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Abstract: It has become increasingly difficult for high performance computing (HPC) users to own a HPC platform for 

themselves. As user needs and requirements for HPC have diversified, the HPC systems have the capacity 

and ability to execute diverse applications. In this paper, we present computer architecture for dynamically 

and promptly delivering high performance computing infrastructure as a cloud computing service in response 

to users’ requests for the underlying computational resources of the cloud. To obtain the flexibility to 

accommodate a variety of HPC jobs, each of which may require a unique computing platform, the proposed 

system reconfigures software and hardware platforms, taking advantage of the synergy of Open Grid 

Scheduler/Grid Engine and OpenStack. An experimental system developed in this research shows a high 

degree of flexibility in hardware reconfigurability as well as high performance for a benchmark application 

of Spark. Also, our evaluation shows that the experimental system can execute twice as many as jobs that 

need a graphics processing unit (GPU), in addition to eliminating the worst case of resource congestion in the 

real-world operational record of our university’s computer center in the previous half a year. 

1 INTRODUCTION 

High performance computing (HPC) systems have 

increasingly been used for IoT/BigData and Artificial 

Intelligence (AI) besides being used for conventional 

scientific simulations. Future HPC systems will be 

required to perform a wider variety of functions and 

deliver higher performance than today. However, it is 

becoming more difficult for HPC users to own such a 

HPC platform for themselves because HPC systems 

tend to be application-specific, unique, and peculiar, 

and as a result, come in a wide variety. For example, 

a server of a HPC system for graphics processing unit 

(GPU) computing must have a high electrical power 

supply, big slot space, and a cooling mechanism to 

install a high power GPU accelerator. Taking a cluster 

computing system using a message passing interface 

(MPI) into consideration, a high-speed and expensive 

host bus adapter (HBA) of Infiniband may be 

installed. As a result, these HPC systems are far more 

expensive and also consume a lot more electrical 

power than conventional computing systems. Thus, 

HPC users usually cannot afford to own those 

varieties of HPC systems for themselves. 

For such HPC users, advanced cloud services 

have recently become a way of obtaining HPC 

resources, such as a GPU computing platform and a 

distributed cluster system using an MPI 

(Docs.aws.amazon.com, 2017; GitHub, 2017; 

Sanders, 2017). However, each system configuration 

of these HPC systems is unique and rigid in terms of 

using specific devices, network topologies, and 

protocols as shown in Figure 1. For this reason, the 

computing resources for the HPC systems in a cloud 

must be reserved for only the usage for which they are 

configured and cannot be flexibly used for other 

usages. For example, a server node installed with two 

GPUs is always a two-GPU machine even if other 

users require only one GPU for each server node. A 

cluster system composed of multiple server nodes 

must be deployed on network carefully designed in 

advance to provide the highest performance per 
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system. For example, an MPI application may 

necessitate a mesh or fat tree topology while a 

Hadoop/Spark application may necessitate a map and 

reduce topology. 

 

Figure 1: HPC needs special configuration. 

This rigidness causes problems for both the user 

and cloud service provider. From the users’ point of 

view, users cannot obtain the most appropriate 

underlying computer resources of the cloud for their 

applications because the computer system must be 

chosen from a fixed configuration menu. This menu 

may not offer the optimal configuration for their use 

case because the menu items may be under or over the 

expected or predicted specifications. In addition, the 

resources a user wants to use might be being used for 

another user’s job. This often happens because clouds 

contain fewer HPC resources than they do 

conventional servers for general cloud services. 

From the cloud service provider’s point of view, 

the provider must prepare and reserve many different 

HPC platforms to satisfy diversified HPC user needs. 

This leads the job duration for each platform to 

become short. As a result, the utility rate of the HPC 

system may be lower than 30%, even though HPC 

resources are expensive to deploy. 

Our goal is to provide HPC resources from a 

cloud for various user applications on diverse domain 

specific computing platforms. We call the concept 

High performance computing Infrastructure as a 

Service (Hi-IaaS). Providing HPC resources as a 

cloud service encounters the abovementioned 

problems caused by the rigidness of the HPC system. 

Therefore, a system for Hi-IaaS needs the flexibility 

to cover diversified HPC applications and different 

platforms for each application. 

From the system point of view, Hi-IaaS must 

cover recently emerged applications, such as 

IoT/BigData and AI in addition to scientific 

simulations that have been major applications of HPC. 

In other words, Hi-IaaS must offer both high 

performance data analytics (HPDA) and HPC in a 

cloud. The key to covering many applications and 

their application specific computing platforms is 

reconfigurability in both software and hardware. 

In this paper, we present the architecture of Hi-

IaaS and describe key technologies mainly focusing 

on the hardware reconfigurability. A part of the Hi-

IaaS system including the essential function of the 

reconfigurable hardware platform and job 

management system has been developed to 

investigate the whole system operation of Hi-IaaS 

from a user’s job submission, through hardware 

reconfiguration, to job execution. 

2 CONCEPT AND 

ARCHITECTURE OF Hi-IaaS 

Hi-IaaS provides computing platforms for diversified 

HPDA and HPC applications as a cloud service. This 

section describes the concept and platform 

architecture of Hi-IaaS. 

2.1 Architecture 

From the background mentioned in section 1, the 

requirements for Hi-IaaS system are summarized as 

follows. 

A) Covering diversifying high performance 

applications. 

B) Providing optimal hardware for each user’s 

job. 

C) Minimizing users’ job waiting time. 

D) Minimizing hardware and software cost. 

E) Increasing resource utility rate. 

To execute various applications while enabling 

each application to enjoy high performance, the 

system must be equipped with various hardware 

devices including graphics processing unit (GPU)/ 

field programmable gate array (FPGA) accelerators, 

high speed storage, and an interconnect network. In 

addition, from the cloud service provider’s point of 

view, the computing resources must be provided 

quickly with less waiting time. The simplest solution 

is preparing a sufficient quantity of all the hardware 

that can afford to provide the necessary performance 

for each application to avoid resource conflicts 

among users. However, this solution leads to high 

initial cost and operation cost including electrical 

power consumption. In addition, the resource utility 

rate tends to still be low, and hence, the solution does 

not satisfy requirement D) or E).  
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2.2 Reconfigurable Hardware 

The solution we present here is based on a highly 

reconfigurable hardware with a software defined 

management method. The whole system architecture 

is shown in Figure 2. The fineness of the 

reconfigurability is a hardware device level. This 

means that, for example, if a user wants to execute a 

type of deep learning job, the user can specify as 

many GPUs as necessary for the job. In addition, 

when the job is completed, the GPU must be detached 

and then allocated for other jobs. This hardware 

device level reconfigurability is the key to cover 

various applications with high performance by an 

optimal hardware reconfiguration for each 

application. In addition, a software defined 

management capability can make the reconfiguring 

process executed dynamically along with each user’s 

job. It can save hardware resources for high 

performance applications by sharing them among 

different user jobs and thus can minimize hardware 

cost and increase the resource utility rate. 

 

Figure 2: Proposed system architecture. 

2.3 Reconfigurable Software 

In addition to the highly reconfigurable hardware, a 

reconfigurable software platform is also necessary to 

provide a high performance computing platform from 

a cloud. This is because most recent high performance 

applications such as high performance data analytics 

are executed on a distributed system software 

framework such as Hadoop and Spark 

(Hadoop.apache.org, 2017; Spark.apache.org, 2017). 

By using these frameworks, users can utilize a 

scaling-out method to increase the throughput of the 

processing. In those frameworks, data storage should 

also be a reconfigurable distributed system. Thus, the 

computing platform needs to support such 

reconfigurable and distributed software frameworks. 

When the user’s job utilizes GPU/FPGA 

accelerators, software reconfigurability is also 

necessary. By using accelerators, the computing 

system becomes a hetero system equipped with a 

heterogeneous processing unit. Thus, the system 

needs a mechanism for assigning a set of processors 

and accelerators to execute the user’s job from 

multiple central processing units (CPUs) and 

accelerators in the system. This function is important 

and essential for the reconfigurable hardware because 

the number of processors and accelerators might 

change after the reconfiguration sequence. 

By utilizing the reconfigurable software platform, 

the proposed system needs to provide the optimal 

computing resources of not only hardware but also a 

software framework co-operating with the 

reconfigurable hardware. 

2.4 Job and Resource Cross-
Management 

If the HPC resources are allocated in accordance with 

each user’s job execution dynamically and then 

reassigned to another job after the job is completed, 

the number of hardware can be decreased and the 

resource utility rate can be increased. In turn, this will 

decrease conflicts between users demanding the same 

HPC hardware resources and thus decrease the job 

waiting time caused by resource congestion. 

For this purpose, the job management system and 

the resource manager of the reconfigurable hardware 

work together as a job and resource cross-

management system (JRMS). When a user’s job is 

submitted, the JRMS enqueues the job and makes a 

list of necessary hardware and software frameworks 

as a resource recipe. Then the resource manager 

reconfigures hardware and software to make a 

computer platform for the job in accordance with the 

resource recipe. After that, the scheduler gives the 

dynamically configured computer platform to the job. 

2.5 Features of Proposed System 

The three functional blocks mentioned above 

(reconfigurable hardware, reconfigurable software, 

and a job resource cross-management system) make 

our proposed system exhibit three features. 

A) A computing platform is reconfigured 

dynamically. 

B) Application specific software framework 

can be used. 

C) Hardware resources are shared among 

different jobs. 
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These three features can satisfy the five requirements 

in subsection 2.1. 

Note that the platform must be implemented on 

the basis of open standard hardware and software 

because utilizing open source resources effectively 

reduces the capital cost and operational cost for a big 

system like a cloud. 

3 DYNAMIC RECONFIGURABLE 

HARDWARE 

The Hi-IaaS system proposed in section 2 must 

provide optimal HPC resources in accordance with 

the user request. For this purpose, the elemental 

hardware configuration of the proposed system such 

as the number of servers, network connection, and 

data storage must be able to be changed even after 

system deployment. In addition, hardware devices 

composing each platform (such as a GPU accelerator, 

solid state drive (SSD) storage, and HBA of 

InfiniBand) must be able to be easily 

attached/detached by the resource manager.  

The following subsection describes the three key 

components for achieving such hardware-level high 

reconfigurability in detail. 

3.1 Resource Pool of Disaggregated 
Computer Platform 

The first key component is a reconfigurable hardware 

resource pool. One prospective way of making a 

reconfigurable hardware platform is a resource pool 

system (or disaggregated computer system) (Han et 

al., 2013; Open Compute 2017; 

Presentations.interop.com, 2017). It has pools of 

hardware devices such as a compute pool, a 

GPU/FPGA accelerator pool, a storage pool, and a 

network interface pool as shown in Figure 3. 

 

Figure 3: Concept of resource pool system. 

For such a disaggregated system, interconnect 

technology is the most important because it is the very 

point of disaggregation. To attach hardware devices 

such as accelerators, storages, and network interfaces 

at the same point of computer architecture, Peripheral 

Component Interconnect (PCI) Express is the most 

appropriate interconnect because almost all the 

devices have the PCI Express interface. PCI Express 

is the most common open standard of an I/O interface 

today. 

However, PCI Express is a bus technology with a 

single root tree topology that is implemented by a PCI 

Express switch chip. This means only a single 

compute can exist in a fabric network based on PCI 

Express. In addition, the number of devices that can 

be connected to a PCI Express bus is mostly limited 

to fewer than 10 because of the scale of the switch 

chip. The link distance is also limited because 

cascading the PCI Express switch makes a complex 

and deep forest of PCI bridges in which a 

conventional basic input/output system (BIOS) 

cannot complete all the discovery and enumeration 

processes of bus and endpoint devices. 

To use PCI Express as an interconnect fabric of a 

Hi-IaaS system, Express Ethernet (ExpEther) 

technology has been adopted (Suzuki et al., 2006) in 

the proposed Hi-IaaS system. ExpEther is a PCI 

Express switch over an Ethernet as shown in Figure 

4. It can make multiple single-hop PCI Express 

switches over an Ethernet network. ExpEther has five 

advantages in terms of the interconnect fabric of 

highly reconfigurable disaggregated computer 

hardware (Yoshikawa et al., 2014). 

A) Almost no limit to the number of computes 

and devices. 

B) Almost no limit to the connection distance. 

C) Logically equivalent to a single-hop PCI 

Express switch. 

D) PCI Express tree can be software defined 

(reconfigurable). 

E) Comparable performance to local device. 

Features A)-C) are achieved by the distributed 

PCI Express switch architecture of ExpEther (Suzuki 

et al., 2006). 

ExpEther makes a single hop PCI Express switch 

even if the Ethernet network is composed of multiple 

switches. By using this architecture, we can put as 

many computes and devices as necessary in a single 

Ethernet network without limits to the connection 

distance.  

In addition, an ExpEther chip has a group ID. PCI 

configuration is automatically executed among 

ExpEther chips that have the same group ID. That is, 

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

138



ExpEther chips with the same group ID connected 

through the Ethernet are logically equivalent to a PCI 

Express switch. Note that the Ethernet is transparent 

to OS/software. From the OS/software, all the devices 

are recognized as local devices as if they were in a 

local chassis. 

Therefore, by controlling group ID, the computer 

hardware can be reconfigured and can be software 

defined by using the resource manager as mentioned 

in feature D). All the functions of ExpEther are 

implemented in a hardware chip, and thus, the latency 

of the chip is less than 1 µs. The device can perform 

comparably to those installed in the local slot inside 

the chassis of a computer as mentioned in feature E). 

 

Figure 4: Dynamic attachment/detachment of GPU. 

Considering these features, we adopt ExpEther as 

an interconnect fabric of a reconfigurable computer 

hardware platform. To make the resource pool, 

computes can be a conventional server, and devices 

can be conventional PCI Express devices without any 

modification. In addition, software including OS and 

device drivers does not need to be modified.  

The simplest implementation is using a pair of an 

ExpEther HBA card and an IO Expansion box 

connected directly or via an Ethernet switch. The IO 

Expansion box contains multiple PCI Express slots 

with an ExpEther chip on the motherboard. Note that 

the ExpEther chip has congestion control and a retry 

mechanism. Therefore, the Ethernet switch can be a 

standard one without supporting Converged Ethernet 

specifications. 

3.2 Resource Manager 

The second key component is the resource manager. 

By using ExpEther as an interconnect fabric, we can 

put multiple roots (computes) and endpoint devices in 

a single network to make a resource pool system. 

ExpEther chips that have the same group ID make a 

PCI Express tree automatically. The group ID of an 

ExpEther chip can be set remotely by sending a 

control packet from the resource manager through the 

Ethernet that connects all the computes and devices. 

As described in the previous section, The Ethernet is 

transparent to the OS/software. From the 

OS/software, all the devices are recognized as local 

devices as if they were in the chassis. Therefore, 

changing group ID corresponds to inserting/removing 

PCI Express devices to/from a local PCI Express slot 

physically. By using a PCI Express device that 

supports a PCI compliant hot-plug process, the 

proposed system can become reconfigurable at the 

hardware device-level. That is, we can attach/detach 

any devices from a resource pool in accordance with 

the user’s request. 

 

Figure 5: OpenStack-based resource manager. 

The resource manager basically monitors all the 

computes, devices, and the PCI Express-level 

connections, that is, the PCI Express tree. To 

configure the hardware, the resource manager sets 

group IDs of ExpEther chips with computes and 

devices that should be connected in accordance with 

the hardware reconfiguration specified by the job 

resource cross-management system (JRMS) 

described below. 

We have developed a resource manager on the 

basis of the OpenStack framework (OpenStack, 2017) 

as shown in Figure 5. The current version of 

OpenStack (MITAKA) does not have a management 

method for disaggregated computers and devices. To 

include such low layer level management in the 

OpenStack framework, we have modified Ironic 

because it offers a function for bare metal (physical) 

server control although a major control object of the 

OpenStack is virtual machines. In addition, Ironic has 

an advantage because it is already equipped with 

(re)boot control, which is required to attach/detach 

PCI Express devices.  

The monitor and controller function for the 

ExpEther system is implemented as an EE manager. 

It is a simple module that monitors and sends a 

control packet of ExpEther. The monitored 

information is recorded in a database through Ironic. 
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When the system is reconfigured, a control packet 

including a new group ID for the ExpEther chip with 

a specified compute/device is sent through the 

Ethernet. The management methods specific to 

ExpEther are implemented as an EE driver in Ironic. 

This segregated implementation of the management 

methods enables the modified Ironic to cover other 

disaggregated computer systems that use interconnect 

fabric other than ExpEther. 

The resource manager has a control application 

program interface (API) for the JRMS and a graphical 

user interface (GUI) and command-line interface 

(CLI) for a user’s direct control. The Horizon GUI is 

expanded to include a device-level monitor and a 

control interface. Other mechanisms (such as Heat: 

Orchestration, Ceilometer: telemetry, Nova: 

scheduler, Keystone: authentication) have been 

implemented together without modification from an 

original OpenStack framework. 

3.3 Job Resource Cross Management 
System 

The third key component is job and resource cross-

management system (JRMS). To allocate HPC 

resources in accordance with the requested 

specification dynamically with the job execution, a 

JRMS has been developed. It consists of two major 

functional blocks: a job management system (JMS) 

based on Open Grid Scheduler 

(Gridscheduler.sourceforge.net, 2017), and a policy 

based resource assignment controller (Brain) with an 

interface between the resource manager mentioned 

above and also a software-defined networking (SDN) 

controller as shown in Figure 6. The operational flow 

is described as follows. 

1) User submits a job with resource request. 

2) JMS makes a list of candidate resources. 

3) Brain receives H/W resource status 

4) Brain asks the resource manager to configure 

resources 

5) Resource manager announces the completion 

of reconfiguration 

6) Brain announces resource address for job 

scheduler 

7) JMS executes the job in the queue 

JRMS plays three major roles. It receives a user’s 

job request and then schedules it in the queue. At the 

same time, it picks out some lists of resources that 

satisfy the user’s request from a resource pool 

including a network route for an MPI when the job is 

specified to be executed on a cluster system. Brain 

receives the set of candidate resources and then 

chooses and modifies the received list by considering 

the current usage of the resources and link/node 

utilization. Then the job is set in the execution queue 

with the resource recipe. When the job’s turn comes, 

JRMS tells the resource manager to configure the 

hardware to make a computer platform in accordance 

with the resource recipe. After a certain amount of the 

system waiting time, which can be set as a parameter, 

the job is executed. Although it is out of the scope of 

this paper, JRMS can control networks and software. 

 

Figure 6: Job and Resource Cross Management System 

(JRMS). 

4 EXPERIMENTAL SYSTEM 

4.1 Implementation 

We have built an experimental system to see whether 

the proposed architecture can be implemented into a 

real system, i.e., to see whether the computer 

hardware can be dynamically reconfigured with each 

job execution.  

The experimental system is composed of the 

resource pool, resource manager, and job and 

resource cross-management system as shown in 

Figure 7. 

The resource pool has two computes, both of 

which are commercially available compact 

workstations (NEC Express 5800 52Xa: CPU: E3-

1200v3, 16GB DDR3-1600 SDRAM). The PCI 

Express slot of the ExpEther IO expansion unit 

contains IO devices, which are two commercially 

available GPUs (NVIDIA K-5000) and a non-volatile 

memory express standard (NVMe) card. The NVMe 

storage card is a laboratory-level prototype. It 

supports NVMe 1.1 specification including single-

root input/output virtualization (SR-IOV). With 

ExpEther, an SR-IOV device can be shared among 

multiple computes at the PCI Express level. This 

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

140



means that the NVMe card can be used by two 

computes simultaneously whereas the OS in each 

compute utilizes the storage card as if the storage card 

were in a local slot. The “exclusive write” operation 

is implemented by using “compare and write” 

operation, which is also specified in NVMe 1.1. 

These resources are connected through ExpEther with 

two paths of 10G-Ethernet through the standard 

Ethernet switch (NEC QX-S5828T). 

The resource manager and JRMS are installed in 

a virtual machine (VM) on the same machine by using 

Virtual Box. The operating system (OS) for the 

resource manager is CentOS 7.2, and the JRMS is 

CentOS 6.4. The version of the OpenStack is Kilo. 

The resource manager is connected to the ExpEther 

network (Ethernet), and JRMS is connected to each 

compute via an Internet protocol (IP) network. 

In this implementation, a software platform 

including the OS of compute nodes is static though it 

can be installed after reconfiguration of the hardware 

by using a standard Ironic process. Apache Spark, 

storage software, and an accelerator runtime manager 

were installed on the computes in advance. These 

reconfigurable software parts are out of the scope of 

this paper and will be described in the future work to 

implement the mechanism for delivering these 

software platforms dynamically. 

 

Figure 7: Experimental system. 

4.2 Operation 

Figure 8 shows an example scenario to explain the 

control sequence. First, a job request is submitted to 

the JRMS. It contains a user’s requirements for the 

computing platform. In this example, it indicates two 

nodes both installed with a single GPU (K-5000). 

Both nodes share the same external NVMe storage, 

though it is a local storage from the software view of 

each node. 

The JRMS puts the job into the queue. Then it 

makes a list of the resources that can be used to satisfy 

the request. The list is sent to Brain, which has a 

database of the resources including their current 

status. In this experimental system, two computes, 

two GPUs, and an NVMe storage card are in the 

resource pool. On the nodes, the software platform is 

pre-installed and networks among nodes are fixed 

because we want to focus on the hardware 

reconfigurability in this example scenario. In 

addition, the group IDs of ExpEther are assigned as 

#1 and #2 for each node in advance. The nodes share 

an external NVMe storage card in the pool by using 

the software storage engine we have developed. 

 

Figure 8: Sequence of job execution. 

Brain always gathers the information on resources 

and puts it in the database. When the resource list 

arrives, by referring to the database, Brain determines 

the devices (GPU in this scenario) for each compute 

node. 

Then the resource manager is indicated to change 

the configuration to attach a GPU to each node at the 

PCI Express level. To manage the PCI Express 

connection, the group ID of each ExpEther chip 

connected to the compute and IO device is recorded 

in the device list. The group ID of the unused devices 

in the pool is set to Group ID = #0. The group ID can 

be chosen from #1 to #4096. In this scenario, the 

group IDs of #1 and #2 are assigned for each GPU. 

Then the GPUs are attached to each node and hot-

plugged in the OS of each node. We set the waiting 

time for completion of the hot-plug process in OS to 

20 sec. This is longer than the necessary time for the 

hot-plug process, but it differs and deviates 

depending on the computing environment and the 

conditions. It should be shortened by investigating the 

Highly Reconfigurable Computing Platform for High Performance Computing Infrastructure as a Service: Hi-IaaS

141



hot-plug process in future work. In the end, the job is 

executed on a two-node cluster in which both nodes 

are installed with a GPU in accordance with the user’s 

request. 

The hot plug process of the GPUs can be seen by 

the horizon GUI of OpenStack framework as shown 

in Figure 9. The GUI is modified to show the PCI 

Express tree just like “lspci –t” command in LINUX. 

It is the server-view that shows the PCI Express 

connections from a compute node to endpoint 

devices. 

The device tree before the job execution is shown 

in the left part of Figure 9. Two PCI Express trees 

with Group IDs of #1 and #2 are shown here. There 

are NVMe storage cards in both nodes. These devices 

are the same device simultaneously shared. The red 

mark of the storage device indicates the device is 

shared among other nodes. Those nodes can be seen 

by clicking the red mark. 

Before the job execution, no GPU was seen in 

either PCI Express tree because both are in the 

resource pool with a group ID set as #0. When the job 

is executed with a request for using GPUs, the 

resource manager connects them to each server by 

setting group IDs of each GPU as #1 and #2. Then in 

the right part of Figure 9, GPUs are seen in both PCI 

Express trees. After that, the job is automatically 

executed. We found that the JRMS can execute the 

expected procedure including dynamically 

reconfiguring a computer hardware platform. 

 

Figure 9: Hot plug process on OpenStack management 

window. 

4.3 Performance 

Using the experimental setup described in the 

previous section, we also try to see whether the 

system can work as a HPC system. 

The main concern about the performance is the 

latency of the interconnection to form a resource pool, 

that is, the latency of the ExpEther chip, cable, and 

switch. The latency is about 700 ns for the ExpEther 

chip and 5 ns/m for the cable. A single hop of a switch 

is about 500 ns, which means a roundtrip takes about 

3 µs. 

Performance degradation by the latency highly 

depends on the application. Amano’s group already 

evaluated it in detail by investigating the performance 

scale-up in accordance with the number of GPUs 

(Nomura et al., 2014; Mitsuishi et al., 2016). In 

addition, this work focuses on the HPC use in a cloud. 

Most cloud users understand the computer resources 

in a cloud perform worse than those specially 

designed on premises for high cost. Therefore, in this 

study, we have investigated whether the Spark 

benchmark software, logistic regression, is 

accelerated by GPUs connected from the resource 

pool.  

Because the IO performance degradation of the 

ExpEther is not significant, we were able to enjoy 

acceleration by GPUs while one Spark benchmark, 

logistic regression, was performed. We could not 

compare the performance with the system in which 

the GPUs are directly mounted on the computer 

because the computer we used in this experiment is 

too compact to install GPUs inside. 

On the other hand, we can conclude that even if 

the cloud service provider deploys a conventional 1-

U machine that cannot install GPUs, it can provide 

GPU computing by using this reconfigurable 

mechanism. This increases the probability to obtain 

the computer platform from a cloud that perfectly 

matches one’s request. 

4.4 Reconfiguring Time 

Another important performance to consider is how 

much time it takes to reconfigure the system. So far, 

we do not have any technology to shorten the OS boot 

time even though it takes several tens of seconds or 

more. It is much longer than any other process in 

reconfiguration. Therefore, if the reconfiguration 

process needs a reboot, reconfiguration lasts almost 

as long as the reboot of the OS. This happens in the 

case of, for example, attaching an un-hot-pluggable 

device, adding a special driver for a device that the 

OS does not support, allocating memory, etc. 

Without a reboot, changing PCI Express 

configuration by ExpEther only takes a few µsec at 

the hardware level because it can be executed by just 

sending a control packet for changing group ID of the 

ExpEther chip with the target device. However, the 

device must be recognized by the OS in which a hot-

plug handler coordinates the attach/detach process 

before the hot-plugged device can be utilized by 

software. It takes about 10 sec or more depending on 

the device and status of the compute. Therefore, using 
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this experimental setup, we set the waiting time to 20 

sec for hardware reconfiguration. This waiting time 

dominates the reconfiguration time in non-reboot 

cases, so far. Further work should be done to evaluate 

the hot-plug time precisely and to minimize 

reconfiguring time to make this system faster for the 

hardware reconfiguration. 

5 EVALUATION IN CLOUD 

USECASE 

Our organization, the Cybermedia Center, provides 

computer resources to researchers and students of 

Osaka University as well as other universities. It has 

three major computing systems: a vector super 

computer (SXAce), a scalar cluster computer (HCC), 

and a scalar cluster computer with GPU (VCC) 
(Hpc.cmc.osaka-u.ac.jp, 2017). 

The VCC consists of 65 servers with IO expansion 

capability using ExpEther. However, in the current 

operation, the configuration is not changed 

dynamically. The reconfiguration is done only every 

half a year by surveying users’ plans for the 

computing platform utilization; for example, monthly 

use of 4 nodes with 2 GPU machines for 200 hours, 

16 nodes with PCI-SSD for 100 hours, etc. In 

accordance with the users’ plans, the computer 

platform configuration for the next half a year is 

determined, that is, the system configuration is rigid 

for half a year. 

We evaluated how the utility rate and job waiting 

time can be improved by adopting the proposed 

dynamic reconfiguration. 

5.1 Resource Utilization Simulation 

First, the resource utility rate is estimated for a 

dynamic reconfigurable hardware platform by using 

that of a statically configured computer system as a 

reference. By using a job scheduling simulator, 

ALEA (Klusácek and Rudová, 2010), we have 

investigated how the utility rate changes in 

accordance with a various types of hardware 

configuration and job streams. 

ALEA can deal with common problems of job 

scheduling in clusters and grids, like heterogeneity of 

jobs and resources and dynamic runtime changes, and 

provide a handful of features including a large set of 

various scheduling algorithms, several standard 

workload parsers, and a set of typical fairness-related 

job ordering policies. 

The job and resource scheduling algorithm is out 

of the scope of this paper because determining the 

best algorithm is too elaborate. This is because this 

system is so flexible that the simulation conditions to 

consider are very diverse. 

Therefore, we fixed some conditions to simplify 

the simulation and roughly find out the dependency 

of the utility rate on the hardware reconfiguration and 

job workload. The simulated system is a GPU cluster 

system with 64 compute nodes and 64 GPUs. The 

simulation conditions are as follows. 

A) Scheduling algorithm is FIFO. 

B) Reconfiguration is applied only for the 

number of nodes and GPUs. 

C) All workload is the same as fixed execution 

time. 

D) A node can accept only a single job at a time. 

E) Number of nodes a job requests is fixed to 8 or 

16. 

The utility rate of the GPU is investigated for the 

computer hardware reconfiguration of static and 

reconfigurable cases. For the static configuration, we 

investigated the five different configurations in Table 

1. 

Table 1: Cluster configurations. 

Cluster set Number of GPU / Node set 

#1 1 / 64 - - 

#2 2 / 8 1 / 48 0 / 8 

#3 2 / 16 1 / 32 0 / 16 

#4 4 / 8 2 / 16 0 / 40 

#5 4 / 10 2 / 12 0 / 42 

For all the cluster configuration sets, the average 

GPU utility is plotted in Figure 10. The average utility 

rate for the reconfigurable hardware is also plotted in 

the figure as a dotted line because it is independent 

from the static cluster configuration. For #1, #2, and 

#3, the numbers of GPUs for nodes are well balanced 

to execute jobs with the node and GPU number 

randomized from 0 to the minimum GPU number of 

the cluster set, that is, 1 for cluster sets #1 to #3 and 2 

for cluster sets #4 and #5. However, because the total 

number of GPUs is limited to 64, for #4 and #5 that 

include four-GPU machines, the number of nodes 

without GPUs becomes dominant. Thus, more jobs 

that request GPUs have to wait for GPU nodes to be 

released by the currently executed job when the job 

finishes. 

The utility rate of GPU for the configuration of 

cluster set #5 is shown in Figure 10 as an example. It 

varies over time when a job cannot be assigned its 

requested computer resources in terms of the number 
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Figure 10: Utility rate depending on cluster configuration. 

of nodes or GPUs. The job stays in a queue waiting 

for finished jobs to release the resources. This 

happens even if some resources are available. For 

example, if the job requests four-GPU nodes, it 

cannot be executed even if two-GPU nodes are 

available. Then the GPUs on the two-GPU nodes are 

left unused until a job with two-GPU nodes is 

submitted. By using a reconfigurable hardware 

platform, unused GPUs are put back into the resource 

pool, then four-GPU nodes are configured by using 

them, and thus, a four-GPU job can be executed 

without waiting time. This results in decreasing the 

time for executing all jobs by about 42% that of the 

rigid system, in addition to increasing the average 

GPU utility rate from 20% to 47 % in the example use 

case shown in Figure 11. 

 

Figure 11: Utility rate of GPU of cluster set #5. 

5.2 Job Waiting Time Estimation with 
Real Operation 

We investigated the real utilization record of the VCC 

system to see whether the Hi-IaaS can increase 

resource utility. Currently, the cluster configuration is 

fixed in this half a year as shown in Table 2.  

With this static configuration, some users’ jobs 

were congested. Figure 12 shows the worst case in the 

months of 2Q-3Q in 2016. The figure only shows 

nodes #19-#23 of 65 to simplify the explanation. On 

Sep. 28, the blue job had been executed on nodes #22  
    

   

Table 2: Current cluster configurations of VCC. 

Node Number # GPUs per Node 

#0 to #4 4 

#5 to #10 3 

#11 to #21 2 

#22 to #64 0 

 

and #23. Then at 15:00, the yellow job was enqueued. 

Although the yellow job did not request GPUs, it was 

executed on the GPU machine (nodes #19, #20, #21) 

because other nodes (#22, #23) were occupied. At 

20:00, a purple job that requested two nodes with a 

GPU was enqueued. However, all the GPU machines 

(nodes #19, #20, #21) were occupied at that time, and 

thus, the job had to be kept waiting. At 20:00 on Sep. 

29, the yellow job was completed. Then the purple 

GPU job was executed. The waiting time for the 

purple job was 25.1 hours. 

 

Figure 12: Stacked jobs can be executed by using this 

platform. 

In this case, there were compute nodes 

unoccupied (nodes #22, #23) when the purple job 

with a GPU request was enqueued. At the same time, 

GPUs on nodes #19-#21 were not utilized. Therefore, 

if we can dynamically reconfigure the system by 

putting unused GPUs on nodes #19-#21 back in the 

resource pool and then attach them to the free 

compute nodes (nodes #22, #23), the purple job will 

be able to be executed without experiencing such a 

long waiting time. 

This is just an example case, but we expect that 

further development will lead us to make the 

reconfiguration dynamically and automatically 

without a system engineer monitoring the job 

operation 24 hour x 7 days, which is required under 

the current operation. 

6 RELATED WORK 

This work succeeded the research on disaggregated 

computing platform using ExpEther (Yoshikawa et 

al., 2014; Suzuki et al., 2016), although the previous 

work focused on scale up ability and a hardware 
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mechanism for simultaneously sharing devices 

among multiple servers. On the other hand, this paper 

focuses on reconfigurability to be used as a HPC 

platform in a cloud. 

In terms of disaggregated computing systems, 

Intel Rack Scale Architecture and 

OpenComputeProject (Presentations.interop.com, 

2017; Open Compute, 2017) are attracting growing 

interest in computer industries. However, the 

disaggregated resources are distributed within a rack. 

Han et al. (2013) considered data center scale 

disaggregation mainly focusing on performance 

degradation in memory disaggregation caused by an 

interconnect network. Our work also has been aiming 

at data center scale disaggregation. The difference is 

we realize it by pure open standard interface PCI 

Express and Ethernet. For the performance 

consideration, Amano’s team has investigated 

performance in detail and succeeded in scaling 

performance along with the number of GPUs 

(Nomura et al., 2014; Mitsuishi et al., 2016). Katrinis 

et al. (2016) also published a research plan for cloud 

data center scale disaggregation but so far it is at a 

vision level. 

In terms of reconfigurability in a cloud, a lot of 

work has done on the cloud management frameworks 

including OpenStack (Sefraoui, Aissaoui and Eleuldj, 

2014; Xu et al., 2014). The object of reconfiguration 

is a VM-based system although this work treats the 

hardware devices comprising servers in order to 

drastically change the function and performance of 

the computing platform. 

In terms of job resource allocation, Lee, Chun and 

Katz (2011), worked on resource allocation and 

scheduling together, the job of which is executed in a 

hetero computing platform in a cloud. Because the 

work used a current cloud service as it is, the resource 

allocation was performed by using instances on the 

service menu. There is a possibility that the 

scheduling algorism can be applied for our 

reconfigurable hardware platform with low-level 

hardware resource allocation resulting in more 

dynamic control for job execution. 

In terms of HPC as a service, Wheeler et al. (2012) 

made a framework to dispatch a user’s job over 

different HPC system including BlueGene 

7 CONCLUSIONS 

We presented the concept of High performance 

computing Infrastructure as a Service (Hi-IaaS) and a 

system that realizes it. The system consists of job and 

resource cross management software with 

reconfigurable hardware that can make computer 

hardware from the resource pool by 

attaching/detaching computers and devices at the 

Peripheral Component Interconnect Express (PCI 

Express) level in accordance with a user’s request. It 

is also equipped with a middleware/software platform 

for high performance data analysis that is increasingly 

being used as high performance computing (HPC). 

In this paper, we focused on the reconfigurable 

hardware of Hi-IaaS and developed a small 

experimental setup of the proposed system with two 

computes, two graphics processing units (GPUs), and 

a shared non-volatile memory express standard 

(NVMe) storage card. One piece of Spark benchmark 

software (logistic regression) was executed to 

investigate whether the proposed dynamic 

reconfiguration can be performed while enjoying 

high performance computing by GPU acceleration at 

the same time. 

In addition, the simulation results showed the 

effectiveness of reconfigurable platform for the 

resource utility rate increased from 20% to 47% and 

job execution time reduced by 42% in a 64-node 

system. Finally, we found our system can eliminate 

the 25-hour waiting time recorded as the worst case 

in the half-year real job operational record of our 

university’s computing center. 

8 FUTURE WORK 

We have been further investigating the effectiveness 

of this system in terms of various job workloads and 

system configurations. Next, we will investigate 

suitable algorithms for the reconfiguration that fit 

these job workloads and system configuration 

variations. We will also try to investigate the dynamic 

reconfiguration process and performance in a real-

world big system by using a VCC system when it can 

be utilized for experimental usage that does not 

conflict with ordinary HPC services. 
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