeds deployments (Sanchez et al., 2014)(Adjih
etal., 2016).

In this paper, we use the current stage of our IoT
platform implementation based on SwarmOS con-
cept(Costa, 2015) in order to present our test method-
ology that was followed to cover most of the fields
in the IoT testing area. Finally we show some test-
ing results of our platform after deploying within sin-
gle board computing devices. Response time and the
network throughput were measured during the tests
and some conclusions were obtained according to the
computing capabilities of the devices.

The remainder of this paper is organized as fol-
lows: Section II presents the related work in the IoT
field. Section III highlights the test methodology in-
cluding the architecture overview of our IoT applica-
tion. The stress testing results and analysis are pre-
sented in Section IV. Section V concludes the paper
with final considerations and future work.

2 RELATED WORK

In IoT systems, functional and performance tests must
be done before deploying the system in a production
environment. In contrast with typical test methods,
the deployment of an IoT system need to guarantee a
successful interaction with the physical environment
(Reetz et al., 2013). The heterogeneity of the com-
ponents of an IoT system implies the development of
new test methods and architectures in order to ensure
the performance of the system and to meet user re-
quirements.

COBASEN(Lunardi et al., 2015) is a framework
that allows scalable search and transparent usage
of computational devices in IoT environments; this

310

framework proposes a search engine which allows the
use context information to discover, select and use
of device according to user and application require-
ments. Framework validation was done by imple-
menting a platform and executing functional perfor-
mance tests. A Java application prototype was devel-
oped in order to stimulate the search engine by captur-
ing user needs through a query. Requirements of the
test were: (1) query processing time and (2) indexing
time duration.

Thangavel et al. (Thangavel et al., 2014) present
the design and implementation of a common middle-
ware that supports MQTT and CoAP. Performance
evaluation was done experimentally by using the mid-
dleware under different network conditions. End-to-
end delay and bandwidth consumption were the met-
rics that were studied for both protocols. Tests are
focused in the transportation of the sensor data at the
gateway node to the back-end server or broker. Band-
width usage was defined as a the total data transferred
per message. Delay was defined as a difference be-
tween the time when a data file was received and the
time when the file was published. A small program
was implemented to generate the sensor data in or-
der to emulate the reception from sensor nodes. Be-
sides that, open source implementation of MQTT and
CoAP were used and integrated to the middleware.
Authors conclude that performance of different pro-
tocols are dependent on different network conditions,
and it can be exploited to improve the network perfor-
mance by deciding what protocol to use according to
the current network conditions.

IoT-Framework is a computational middleware
thas was implemented by using open source compo-
nents (Vandikas and Tsiatsis, 2014). This proposal
uses the RabbitMQ publish-suscribe, elasticSearch
database, WebMachine REST Api, R statistical soft-
ware among others. Authors performed the evaluation
of the system by using two set of tests, first one creates
a total number of 103 HTTP POST requests that simu-
lates a different number of users (producers). Second
tests were done by using a simple Java client to gen-
erate a varying number of consumers in order to see
the impact in the system.

Nowadays, IoT testbeds are available in order to
evaluate IoT applications in real environments with
real-world conditions. That testbeds are already de-
ployed in several sites in Europe and has been used
to perform IoT testing and collect results such as con-
sumption or packet ratio. For example, [oT-Lab (Ad-
jih et al.,, 2016), SmartSantander (Sanchez et al.,
2014) and Web of Things TestBed (WoTT) (Belli
et al., 2015). Most of academic research about IoT
testing are focused on functional tests. There are a

few academic reports covering specific IoT testing
fields like connectivity, compatibility and exploratory.

3 IoT TEST METHODOLOGY

3.1 IoT Platform

In this section, we describe our [oT platform, based on
the Swarm vision(Rabaey, 2011). The swarm concept
expands the IoT vision to a more organic networks
where the peers communication, characteristics and
topologies can be adapted dynamically. The imple-
mentation of the platform follows a framework called
SwarmOS(Costa, 2015) which explores the dynamic
cooperation and peer-to-peer communication of de-
vices. The architecture of the system is illustrated in
Figure 2. A central element in the proposed archi-
tecture is the IoT Broker, which acts as a facilitator
for the communication and interaction among the het-
erogeneous devices in the Swarm/IoT. The following
modules are defined in current version of our broker:

e Registry, a central directory for the services in the
device,

e Discovery, a service that lets the broker communi-
cate with other brokers to search a requested ser-
vice;

e Contracting, a service that helps in match the pa-
rameter for service consumption among requester
and provider services;

e Authorization, a service that manages the access
to services;

e Semantic mediation, a service which performs an
automatic equivalence between concepts in dif-
ferent service description domains, in order to
achieve interoperability;

e Monitoring and optimizing, a service based on
a continuous monitoring of the network, creates
a quantitative model that suggests optimization
plans;

e Binding, a service that performs an syntactic
adaptation of the communication among services,

e Policy management, a service that manages the
access policies of the authorization module.

The IoT architecture was designed to following
the REST principles, so it exposes device function-
alities through light web services by HTTP or CoAP
protocol. Broker behaves as a facilitator to atend re-
quests from any service in the network. It has a local

Performance Testing of an Internet of Things Platform

SWARMLET

Application Services

Control Plane - Platform Services
Medlal\on c0n(rac[ing Registry Paolicy
Service Service Service Service

Opumlzanon Plan -
Mun\lurlng Aulr;eenrgt‘:cagmn Development legﬁ;;l%
Service Service

Data Plane

Figure 2: IoT Broker Architecture.

database where stores the descriptions of the local ser-
vices which it can offer to other brokers or services.
Broker functionalities can be exposed through three
entries: registry and locate and status. Other capabil-
ities presented in the proposed architecture are under
active development.

Device 1 Device 2

© OO
10T NG rrrrsanennnnnnana o
@®@ ®.] Conl?rrnﬂrll(iec;tion ®@@

Service

Commnication +

Device 3

Figure 3: Device communication.

In Figure 3 we depict the deployment of a simple
device configuration in order to better visualize the
communication using the proposed IoT Broker. Ser-
vices can be deployed in the same device and broker
provides the interface to communicate with services
deployed in other devices. A device hosts several ser-
vices along with one broker. When a service is exe-
cuted, it first registers in its local IoT Broker, which
can be found for other brokers in the network. Next,
when a device needs to use the functionalities of other
device, it looks for a service in the network, by using
the broker locate service.

3.2 Test Methodology

Testing the IoT involves the validation process of
various aspects related to network connectivity,
such as bandwidth, dropped connections, etc. The
challenges of IoT testing are beyond software im-
plementation and hardware devices because IoT
adds new complexity parameters to the classic
test models (Al-Fuqgaha et al., 2015). In our spe-
cific IoT platform we have defined several kinds

311

IoTBDS 2017 - 2nd International Conference on Internet of Things, Big Data and Security

[Test Control Module
E [Broker Configuration & Instantiation]
—F —
=
— loT loT loT
= Broker 1 Broker 2 Teststtt | BrokerN _
Stimulus | = I\gomtﬁr
= \‘ esulis
= -
% RO, olone)
~ R
[Services Configuration & Instantiation]

Figure 1: Modular Test Architecture.

of testing phases in order to validate the whole
functionality of the system. Then, there are some
important layers that are part of an IoT system and
needs to be test. The following layers and corre-
sponding test phases were defined for our [oT system:

Software Interaction Layer:

Unitary tests

Integration tests

System tests

Acceptance tests

Hardware Interaction Layer (Device comm and
Network):

e Performance & Conectivity tests
e Security tests
e Interoperability tests

User Interaction Layer:

Usability tests

Conformance tests

Reliability tests

Scalability tests

4 PERFORMANCE TESTING
RESULTS

The implementation of our prototype is based on the
Java programming language, version 8. Jetty web
server is used to host the RESTful services in the IoT
network. For the implementation of the tests in the
different layers defined in the previous section we
have used different tools and frameworks.

312

Software Interaction Layer: Java code was de-
veloped for the unitary and integration tests. JUnit
Framework integrated with Maven and Eclipse tools
were used. For the system tests, a functional test
architecture was written in Python language and
allows us to emulate the broker module and the
services. This model serves to achieve all functional
tests before deploying the system in specific hardware
devices. Functional tests include status, locate and
registry tests under different conditions. Figure 1
shows our modular test architecture that has been
utilized to verify the functionality of our application.

Hardware Interaction Layer (Device comm and
Network): In order to implement these layer tests,
we have defined some specific test cases for the
connectivity tests. Tablel shows bandwith test case
where criteria of test is to change the bandwidth
value emulating a typical connectivity problem.
Table2 present the case when the device is suddenly
switched-off. Table3 focuses in the droppped con-
nections among devices. Every test case were tested
by using the modular test architecture presented
previously.

Table 1: Bandwitdh tests.

Purpose Test Bandwidth during register process
Pre-condition Broker and Service running
Criteria Change the bandwidth

Test Procedure | Service registering in Broker
Increase/decrease bandwidth

Delay in the register process. Timeout.

Expected

In order to achieve performance test of our plat-
form, we have successfully deployed our implemen-
tation on three different hardware platforms that are
presented in Table 1. To test our application in a real
environment and under stress conditions, we use a
load generation tool called Tsung, which can be con-
figured to determine the number of request per second

100 Reqs/sec

Mean request (and connection) duration

Requests duration (msec)
Requests duration (msec)

200 Regs/sec

Mean request (and connection) duration

connect s R oo
request —@— : :

Performance Testing of an Internet of Things Platform

300 Reqs/Sec

Mean request (and connection) duration
cOnnect spe=— :
I request e ---ieooeoebe

Requests duration (msec)

time (sec of the running test)

time (sec of the running test)

time (sec of the running test)

Figure 4: Results for 100, 200 and 300 requests/sec in Intel Edison device.

Table 2: Connectivity tests - Switched-off.

Purpose Broker switched-off suddenly
Pre-condition Broker and Service running
Criteria Switch-off broker

Test Procedure | Service registering in Broker
Switch-off the broker suddenly

Broker maintain the registered services

Expected

Table 3: Connectivity tests - Dropped Connection.

Purpose Brokers has connection dropped
Pre-condition Broker and Service running
Criteria Force dropped connection

Start broker & services

Perform registry or locate

Drop connection

Broker maintain the registered services
No services found

Test Procedure

Expected

as well as the overall test duration. Our configuration
was defined as a sequence of values from [10-100]
requests/sec and [100-1000] requests/sec. We have
used a desktop core i5 computer to run the client side
of Tsung, and started the IoT application on the server
side.

Tsung generates a high load of HTTP requests in
the client side towards server side. Tsung tool gener-
ates an HTML reports for each simulation and there is
a Perl script that is used in order to generate the per-
formance graphics from the log file. So for example
in the case of Intel Edison device we simulate for 10,
20, 30, 40, 50, 100, 200, 300, 400, and 500 requests
per second. Figure 4 only presents the response time
results for 100, 200 and 300 requests per second. We
choose these specific simulations because at 300 re-
quests/sec the response time of our application starts
to increase in the order of seconds that is not suitable
for a simple HTTP request. Besides that we focus on
the performance of Intel Edison because it is the only
device that was using wifi interface which is impor-
tant for our research.

After analyzing the reports generated by the
Tsung tool, we can determine the maximum number
of HTTP requests per second that can be supported

Table 4: Hardware platforms.

Type Frequency RAM | Interface

NUC Core 15 @1.3GHZ 4GB Ethernet
Edison | Atom @500MHZ 1GB Wifi
Galileo 400MHz 256MB | Ethernet

by each device. We present this result in the Figure 5,
the worst device was Galileol board, it works fine un-
til 70 requests per second, after that the response time
increases exponentially. For Edison board, this num-
ber is 200 request per second. And for Intel NUC, the
number is more than 1500 requests per second.

1500 —8 NUC

—&— Edison

Galileot
1000

500

Time (ms)

-500
40 60 80 100 300 500 700
50 70 90 200 400 600 800

Requests/ sec

Figure 5: Requests per second vs Response Time.

For the case of interoperability tests, we have per-
formed tests about HTTP and CoAP communication
through a proxy in order to guarantee the compatibil-
ity between these both protocols.

User Interaction Layer: this kind of tests is cur-
rently in development.

S CONCLUSION AND FUTURE
WORK

This work presents the initial testing results of our IoT
application. We have defined three different layers for
testing: software, hardware and user. Software layer
tests were done by using standard software frame-
works like JUnit. In the case of hardware layer, we

313

IoTBDS 2017 - 2nd International Conference on Internet of Things, Big Data and Security

have deployed our system on three different hardware
platforms. We have used the Tsung tool to perform
the tests by using several configurations of requests
per second. Initial results show the maximum number
of requests per second that can be supported for each
hardware device. Best performance device was the
Intel NUC, followed by Intel Edison and the weakest
device was Intel Galileo. According with the results,
we can determine some connectivity problems when
constrained devices are used for the specific Java im-
plementation. Then it is important to define our hard-
ware requirements before start developing IoT appli-
cations.

For our future research, we plan to continue the
stress testing but under different conditions, for ex-
ample increasing and decreasing the power of the wifi
signal of the devices. Security tests will need to be
implemented because currently we are implementing
the authentication modules of our platform.

REFERENCES

Adjih, C., Baccelli, E., Fleury, E., Harter, G., Mitton,
N., Noel, T., Pissard-Gibollet, R., Saint-Marcel, F.,
Schreiner, G., Vandaele, J., and Watteyne, T. (2016).
FIT IoT-LAB: A large scale open experimental IoT
testbed. In IEEE World Forum on Internet of Things,
WEF-IoT 2015 - Proceedings, pages 459-464.

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari,
M., and Ayyash, M. (2015). Internet of Things: A
Survey on Enabling Technologies, Protocols, and Ap-
plications. IEEE Communications Surveys and Tuto-
rials, 17(4):2347-2376.

Belli, L., Cirani, S., Davoli, L., Gorrieri, A., Mancin, M.,
and Picone, M. (2015). Design and Deployment Ori-
ented Testbed. IEEE Computer, 48(9):32-40.

Bloem, J. (2016). IoTMap - Testing in an IoT environment.
Sogeti Publisher.

Cognizant (2016). The internet of things: Qa unleashed.
https://www.cognizant.com/InsightsWhitepapers/the-
internet-of-things-qa-unleashed-codex1233.pdf. Last
accessed: November 2016.

Colitti, W., Steenhaut, K., and De Caro, N. (2011). Integrat-
ing wireless sensor networks with the web. Extend-
ing the Internet to Low Power and Lossy Networks
(IP+SN 2011).

Costa, L. (2015). Swarm os control plane: An architec-
ture proposal for heterogeneous and organic networks.
2015 IEEE International Conference on Consumer
Electronics (ICCE), pages 245-246.

Lunardi, W. T., de Matos, E., Tiburski, R., Amaral, L. A.,
Marczak, S., and Hessel, F. (2015). Context-based
search engine for industrial iot: Discovery, search, se-
lection, and usage of devices. In 2015 IEEE 20th Con-

ference on Emerging Technologies Factory Automa-
tion (ETFA), pages 1-8.

314

Mineraud, J., Mazhelis, O., Su, X., and Tarkoma, S. (2015).
A gap analysis of internet-of-things platforms. CoRR,
abs/1502.01181.

Rabaey, J. M. (2011). The swarm at the edge of the cloud-a
new perspective on wireless. In VLSI Circuits (VL-
SIC), 2011 Symposium on, pages 6-8. IEEE.

RCR-Wireless (2016). Testing the internet of things: Mak-
ing the iot work.

Reetz, E. S., Kuemper, D., Moessner, K., and Toenjes, R.
(2013). How to test iot-based services before de-
ploying them into real world. In Wireless Conference
(EW), Proceedings of the 2013 19th European, pages
1-6.

Sanchez, L., Mu??0z, L., Galache, J. A., Sotres, P., San-
tana, J. R., Gutierrez, V., Ramdhany, R., Gluhak, A.,
Krco, S., Theodoridis, E., and Pfisterer, D. (2014).
SmartSantander: IoT experimentation over a smart
city testbed. Computer Networks, 61:217-238.

Thangavel, D., Ma, X., Valera, A., Tan, H. X., and Tan,
C. K. Y. (2014). Performance evaluation of mqtt and
coap via a common middleware. In Intelligent Sen-
sors, Sensor Networks and Information Processing
(ISSNIP), 2014 IEEE Ninth International Conference
on, pages 1-6.

Vandikas, K. and Tsiatsis, V. (2014). Performance eval-
uation of an iot platform. Proceedings - 2014 8th
International Conference on Next Generation Mobile
Applications, Services and Technologies, NGMAST
2014, pages 141-146.

W3C-Group (2016). Direct to device connectivity in the

internet of things. https://www.w3.org/WoT/. Last
checked: January 2016.

