
Highly Reconfigurable Computing Platform for High Performance

Computing Infrastructure as a Service: Hi-IaaS

Akihiro Misawa1, Susumu Date1, Keichi Takahashi1, Takashi Yoshikawa1,2, Masahiko Takahashi2,

Masaki Kan2, Yasuhiro Watashiba3,1, Yoshiyuki Kido1, Chonho Lee1 and Shinji Shimojo1
1Cybermedia Center, Osaka University, 5-1 Mihogaoka, 567-0047, Ibaraki, Osaka, Japan

2System Platform Research Laboratories, NEC, 1753 Shimonumabe, Nakahara, 211-8666, Kawasaki, Kanagawa, Japan
3Information of Science, Nara Institute of Science and Technology, 8916-5, Takayama, 630-0192, Ikoma, Nara, Japan

Keywords: Cloud Computing, Disaggregation, Resource Pool, GPU/FPGA Accelerator, Hetero Computer, Distributed

Storage, Job Scheduling, Resource Management, PCI Express, Openstack, Software Defined System.

Abstract: It has become increasingly difficult for high performance computing (HPC) users to own a HPC platform for

themselves. As user needs and requirements for HPC have diversified, the HPC systems have the capacity

and ability to execute diverse applications. In this paper, we present computer architecture for dynamically

and promptly delivering high performance computing infrastructure as a cloud computing service in response

to users’ requests for the underlying computational resources of the cloud. To obtain the flexibility to

accommodate a variety of HPC jobs, each of which may require a unique computing platform, the proposed

system reconfigures software and hardware platforms, taking advantage of the synergy of Open Grid

Scheduler/Grid Engine and OpenStack. An experimental system developed in this research shows a high

degree of flexibility in hardware reconfigurability as well as high performance for a benchmark application

of Spark. Also, our evaluation shows that the experimental system can execute twice as many as jobs that

need a graphics processing unit (GPU), in addition to eliminating the worst case of resource congestion in the

real-world operational record of our university’s computer center in the previous half a year.

1 INTRODUCTION

High performance computing (HPC) systems have

increasingly been used for IoT/BigData and Artificial

Intelligence (AI) besides being used for conventional

scientific simulations. Future HPC systems will be

required to perform a wider variety of functions and

deliver higher performance than today. However, it is

becoming more difficult for HPC users to own such a

HPC platform for themselves because HPC systems

tend to be application-specific, unique, and peculiar,

and as a result, come in a wide variety. For example,

a server of a HPC system for graphics processing unit

(GPU) computing must have a high electrical power

supply, big slot space, and a cooling mechanism to

install a high power GPU accelerator. Taking a cluster

computing system using a message passing interface

(MPI) into consideration, a high-speed and expensive

host bus adapter (HBA) of Infiniband may be

installed. As a result, these HPC systems are far more

expensive and also consume a lot more electrical

power than conventional computing systems. Thus,

HPC users usually cannot afford to own those

varieties of HPC systems for themselves.

For such HPC users, advanced cloud services

have recently become a way of obtaining HPC

resources, such as a GPU computing platform and a

distributed cluster system using an MPI

(Docs.aws.amazon.com, 2017; GitHub, 2017;

Sanders, 2017). However, each system configuration

of these HPC systems is unique and rigid in terms of

using specific devices, network topologies, and

protocols as shown in Figure 1. For this reason, the

computing resources for the HPC systems in a cloud

must be reserved for only the usage for which they are

configured and cannot be flexibly used for other

usages. For example, a server node installed with two

GPUs is always a two-GPU machine even if other

users require only one GPU for each server node. A

cluster system composed of multiple server nodes

must be deployed on network carefully designed in

advance to provide the highest performance per

Misawa, A., Date, S., Takahashi, K., Yoshikawa, T., Takahashi, M., Kan, M., Watashiba, Y., Kido, Y., Lee, C. and Shimojo, S.
Highly Reconfigurable Computing Platform for High Performance Computing Infrastructure as a Service: Hi-IaaS.
DOI: 10.5220/0006302501630174
In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 135-146
ISBN: 978-989-758-243-1
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

135

system. For example, an MPI application may

necessitate a mesh or fat tree topology while a

Hadoop/Spark application may necessitate a map and

reduce topology.

Figure 1: HPC needs special configuration.

This rigidness causes problems for both the user

and cloud service provider. From the users’ point of

view, users cannot obtain the most appropriate

underlying computer resources of the cloud for their

applications because the computer system must be

chosen from a fixed configuration menu. This menu

may not offer the optimal configuration for their use

case because the menu items may be under or over the

expected or predicted specifications. In addition, the

resources a user wants to use might be being used for

another user’s job. This often happens because clouds

contain fewer HPC resources than they do

conventional servers for general cloud services.

From the cloud service provider’s point of view,

the provider must prepare and reserve many different

HPC platforms to satisfy diversified HPC user needs.

This leads the job duration for each platform to

become short. As a result, the utility rate of the HPC

system may be lower than 30%, even though HPC

resources are expensive to deploy.

Our goal is to provide HPC resources from a

cloud for various user applications on diverse domain

specific computing platforms. We call the concept

High performance computing Infrastructure as a

Service (Hi-IaaS). Providing HPC resources as a

cloud service encounters the abovementioned

problems caused by the rigidness of the HPC system.

Therefore, a system for Hi-IaaS needs the flexibility

to cover diversified HPC applications and different

platforms for each application.

From the system point of view, Hi-IaaS must

cover recently emerged applications, such as

IoT/BigData and AI in addition to scientific

simulations that have been major applications of HPC.

In other words, Hi-IaaS must offer both high

performance data analytics (HPDA) and HPC in a

cloud. The key to covering many applications and

their application specific computing platforms is

reconfigurability in both software and hardware.

In this paper, we present the architecture of Hi-

IaaS and describe key technologies mainly focusing

on the hardware reconfigurability. A part of the Hi-

IaaS system including the essential function of the

reconfigurable hardware platform and job

management system has been developed to

investigate the whole system operation of Hi-IaaS

from a user’s job submission, through hardware

reconfiguration, to job execution.

2 CONCEPT AND

ARCHITECTURE OF Hi-IaaS

Hi-IaaS provides computing platforms for diversified

HPDA and HPC applications as a cloud service. This

section describes the concept and platform

architecture of Hi-IaaS.

2.1 Architecture

From the background mentioned in section 1, the

requirements for Hi-IaaS system are summarized as

follows.

A) Covering diversifying high performance

applications.

B) Providing optimal hardware for each user’s

job.

C) Minimizing users’ job waiting time.

D) Minimizing hardware and software cost.

E) Increasing resource utility rate.

To execute various applications while enabling

each application to enjoy high performance, the

system must be equipped with various hardware

devices including graphics processing unit (GPU)/

field programmable gate array (FPGA) accelerators,

high speed storage, and an interconnect network. In

addition, from the cloud service provider’s point of

view, the computing resources must be provided

quickly with less waiting time. The simplest solution

is preparing a sufficient quantity of all the hardware

that can afford to provide the necessary performance

for each application to avoid resource conflicts

among users. However, this solution leads to high

initial cost and operation cost including electrical

power consumption. In addition, the resource utility

rate tends to still be low, and hence, the solution does

not satisfy requirement D) or E).

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

136

2.2 Reconfigurable Hardware

The solution we present here is based on a highly

reconfigurable hardware with a software defined

management method. The whole system architecture

is shown in Figure 2. The fineness of the

reconfigurability is a hardware device level. This

means that, for example, if a user wants to execute a

type of deep learning job, the user can specify as

many GPUs as necessary for the job. In addition,

when the job is completed, the GPU must be detached

and then allocated for other jobs. This hardware

device level reconfigurability is the key to cover

various applications with high performance by an

optimal hardware reconfiguration for each

application. In addition, a software defined

management capability can make the reconfiguring

process executed dynamically along with each user’s

job. It can save hardware resources for high

performance applications by sharing them among

different user jobs and thus can minimize hardware

cost and increase the resource utility rate.

Figure 2: Proposed system architecture.

2.3 Reconfigurable Software

In addition to the highly reconfigurable hardware, a

reconfigurable software platform is also necessary to

provide a high performance computing platform from

a cloud. This is because most recent high performance

applications such as high performance data analytics

are executed on a distributed system software

framework such as Hadoop and Spark

(Hadoop.apache.org, 2017; Spark.apache.org, 2017).

By using these frameworks, users can utilize a

scaling-out method to increase the throughput of the

processing. In those frameworks, data storage should

also be a reconfigurable distributed system. Thus, the

computing platform needs to support such

reconfigurable and distributed software frameworks.

When the user’s job utilizes GPU/FPGA

accelerators, software reconfigurability is also

necessary. By using accelerators, the computing

system becomes a hetero system equipped with a

heterogeneous processing unit. Thus, the system

needs a mechanism for assigning a set of processors

and accelerators to execute the user’s job from

multiple central processing units (CPUs) and

accelerators in the system. This function is important

and essential for the reconfigurable hardware because

the number of processors and accelerators might

change after the reconfiguration sequence.

By utilizing the reconfigurable software platform,

the proposed system needs to provide the optimal

computing resources of not only hardware but also a

software framework co-operating with the

reconfigurable hardware.

2.4 Job and Resource Cross-
Management

If the HPC resources are allocated in accordance with

each user’s job execution dynamically and then

reassigned to another job after the job is completed,

the number of hardware can be decreased and the

resource utility rate can be increased. In turn, this will

decrease conflicts between users demanding the same

HPC hardware resources and thus decrease the job

waiting time caused by resource congestion.

For this purpose, the job management system and

the resource manager of the reconfigurable hardware

work together as a job and resource cross-

management system (JRMS). When a user’s job is

submitted, the JRMS enqueues the job and makes a

list of necessary hardware and software frameworks

as a resource recipe. Then the resource manager

reconfigures hardware and software to make a

computer platform for the job in accordance with the

resource recipe. After that, the scheduler gives the

dynamically configured computer platform to the job.

2.5 Features of Proposed System

The three functional blocks mentioned above

(reconfigurable hardware, reconfigurable software,

and a job resource cross-management system) make

our proposed system exhibit three features.

A) A computing platform is reconfigured

dynamically.

B) Application specific software framework

can be used.

C) Hardware resources are shared among

different jobs.

Highly Reconfigurable Computing Platform for High Performance Computing Infrastructure as a Service: Hi-IaaS

137

These three features can satisfy the five requirements

in subsection 2.1.

Note that the platform must be implemented on

the basis of open standard hardware and software

because utilizing open source resources effectively

reduces the capital cost and operational cost for a big

system like a cloud.

3 DYNAMIC RECONFIGURABLE

HARDWARE

The Hi-IaaS system proposed in section 2 must

provide optimal HPC resources in accordance with

the user request. For this purpose, the elemental

hardware configuration of the proposed system such

as the number of servers, network connection, and

data storage must be able to be changed even after

system deployment. In addition, hardware devices

composing each platform (such as a GPU accelerator,

solid state drive (SSD) storage, and HBA of

InfiniBand) must be able to be easily

attached/detached by the resource manager.

The following subsection describes the three key

components for achieving such hardware-level high

reconfigurability in detail.

3.1 Resource Pool of Disaggregated
Computer Platform

The first key component is a reconfigurable hardware

resource pool. One prospective way of making a

reconfigurable hardware platform is a resource pool

system (or disaggregated computer system) (Han et

al., 2013; Open Compute 2017;

Presentations.interop.com, 2017). It has pools of

hardware devices such as a compute pool, a

GPU/FPGA accelerator pool, a storage pool, and a

network interface pool as shown in Figure 3.

Figure 3: Concept of resource pool system.

For such a disaggregated system, interconnect

technology is the most important because it is the very

point of disaggregation. To attach hardware devices

such as accelerators, storages, and network interfaces

at the same point of computer architecture, Peripheral

Component Interconnect (PCI) Express is the most

appropriate interconnect because almost all the

devices have the PCI Express interface. PCI Express

is the most common open standard of an I/O interface

today.

However, PCI Express is a bus technology with a

single root tree topology that is implemented by a PCI

Express switch chip. This means only a single

compute can exist in a fabric network based on PCI

Express. In addition, the number of devices that can

be connected to a PCI Express bus is mostly limited

to fewer than 10 because of the scale of the switch

chip. The link distance is also limited because

cascading the PCI Express switch makes a complex

and deep forest of PCI bridges in which a

conventional basic input/output system (BIOS)

cannot complete all the discovery and enumeration

processes of bus and endpoint devices.

To use PCI Express as an interconnect fabric of a

Hi-IaaS system, Express Ethernet (ExpEther)

technology has been adopted (Suzuki et al., 2006) in

the proposed Hi-IaaS system. ExpEther is a PCI

Express switch over an Ethernet as shown in Figure

4. It can make multiple single-hop PCI Express

switches over an Ethernet network. ExpEther has five

advantages in terms of the interconnect fabric of

highly reconfigurable disaggregated computer

hardware (Yoshikawa et al., 2014).

A) Almost no limit to the number of computes

and devices.

B) Almost no limit to the connection distance.

C) Logically equivalent to a single-hop PCI

Express switch.

D) PCI Express tree can be software defined

(reconfigurable).

E) Comparable performance to local device.

Features A)-C) are achieved by the distributed

PCI Express switch architecture of ExpEther (Suzuki

et al., 2006).

ExpEther makes a single hop PCI Express switch

even if the Ethernet network is composed of multiple

switches. By using this architecture, we can put as

many computes and devices as necessary in a single

Ethernet network without limits to the connection

distance.

In addition, an ExpEther chip has a group ID. PCI

configuration is automatically executed among

ExpEther chips that have the same group ID. That is,

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

138

ExpEther chips with the same group ID connected

through the Ethernet are logically equivalent to a PCI

Express switch. Note that the Ethernet is transparent

to OS/software. From the OS/software, all the devices

are recognized as local devices as if they were in a

local chassis.

Therefore, by controlling group ID, the computer

hardware can be reconfigured and can be software

defined by using the resource manager as mentioned

in feature D). All the functions of ExpEther are

implemented in a hardware chip, and thus, the latency

of the chip is less than 1 µs. The device can perform

comparably to those installed in the local slot inside

the chassis of a computer as mentioned in feature E).

Figure 4: Dynamic attachment/detachment of GPU.

Considering these features, we adopt ExpEther as

an interconnect fabric of a reconfigurable computer

hardware platform. To make the resource pool,

computes can be a conventional server, and devices

can be conventional PCI Express devices without any

modification. In addition, software including OS and

device drivers does not need to be modified.

The simplest implementation is using a pair of an

ExpEther HBA card and an IO Expansion box

connected directly or via an Ethernet switch. The IO

Expansion box contains multiple PCI Express slots

with an ExpEther chip on the motherboard. Note that

the ExpEther chip has congestion control and a retry

mechanism. Therefore, the Ethernet switch can be a

standard one without supporting Converged Ethernet

specifications.

3.2 Resource Manager

The second key component is the resource manager.

By using ExpEther as an interconnect fabric, we can

put multiple roots (computes) and endpoint devices in

a single network to make a resource pool system.

ExpEther chips that have the same group ID make a

PCI Express tree automatically. The group ID of an

ExpEther chip can be set remotely by sending a

control packet from the resource manager through the

Ethernet that connects all the computes and devices.

As described in the previous section, The Ethernet is

transparent to the OS/software. From the

OS/software, all the devices are recognized as local

devices as if they were in the chassis. Therefore,

changing group ID corresponds to inserting/removing

PCI Express devices to/from a local PCI Express slot

physically. By using a PCI Express device that

supports a PCI compliant hot-plug process, the

proposed system can become reconfigurable at the

hardware device-level. That is, we can attach/detach

any devices from a resource pool in accordance with

the user’s request.

Figure 5: OpenStack-based resource manager.

The resource manager basically monitors all the

computes, devices, and the PCI Express-level

connections, that is, the PCI Express tree. To

configure the hardware, the resource manager sets

group IDs of ExpEther chips with computes and

devices that should be connected in accordance with

the hardware reconfiguration specified by the job

resource cross-management system (JRMS)

described below.

We have developed a resource manager on the

basis of the OpenStack framework (OpenStack, 2017)

as shown in Figure 5. The current version of

OpenStack (MITAKA) does not have a management

method for disaggregated computers and devices. To

include such low layer level management in the

OpenStack framework, we have modified Ironic

because it offers a function for bare metal (physical)

server control although a major control object of the

OpenStack is virtual machines. In addition, Ironic has

an advantage because it is already equipped with

(re)boot control, which is required to attach/detach

PCI Express devices.

The monitor and controller function for the

ExpEther system is implemented as an EE manager.

It is a simple module that monitors and sends a

control packet of ExpEther. The monitored

information is recorded in a database through Ironic.

Highly Reconfigurable Computing Platform for High Performance Computing Infrastructure as a Service: Hi-IaaS

139

When the system is reconfigured, a control packet

including a new group ID for the ExpEther chip with

a specified compute/device is sent through the

Ethernet. The management methods specific to

ExpEther are implemented as an EE driver in Ironic.

This segregated implementation of the management

methods enables the modified Ironic to cover other

disaggregated computer systems that use interconnect

fabric other than ExpEther.

The resource manager has a control application

program interface (API) for the JRMS and a graphical

user interface (GUI) and command-line interface

(CLI) for a user’s direct control. The Horizon GUI is

expanded to include a device-level monitor and a

control interface. Other mechanisms (such as Heat:

Orchestration, Ceilometer: telemetry, Nova:

scheduler, Keystone: authentication) have been

implemented together without modification from an

original OpenStack framework.

3.3 Job Resource Cross Management
System

The third key component is job and resource cross-

management system (JRMS). To allocate HPC

resources in accordance with the requested

specification dynamically with the job execution, a

JRMS has been developed. It consists of two major

functional blocks: a job management system (JMS)

based on Open Grid Scheduler

(Gridscheduler.sourceforge.net, 2017), and a policy

based resource assignment controller (Brain) with an

interface between the resource manager mentioned

above and also a software-defined networking (SDN)

controller as shown in Figure 6. The operational flow

is described as follows.

1) User submits a job with resource request.

2) JMS makes a list of candidate resources.

3) Brain receives H/W resource status

4) Brain asks the resource manager to configure

resources

5) Resource manager announces the completion

of reconfiguration

6) Brain announces resource address for job

scheduler

7) JMS executes the job in the queue

JRMS plays three major roles. It receives a user’s

job request and then schedules it in the queue. At the

same time, it picks out some lists of resources that

satisfy the user’s request from a resource pool

including a network route for an MPI when the job is

specified to be executed on a cluster system. Brain

receives the set of candidate resources and then

chooses and modifies the received list by considering

the current usage of the resources and link/node

utilization. Then the job is set in the execution queue

with the resource recipe. When the job’s turn comes,

JRMS tells the resource manager to configure the

hardware to make a computer platform in accordance

with the resource recipe. After a certain amount of the

system waiting time, which can be set as a parameter,

the job is executed. Although it is out of the scope of

this paper, JRMS can control networks and software.

Figure 6: Job and Resource Cross Management System

(JRMS).

4 EXPERIMENTAL SYSTEM

4.1 Implementation

We have built an experimental system to see whether

the proposed architecture can be implemented into a

real system, i.e., to see whether the computer

hardware can be dynamically reconfigured with each

job execution.

The experimental system is composed of the

resource pool, resource manager, and job and

resource cross-management system as shown in

Figure 7.

The resource pool has two computes, both of

which are commercially available compact

workstations (NEC Express 5800 52Xa: CPU: E3-

1200v3, 16GB DDR3-1600 SDRAM). The PCI

Express slot of the ExpEther IO expansion unit

contains IO devices, which are two commercially

available GPUs (NVIDIA K-5000) and a non-volatile

memory express standard (NVMe) card. The NVMe

storage card is a laboratory-level prototype. It

supports NVMe 1.1 specification including single-

root input/output virtualization (SR-IOV). With

ExpEther, an SR-IOV device can be shared among

multiple computes at the PCI Express level. This

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

140

means that the NVMe card can be used by two

computes simultaneously whereas the OS in each

compute utilizes the storage card as if the storage card

were in a local slot. The “exclusive write” operation

is implemented by using “compare and write”

operation, which is also specified in NVMe 1.1.

These resources are connected through ExpEther with

two paths of 10G-Ethernet through the standard

Ethernet switch (NEC QX-S5828T).

The resource manager and JRMS are installed in

a virtual machine (VM) on the same machine by using

Virtual Box. The operating system (OS) for the

resource manager is CentOS 7.2, and the JRMS is

CentOS 6.4. The version of the OpenStack is Kilo.

The resource manager is connected to the ExpEther

network (Ethernet), and JRMS is connected to each

compute via an Internet protocol (IP) network.

In this implementation, a software platform

including the OS of compute nodes is static though it

can be installed after reconfiguration of the hardware

by using a standard Ironic process. Apache Spark,

storage software, and an accelerator runtime manager

were installed on the computes in advance. These

reconfigurable software parts are out of the scope of

this paper and will be described in the future work to

implement the mechanism for delivering these

software platforms dynamically.

Figure 7: Experimental system.

4.2 Operation

Figure 8 shows an example scenario to explain the

control sequence. First, a job request is submitted to

the JRMS. It contains a user’s requirements for the

computing platform. In this example, it indicates two

nodes both installed with a single GPU (K-5000).

Both nodes share the same external NVMe storage,

though it is a local storage from the software view of

each node.

The JRMS puts the job into the queue. Then it

makes a list of the resources that can be used to satisfy

the request. The list is sent to Brain, which has a

database of the resources including their current

status. In this experimental system, two computes,

two GPUs, and an NVMe storage card are in the

resource pool. On the nodes, the software platform is

pre-installed and networks among nodes are fixed

because we want to focus on the hardware

reconfigurability in this example scenario. In

addition, the group IDs of ExpEther are assigned as

#1 and #2 for each node in advance. The nodes share

an external NVMe storage card in the pool by using

the software storage engine we have developed.

Figure 8: Sequence of job execution.

Brain always gathers the information on resources

and puts it in the database. When the resource list

arrives, by referring to the database, Brain determines

the devices (GPU in this scenario) for each compute

node.

Then the resource manager is indicated to change

the configuration to attach a GPU to each node at the

PCI Express level. To manage the PCI Express

connection, the group ID of each ExpEther chip

connected to the compute and IO device is recorded

in the device list. The group ID of the unused devices

in the pool is set to Group ID = #0. The group ID can

be chosen from #1 to #4096. In this scenario, the

group IDs of #1 and #2 are assigned for each GPU.

Then the GPUs are attached to each node and hot-

plugged in the OS of each node. We set the waiting

time for completion of the hot-plug process in OS to

20 sec. This is longer than the necessary time for the

hot-plug process, but it differs and deviates

depending on the computing environment and the

conditions. It should be shortened by investigating the

Highly Reconfigurable Computing Platform for High Performance Computing Infrastructure as a Service: Hi-IaaS

141

hot-plug process in future work. In the end, the job is

executed on a two-node cluster in which both nodes

are installed with a GPU in accordance with the user’s

request.

The hot plug process of the GPUs can be seen by

the horizon GUI of OpenStack framework as shown

in Figure 9. The GUI is modified to show the PCI

Express tree just like “lspci –t” command in LINUX.

It is the server-view that shows the PCI Express

connections from a compute node to endpoint

devices.

The device tree before the job execution is shown

in the left part of Figure 9. Two PCI Express trees

with Group IDs of #1 and #2 are shown here. There

are NVMe storage cards in both nodes. These devices

are the same device simultaneously shared. The red

mark of the storage device indicates the device is

shared among other nodes. Those nodes can be seen

by clicking the red mark.

Before the job execution, no GPU was seen in

either PCI Express tree because both are in the

resource pool with a group ID set as #0. When the job

is executed with a request for using GPUs, the

resource manager connects them to each server by

setting group IDs of each GPU as #1 and #2. Then in

the right part of Figure 9, GPUs are seen in both PCI

Express trees. After that, the job is automatically

executed. We found that the JRMS can execute the

expected procedure including dynamically

reconfiguring a computer hardware platform.

Figure 9: Hot plug process on OpenStack management

window.

4.3 Performance

Using the experimental setup described in the

previous section, we also try to see whether the

system can work as a HPC system.

The main concern about the performance is the

latency of the interconnection to form a resource pool,

that is, the latency of the ExpEther chip, cable, and

switch. The latency is about 700 ns for the ExpEther

chip and 5 ns/m for the cable. A single hop of a switch

is about 500 ns, which means a roundtrip takes about

3 µs.

Performance degradation by the latency highly

depends on the application. Amano’s group already

evaluated it in detail by investigating the performance

scale-up in accordance with the number of GPUs

(Nomura et al., 2014; Mitsuishi et al., 2016). In

addition, this work focuses on the HPC use in a cloud.

Most cloud users understand the computer resources

in a cloud perform worse than those specially

designed on premises for high cost. Therefore, in this

study, we have investigated whether the Spark

benchmark software, logistic regression, is

accelerated by GPUs connected from the resource

pool.

Because the IO performance degradation of the

ExpEther is not significant, we were able to enjoy

acceleration by GPUs while one Spark benchmark,

logistic regression, was performed. We could not

compare the performance with the system in which

the GPUs are directly mounted on the computer

because the computer we used in this experiment is

too compact to install GPUs inside.

On the other hand, we can conclude that even if

the cloud service provider deploys a conventional 1-

U machine that cannot install GPUs, it can provide

GPU computing by using this reconfigurable

mechanism. This increases the probability to obtain

the computer platform from a cloud that perfectly

matches one’s request.

4.4 Reconfiguring Time

Another important performance to consider is how

much time it takes to reconfigure the system. So far,

we do not have any technology to shorten the OS boot

time even though it takes several tens of seconds or

more. It is much longer than any other process in

reconfiguration. Therefore, if the reconfiguration

process needs a reboot, reconfiguration lasts almost

as long as the reboot of the OS. This happens in the

case of, for example, attaching an un-hot-pluggable

device, adding a special driver for a device that the

OS does not support, allocating memory, etc.

Without a reboot, changing PCI Express

configuration by ExpEther only takes a few µsec at

the hardware level because it can be executed by just

sending a control packet for changing group ID of the

ExpEther chip with the target device. However, the

device must be recognized by the OS in which a hot-

plug handler coordinates the attach/detach process

before the hot-plugged device can be utilized by

software. It takes about 10 sec or more depending on

the device and status of the compute. Therefore, using

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

142

this experimental setup, we set the waiting time to 20

sec for hardware reconfiguration. This waiting time

dominates the reconfiguration time in non-reboot

cases, so far. Further work should be done to evaluate

the hot-plug time precisely and to minimize

reconfiguring time to make this system faster for the

hardware reconfiguration.

5 EVALUATION IN CLOUD

USECASE

Our organization, the Cybermedia Center, provides

computer resources to researchers and students of

Osaka University as well as other universities. It has

three major computing systems: a vector super

computer (SXAce), a scalar cluster computer (HCC),

and a scalar cluster computer with GPU (VCC)
(Hpc.cmc.osaka-u.ac.jp, 2017).

The VCC consists of 65 servers with IO expansion

capability using ExpEther. However, in the current

operation, the configuration is not changed

dynamically. The reconfiguration is done only every

half a year by surveying users’ plans for the

computing platform utilization; for example, monthly

use of 4 nodes with 2 GPU machines for 200 hours,

16 nodes with PCI-SSD for 100 hours, etc. In

accordance with the users’ plans, the computer

platform configuration for the next half a year is

determined, that is, the system configuration is rigid

for half a year.

We evaluated how the utility rate and job waiting

time can be improved by adopting the proposed

dynamic reconfiguration.

5.1 Resource Utilization Simulation

First, the resource utility rate is estimated for a

dynamic reconfigurable hardware platform by using

that of a statically configured computer system as a

reference. By using a job scheduling simulator,

ALEA (Klusácek and Rudová, 2010), we have

investigated how the utility rate changes in

accordance with a various types of hardware

configuration and job streams.

ALEA can deal with common problems of job

scheduling in clusters and grids, like heterogeneity of

jobs and resources and dynamic runtime changes, and

provide a handful of features including a large set of

various scheduling algorithms, several standard

workload parsers, and a set of typical fairness-related

job ordering policies.

The job and resource scheduling algorithm is out

of the scope of this paper because determining the

best algorithm is too elaborate. This is because this

system is so flexible that the simulation conditions to

consider are very diverse.

Therefore, we fixed some conditions to simplify

the simulation and roughly find out the dependency

of the utility rate on the hardware reconfiguration and

job workload. The simulated system is a GPU cluster

system with 64 compute nodes and 64 GPUs. The

simulation conditions are as follows.

A) Scheduling algorithm is FIFO.

B) Reconfiguration is applied only for the

number of nodes and GPUs.

C) All workload is the same as fixed execution

time.

D) A node can accept only a single job at a time.

E) Number of nodes a job requests is fixed to 8 or

16.

The utility rate of the GPU is investigated for the

computer hardware reconfiguration of static and

reconfigurable cases. For the static configuration, we

investigated the five different configurations in Table

1.

Table 1: Cluster configurations.

Cluster set Number of GPU / Node set

#1 1 / 64 - -

#2 2 / 8 1 / 48 0 / 8

#3 2 / 16 1 / 32 0 / 16

#4 4 / 8 2 / 16 0 / 40

#5 4 / 10 2 / 12 0 / 42

For all the cluster configuration sets, the average

GPU utility is plotted in Figure 10. The average utility

rate for the reconfigurable hardware is also plotted in

the figure as a dotted line because it is independent

from the static cluster configuration. For #1, #2, and

#3, the numbers of GPUs for nodes are well balanced

to execute jobs with the node and GPU number

randomized from 0 to the minimum GPU number of

the cluster set, that is, 1 for cluster sets #1 to #3 and 2

for cluster sets #4 and #5. However, because the total

number of GPUs is limited to 64, for #4 and #5 that

include four-GPU machines, the number of nodes

without GPUs becomes dominant. Thus, more jobs

that request GPUs have to wait for GPU nodes to be

released by the currently executed job when the job

finishes.

The utility rate of GPU for the configuration of

cluster set #5 is shown in Figure 10 as an example. It

varies over time when a job cannot be assigned its

requested computer resources in terms of the number

Highly Reconfigurable Computing Platform for High Performance Computing Infrastructure as a Service: Hi-IaaS

143

Figure 10: Utility rate depending on cluster configuration.

of nodes or GPUs. The job stays in a queue waiting

for finished jobs to release the resources. This

happens even if some resources are available. For

example, if the job requests four-GPU nodes, it

cannot be executed even if two-GPU nodes are

available. Then the GPUs on the two-GPU nodes are

left unused until a job with two-GPU nodes is

submitted. By using a reconfigurable hardware

platform, unused GPUs are put back into the resource

pool, then four-GPU nodes are configured by using

them, and thus, a four-GPU job can be executed

without waiting time. This results in decreasing the

time for executing all jobs by about 42% that of the

rigid system, in addition to increasing the average

GPU utility rate from 20% to 47 % in the example use

case shown in Figure 11.

Figure 11: Utility rate of GPU of cluster set #5.

5.2 Job Waiting Time Estimation with
Real Operation

We investigated the real utilization record of the VCC

system to see whether the Hi-IaaS can increase

resource utility. Currently, the cluster configuration is

fixed in this half a year as shown in Table 2.

With this static configuration, some users’ jobs

were congested. Figure 12 shows the worst case in the

months of 2Q-3Q in 2016. The figure only shows

nodes #19-#23 of 65 to simplify the explanation. On

Sep. 28, the blue job had been executed on nodes #22

Table 2: Current cluster configurations of VCC.

Node Number # GPUs per Node

#0 to #4 4

#5 to #10 3

#11 to #21 2

#22 to #64 0

and #23. Then at 15:00, the yellow job was enqueued.

Although the yellow job did not request GPUs, it was

executed on the GPU machine (nodes #19, #20, #21)

because other nodes (#22, #23) were occupied. At

20:00, a purple job that requested two nodes with a

GPU was enqueued. However, all the GPU machines

(nodes #19, #20, #21) were occupied at that time, and

thus, the job had to be kept waiting. At 20:00 on Sep.

29, the yellow job was completed. Then the purple

GPU job was executed. The waiting time for the

purple job was 25.1 hours.

Figure 12: Stacked jobs can be executed by using this

platform.

In this case, there were compute nodes

unoccupied (nodes #22, #23) when the purple job

with a GPU request was enqueued. At the same time,

GPUs on nodes #19-#21 were not utilized. Therefore,

if we can dynamically reconfigure the system by

putting unused GPUs on nodes #19-#21 back in the

resource pool and then attach them to the free

compute nodes (nodes #22, #23), the purple job will

be able to be executed without experiencing such a

long waiting time.

This is just an example case, but we expect that

further development will lead us to make the

reconfiguration dynamically and automatically

without a system engineer monitoring the job

operation 24 hour x 7 days, which is required under

the current operation.

6 RELATED WORK

This work succeeded the research on disaggregated

computing platform using ExpEther (Yoshikawa et

al., 2014; Suzuki et al., 2016), although the previous

work focused on scale up ability and a hardware

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

144

mechanism for simultaneously sharing devices

among multiple servers. On the other hand, this paper

focuses on reconfigurability to be used as a HPC

platform in a cloud.

In terms of disaggregated computing systems,

Intel Rack Scale Architecture and

OpenComputeProject (Presentations.interop.com,

2017; Open Compute, 2017) are attracting growing

interest in computer industries. However, the

disaggregated resources are distributed within a rack.

Han et al. (2013) considered data center scale

disaggregation mainly focusing on performance

degradation in memory disaggregation caused by an

interconnect network. Our work also has been aiming

at data center scale disaggregation. The difference is

we realize it by pure open standard interface PCI

Express and Ethernet. For the performance

consideration, Amano’s team has investigated

performance in detail and succeeded in scaling

performance along with the number of GPUs

(Nomura et al., 2014; Mitsuishi et al., 2016). Katrinis

et al. (2016) also published a research plan for cloud

data center scale disaggregation but so far it is at a

vision level.

In terms of reconfigurability in a cloud, a lot of

work has done on the cloud management frameworks

including OpenStack (Sefraoui, Aissaoui and Eleuldj,

2014; Xu et al., 2014). The object of reconfiguration

is a VM-based system although this work treats the

hardware devices comprising servers in order to

drastically change the function and performance of

the computing platform.

In terms of job resource allocation, Lee, Chun and

Katz (2011), worked on resource allocation and

scheduling together, the job of which is executed in a

hetero computing platform in a cloud. Because the

work used a current cloud service as it is, the resource

allocation was performed by using instances on the

service menu. There is a possibility that the

scheduling algorism can be applied for our

reconfigurable hardware platform with low-level

hardware resource allocation resulting in more

dynamic control for job execution.

In terms of HPC as a service, Wheeler et al. (2012)

made a framework to dispatch a user’s job over

different HPC system including BlueGene

7 CONCLUSIONS

We presented the concept of High performance

computing Infrastructure as a Service (Hi-IaaS) and a

system that realizes it. The system consists of job and

resource cross management software with

reconfigurable hardware that can make computer

hardware from the resource pool by

attaching/detaching computers and devices at the

Peripheral Component Interconnect Express (PCI

Express) level in accordance with a user’s request. It

is also equipped with a middleware/software platform

for high performance data analysis that is increasingly

being used as high performance computing (HPC).

In this paper, we focused on the reconfigurable

hardware of Hi-IaaS and developed a small

experimental setup of the proposed system with two

computes, two graphics processing units (GPUs), and

a shared non-volatile memory express standard

(NVMe) storage card. One piece of Spark benchmark

software (logistic regression) was executed to

investigate whether the proposed dynamic

reconfiguration can be performed while enjoying

high performance computing by GPU acceleration at

the same time.

In addition, the simulation results showed the

effectiveness of reconfigurable platform for the

resource utility rate increased from 20% to 47% and

job execution time reduced by 42% in a 64-node

system. Finally, we found our system can eliminate

the 25-hour waiting time recorded as the worst case

in the half-year real job operational record of our

university’s computing center.

8 FUTURE WORK

We have been further investigating the effectiveness

of this system in terms of various job workloads and

system configurations. Next, we will investigate

suitable algorithms for the reconfiguration that fit

these job workloads and system configuration

variations. We will also try to investigate the dynamic

reconfiguration process and performance in a real-

world big system by using a VCC system when it can

be utilized for experimental usage that does not

conflict with ordinary HPC services.

ACKNOWLEDGEMENT

The authors thank Takuya Yamada and Masaharu

Shimizu of Osaka University for their helpful

discussion, Professor Jason Cong of UCLA, Peichen

Pan and Allan Wu of Falcon Computing Solution Inc.

for providing their accelerator runtime management

software, Ryota Hayasaka, Toru Sasagawa, Takaaki

Noda, Mineko Marugami, and Yasuhiro Dairaku for

developing experimental system, Takashi Takenaka,

Highly Reconfigurable Computing Platform for High Performance Computing Infrastructure as a Service: Hi-IaaS

145

Takeo Hosomi, and Yuich Nakamura for their helpful

discussion, Yumi Matsumoto and Kazuhisa Shiota of

NEC solution innovators for their helpful discussion.

This research achievement is partly brought through

the use of the supercomputer PC cluster for large-

scale visualization (VCC). This work was supported

by JSPS KAKENHI Grant Number JP16H02802.

REFERENCES

Docs.aws.amazon.com. (2017). Linux Accelerated

Computing Instances - Amazon Elastic Compute Cloud.

[online] Available at: http://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/accelerated-computing-

instances.html [Accessed 15 Mar. 2017].

GitHub. (2017). irifed/softlayer-mpicluster. [online]

Available at: https://github.com/irifed/softlayer-

mpicluster [Accessed 15 Mar. 2017].

Sanders, C. (2017). Azure N-Series preview availability.

[online] Azure.microsoft.com. Available at:

https://azure. microsoft.com/en-us/blog/azure-n-series-

preview-availability/ [Accessed 15 Mar. 2017].

Hadoop.apache.org. (2017). Welcome to Apache™

Hadoop®!. [online] Available at: http://hadoop.

apache.org/ [Accessed 15 Mar. 2017].

Spark.apache.org. (2017). Apache Spark™ - Lightning-

Fast Cluster Computing. [online] Available at:

http://spark.apache.org/ [Accessed 15 Mar. 2017].

Presentations.interop.com. (2017). Intel Rack Scale

Architecture Overview. [online] Available at: http://

presentations.interop.com/events/las-vegas/ 2013/free-

sessions---keynote-presentations/download/463

[Accessed 15 Mar. 2017].

Open Compute. (2017). Home. [online] Available at:

http://www.opencompute.org/ [Accessed 15 Mar.

2017].

Han, S., Egi, N., Panda, A., Ratnasamy, S., Shi, G. and

Shenker, S. (2013). Network support for resource

disaggregation in next-generation datacenters.

Proceedings of the 12th ACM Workshop on Hot Topics

in Networks - HotNets-XII.

Suzuki, J., Hidaka, Y., Higuchi, J., Yoshikawa, T. and

Iwata, A. (2006). ExpressEther - Ethernet-Based

Virtualization Technology for Reconfigurable

Hardware Platform. 14th IEEE Symposium on High-

Performance Interconnects (HOTI'06).

Yoshikawa, T., Suzuki, J., Hidaka, Y., Higuchi, J. and Abe,

S. (2014). Bridge chip composing a PCIe switch over

ethernet to make a seamless disaggregated computer in

data-center scale. 2014 IEEE Hot Chips 26 Symposium

(HCS).

OpenStack. (2017). Software » OpenStack Open

Source Cloud Computing Software. [online] Available

at: https://www.openstack.org/software/ [Accessed 15

Mar. 2017].

Gridscheduler.sourceforge.net. (2017). Open Grid

Scheduler: The official Open Source Grid Engine.

[online] Available at: http://gridscheduler.

sourceforge.net/ [Accessed 15 Mar. 2017].

Nomura, S., Mitsuishi, T., Suzuki, J., Hayashi, Y., Kan, M.

and Amano, H. (2014). Performance Analysis of the

Multi-GPU System with ExpEther. ACM SIGARCH

Computer Architecture News, 42(4), pp.9-14.

Mitsuishi, T., Suzuki, J., Hayashi, Y., Kan, M. and Amano,

H. (2016). Breadth First Search on Cost-efficient Multi-

GPU Systems. ACM SIGARCH Computer Architecture

News, 43(4), pp.58-63.

Hpc.cmc.osaka-u.ac.jp. (2017). Cybermedia Center, Osaka

University. [online] Available at: http://www.hpc.cmc.

osaka-u.ac.jp/en/ [Accessed 15 Mar. 2017].

Klusácek, D. and Rudová, H. (2010). Alea 2: job scheduling

simulator. Proceedings of the 3rd International ICST

Conference on Simulation Tools and Techniques, 61,

pp.1-10.

Suzuki, J., Hidaka, Y., Higuchi, J., Hayashi, Y., Kan, M.

and Yoshikawa, T. (2016). Disaggregation and Sharing

of I/O Devices in Cloud Data Centers. IEEE

Transactions on Computers, 65(10), pp.3013-3026.

Katrinis, K., Syrivelis, D., Pnevmatikatos, D., Zervas, G.,

Theodoropoulos, D., Koutsopoulos, I., Hasharoni, K.,

Raho, D., Pinto, C., Espina, F., Lopez-Buedo, S., Chen,

Q., Nemirovsky, M., Roca, D., Klos, H. and Berends,

T. (2016). Rack-scale disaggregated cloud data centers:

The dReDBox project vision. Proceedings of the 20th

Design, Automation & Test in Europe Conference &

Exhibition (DATE), pp.690-695.

Sefraoui, O., Aissaoui, M. and Eleuldj, M. (2014). Dynamic

Reconfigurable Component for Cloud Computing

Resources. International Journal of Computer

Applications, 88(7), pp.1-5.

Xu, F., Liu, F., Jin, H. and Vasilakos, A. (2014). Managing

Performance Overhead of Virtual Machines in Cloud

Computing: A Survey, State of the Art, and Future

Directions. Proceedings of the IEEE, 102(1), pp.11-31.

Lee, G., Chun, B. and Katz, R. (2011). Heterogeneity-aware

resource allocation and scheduling in the cloud.

Proceedings of the 3rd USENIX Conference on Hot

Topics in Cloud Computing (HotCloud’11), pp.1-5.

Wheeler, M., Pencheva, G., Tavakoli, R., Shae, Z.,

Jamjoom, H., Sexton, J., Sachdeva, V., Jordan, K., Kim,

H., Parashar, M. and AbdelBaky, M. (2012). Enabling

High-Performance Computing as a Service. Computer,

45(10), pp.72-80.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

146

