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Abstract: Several SLA languages have been proposed, some specifically for the cloud domain. However, after extensively
analysing the domain’s requirements considering the SLA lifecycle, we conclude that none of them covers the
necessary aspects for application in diverse real-world scenarios. In this paper, we propose SSLAC, where we
combine the capabilities of two prominent service specification and SLA languages: OWL-Q and SLAC. These
languages have different scopes but complementary features. SLAC is domain specific with validation and
verification capabilities. OWL-Q is a higher level language based on ontologies and well defined semantics.
Their combination advances the state of the art in many perspectives. It enables the SLA’s semantic verification
and inference and, at the same time, its constraint-based modelling and enforcement. It also provides a complete
formal approach for defining non-functional terms and an enforcement framework covering real-world scenarios.
The advantages of SSLAC, in terms of expressiveness and features, are then shown in a use case modelled by it.

1 INTRODUCTION

The services provided in the cloud require formal guar-
antees in the form of an SLA for delivering a certain
service level. However, the large majority of providers
offer only a textual description of the SLA terms and
conditions, without any formal guarantee. This textual
approach has many drawbacks; for instance, it leads
to ambiguity and difficulties in automating the service
discovery and negotiation activities.

A Service Level Agreement (SLAs) is a formalised
contractual document representing the obligations and
rights for the signatory parties in the delivery of the
(cloud) service concerned. Several SLA languages
have been proposed, even tailored exclusively for the
cloud domain. However, after a comprehensive analy-
sis of domain requirements (see Section 2), we can con-
clude that none of them captures all possible aspects
required to support the SLA management lifecycle.

In light of this gap, this paper proposes SSLAC
(Semantic SLA for Clouds), which combines two of
the most prominent service specification and SLA lan-
guages: OWL-Q (Kritikos and Plexousakis, 2006)
and SLAC (Uriarte et al., 2014). These languages
have complementary features and their combination
advances the state of the art from many perspectives.
It enables, in the same combined language, semantic
verification and inferencing as well as constraint-based
SLA modelling and validation. Moreover, it provides a

complete formal approach for defining non-functional
terms and modifying them on demand as well as an
enforcement framework for real-world scenarios.

To enable a practical implementation and ease of
use, we took as a base the definition of SLAC. Based
on its complementarity with OWL-Q, we first anal-
ysed SLAC’s main gaps and extended it to cover some
of them. The rest of the gaps were filled in by cross-
referencing OWL-Q (term) specifications to cover the
needed expressiveness as well as possess the suitable
analysis power. The advantages of the result, a power-
ful SLA definition language and framework in terms of
expressiveness, features, and SLA lifecycle coverage,
are finally shown via its application on a real use case.

The rest of the paper is organised as follows. Sec-
tion 2 systematically analyses the related works and
unveils the shortcomings of the existing languages.
Section 3 describes the extensions on SLAC and its
combination with OWL-Q. Section 4 presents an use
case on which SSLAC and its framework have been
applied. Finally, Section 5 concludes the paper.

2 RELATED WORK AND
BACKGROUND

The various SLA languages proposed differ in level of
expressiveness, formality and compactness. To review
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them, a synthesis of two frameworks was constructed:
(a) the framework in (Kritikos et al., 2013), which
was defined according to the service lifecycle; and
(b) the one in (Uriarte et al., 2014), which defines a
complementary set of criteria and focus on description,
model validation capabilities and tool support. The
latter is discussed, while the details of the former can
be found in (Kritikos et al., 2013).

In the sequel, we describe the evaluation criteria
of our comparison, summarise the results in Table 1
and discuss these results. We analyse the following
SLA languages: WSLA (Keller and Ludwig, 2003),
WS-Agreement (Andrieux et al., 2007), WSOL (Tosic
et al., 2003), RBSLA (Paschke, 2005), Linked USDL
(LUA for short) (Pedrinaci et al., 2014), SLALOM
(Correia et al., 2011) and SLAC (Uriarte et al., 2014).

Description refers to (a) the formalism in SLA
description; (b) the coverage of both functional and
non-functional aspects; (c) the re-usability in terms of
SLA constructs to be used across different SLAs; (d)
the ability to express composite SLAs; (e) the cover-
age of the cloud domain (wrt. cloud service types); (f)
price model coverage (schemes & computation model);
(g) dynamicity (i.e., capability to move between ser-
vice levels (SLs) or modify SLOs based on certain
conditions or per request); (h) (model) validation capa-
bilities (i.e., capability to perform syntactic, semantic
and constraint validation of SLAs); and (i) editor sup-
port. For the cloud Coverage, the evaluation considers
whether the SLA language covers all cloud service
types and if it is generic enough (assessed as ’a’ denot-
ing this ability), and whether it can cover all or some
service types by providing respective cloud domain
terms (’y’ means all service types, ’p’ means some).
Non-coverage is denoted by ’n’.

Price model defines if a language: ‘n’: does
not support price models; ‘p’: covers only pricing
schemes; ‘y’: covers also the price computation model.
Dynamicity denotes: (a) ‘n’: if the language does not
cover this aspect; (b) ‘SLO’: if it covers it at the SLO
level; (c) ‘SL’: if it covers it at the SL level enabling to
transition from one SL to another or to modify a SL.

The language evaluation over its validation capabil-
ities can map to multiple values: (a) ‘n’: no validation
capabilities are offered; (b) ‘sy’: syntactic validation
is enabled; (c) ‘se’: semantic validation is enabled; (d)
‘c’: constraint-based validation is enabled.

A language can provide: ‘s’: a domain-specific Ed-
itor; ‘g’: a generic one; ‘n’: no editor. The Discovery
criterion includes: (a) metric definition, which refers
and also define quality metrics; (b) alternatives, which
specifies alternative SLs; (c) soft constraints, which
uses soft-constraints to address over-constrained re-
quirements; (d) matchmaking metric, which supports

metrics explicating the specification matching.
Negotiation. Meta-negotiation refers to the supply

of information to support negotiation establishment;
and negotiability to the ability to indicate in which way
quality terms are negotiable. For Monitoring, an SLA
language should define: (a) the metric provider respon-
sible for the monitoring and (b) the metric schedule
indicating how often the SLO metrics is measured.

Assessment defines: (a) the condition evaluator,
i.e., the party responsible for SLO assessment; (b)
qualifying conditions for SLOs; (c) the obliged party
to deliver an SLO; (d) the SLOassessment schedule;
(e) the validity period in which an SLO is guaranteed;
(g) recovery actions to remedy for SLO violations.

The Settlement with respect to particular situations
enables the definition of: (a) penalties; (b) rewards;
(c) settlement actions. Archive, instead, is concerned
with the ability to specify the SLA’s validity period.

Management. Framework assesses whether an
open- or closed-source management framework has
been built on top of a SLA language. The respective
assessment values are: (a) ‘o’: open-source framework
exists; (b) ‘y’: framework exists but is not open-source;
(c) ‘n’: no framework is available.

Based on the evaluation results in Table 1, no SLA
language scores well in all criteria across all life-cycle
activities. By considering all criteria, we could nomi-
nate WSLA and LUA as the most prominent languages
but they still need to be substantially improved.

Concerning the description activity, SLAC (Uri-
arte et al., 2014) is the best, since it exhibits a good
composability and dynamicity levels. Pricing mod-
els are also partially covered, a domain-specific editor
is also offered and it is the sole language supporting
constraint-based SLA model validation.

As far as matchmaking and negotiation activities
are concerned, WS-A (Andrieux et al., 2007) seems to
be slightly better than the rest, especially with respect
to the second activity. However, matchmaking is not
actually well covered by any language. For monitoring
and assessment, LUA and WSLA seem to be the best
languages, with WSLA being slightly better on the as-
sessment part and the recovery action coverage. More
than half of the languages provide a SLA management
framework. Most of these are open-source, enabling
possible adopters to extend it according to their needs.

Based on the above analysis, no SLA language pre-
vails; so there is a need to either introduce yet another
SLA language or improve an existing one. In this
paper, we take the second direction and combine the
capabilities of the OWL-Q (Kritikos and Plexousakis,
2006) and SLAC (Uriarte et al., 2014) languages to
offer a language agglomeration that advances the state-
of-the-art. The last column in Table 1 depicts the
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Table 1: Evaluation results of SLA languages.
Life-cycle Criteria WSLA WS-A WSOL RBSLA LUA SLALOM SLAC SSLAC

Description Formalism Informal Informal Informal RuleML Ontology UML CSP CSP
Ontologies Ontology

Coverage [p,y] [y,p] [p,p] [p,y] [y,y] [p,y] [p,p] [p,p]
Reusability yes yes yes yes yes yes yes yes

Composability no fair no no no no good good
Cloud Domain a a a a a y p p

Price Model n n n n y n p y
Dynamicity n n n SL n n SLO SLO
Validation sy sy sy sy,se sy,se sy sy,c sy,se,c

Editor g g g g s s s s
Discovery Metric Definition yes no no yes no no no yes

Alternatives impl impl impl impl no no no yes*
Soft Constraints no yes no no no no no yes*

Matchmaking Metric no no no no no no no yes*
Negotiation Meta-Negotiation poor fair poor poor no no no good*

Negotiability no part no no no no no yes*
Monitoring Metric Provider yes no yes no yes no no yes

Metric Schedule yes no no yes yes no no yes
Assessment Condition Evaluator yes no yes no yes no no yes

Qualifying Condition impl yes no no yes no yes yes
Obliged yes yes yes yes yes yes yes yes

Assessment Schedule yes no no no yes no no yes
Validity Period yes no no yes yes no yes yes

Recovery Actions yes no yes yes no no yes yes
Settlement Penalties no SLO SL SL SLO SLO SLO SLO

Rewards no SLO no SL SLO no yes yes
Settlement Actions yes no no yes no no yes yes

Archive Validity Period yes yes no no yes yes yes yes
Enforcement Framework y o o n n n o o

respective agglomeration result. As it can be seen, this
agglomeration maps now to the best language covering
nearly all aspects. Only the description and negotia-
tion activities are yet not fully covered; full coverage
is considered as future work direction.

The SSLAC evaluation values with asterisk denote
individual OWL-Q features. Since the combination of
SLAC and OWL-Q covers all lifecycle activities, in
Section 3 we describe their actual combination.

2.1 Background

We now analyse the OWL-Q and SLAC languages to
set up the background necessary to understand how
their combination is realised in the next sections.

2.1.1 OWL-Q

OWL-Q is a prominent (Kritikos et al., 2013) semantic
non-functional service specification language, care-
fully designed into various facets to cover all appro-
priate measurability aspects. It can specify 2 types of
specifications: (a) quality models defining hierarchies
of non-functional terms, such as metrics and attributes,
along with their relationships; (b) non-functional ser-
vice profiles specifying service non-functional capa-
bilities as constraints over non-functional terms. This
paper focuses on the first specification type that en-
ables enriching the SLA language capabilities.

OWL-Q supports 2 model validation types: (a) syn-
tactic; (b) semantic based on OWL semantics and se-
mantic rules incorporated in OWL-Q. It is assorted by
algorithms supporting: (a) the semantic alignment of

non-functional specifications based on their terms; (b)
their matchmaking (Kritikos and Plexousakis, 2014);
(c) service negotiation (Comuzzi et al., 2009).

OWL-Q comprises 6 facets: general, attribute, met-
ric, unit, value type, and specification, each mapping
to a different measurability aspect. The general facet
includes generic concepts, properties and relations,
the attribute facet specifies non-functional properties,
while the value type facet describes domains of value
for terms like metrics. The focus now is on the remain-
ing facets as they are related to this paper contribution.

The metric facet explicates how a non-functional
property can be measured via the conceptualisation of
a Metric. A metric can be mapped to a unit of measure-
ment and value type; it can be raw or composite. Raw
metrics (e.g., raw CPU utilisation) can be measured
by a sensor or a measurement directive over a service
instrumentation system. Composite metrics (e.g., av-
erage CPU utilisation) can be measured via formulas
that apply a mathematical or statistical function over
a set of arguments. An argument can be a metric, an
attribute, a service property or another formula. Met-
rics can be mapped to one or more metric contexts
explicating their measurement frequency and window.

The unit facet focuses on specifying units. Any
unit is associated to a quantity kind (e.g., speed) and
quantity (e.g., light speed). A unit can be single, di-
mensionless or derived. Derived units are produced
by dividing sets of other units (e.g., bytes per second).
Single units (e.g., second) can no longer be decom-
posed. A dimensionless unit (e.g., percentage) is a
single unit that does not map to a quantity kind.

The specification facet models non-functional ser-
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vice profiles. For this facet, we analyse 2 main con-
cepts of interest: (a) condition contexts and (b) price
models. Condition contexts are attached to simple con-
straints / conditions to denote their application context.
They mainly map to the object being measured (e.g.,
IaaS service, SaaS input parameter) and the measure-
ment context of the metric involved in the constraint.

PriceModels represent the computation procedure
to calculate a service’s price. They also set hard con-
straints over the price’s low and upper limits and its
monetary unit (e.g., euros). Price models can be split
into one or more PriceComponents which explicate
the way the service pricing can be computed based
on certain aspect (e.g., IaaS or network utilisation).
The overall service price equals the sum of the prices
that can be computed from these components. A price
component can also specify aspect-specific low and
upper bounds over service price and is associated to a
formula mapping to the price computation procedure.

2.1.2 SLAC

SLAC is a SLA language for cloud services, which
focuses on: (i) formal aspects of SLAs; (ii) supporting
multi-party agreements; (iii) ease-of-use; (iv) proactive
management of cloud SLAs.

Its main differences with existing SLA languages
are: it is domain specific; its semantics are formally
defined to avoid ambiguity; it supports the main cloud
deployment models; it enables specifying multi-party
agreements. SLAC also comes with an open-source
software framework1 enabling cloud SLA specifica-
tion, evaluation and enforcement. A novel mecha-
nism over SLAC to cope with the cloud dynamism
(Uriarte et al., 2016) has been proposed. Intuitively,
the SLAC’s formal semantics associates a set of con-
straints to each language term, which are evaluated, at
design-time, to identify inconsistencies in the specifi-
cation and, at run-time, to verify the compliance with
monitoring data collected from the cloud system.

An SLA comprises a unique identifier and at least
two involved parties. The agreement’s terms express
the features of the service together with their expected
values. Each SLA requires defining at least one term,
either a Metric or a Group of terms (which enables
term re-use in different contexts). For each term, the
party responsible to fulfil it is defined along with the
contractors of the respective service. SLAC supports
different metric types, e.g., numeric, constrained by
open or closed value Intervals and a certain Unit. Fi-
nally, Guarantees specify the commitment to ensure
the agreement terms and, in case of a term violation or
other events, explicate the actions to be taken.

1http://rafaeluriarte.com/slac/

3 COMBINING OWL-Q AND
SLAC

Section 2.1 highlighted OWL-Q and SLAC comple-
mentarity. OWL-Q can enable the semantic descrip-
tion of any kind of non-functional term, even those
not covered by SLAC. As such we aim at combining
these two languages together to produce a combination
advancing the state-of-the-art (see Section 2).

This combination resolves the main SLAC draw-
backs, shown in the 2nd last column of Table 1, to
reach the combination’s evaluation results, shown in
the table’s last column. These drawbacks are sum-
marised as follows: (a) a higher formality degree is
missing; (b) new metrics cannot be defined and only a
fixed metric set, mainly on the IaaS level, is available;
(c) similarly, the modeller can select only from a fixed
unit set; (d) metric and condition context information
is missing; (e) the metric measurement provider and
condition evaluator are not specified; (f) pricing com-
putation models cannot be expressed; (g) matchmaking
metrics do not accompany the SLA specification to
guide the SLA matchmaking & negotiation activities.

To realise this combination, two main approaches
were followed: (a) for some information aspects not
covered by SLAC, an extension was created to ac-
commodate them; (b) missing gaps are covered by
cross-referencing OWL-Q specifications which cover
the description of metrics, units, metric & condition
contexts, and pricing models.

We mainly extended SLAC syntax, see Table 2, to
support specifying information related to matchmak-
ing and negotiation activities. This modification led to
differentiating between the syntax of a template for ne-
gotiation and of an agreement. This extension provides
flexibility to negotiation and enables specifying prefer-
ence relations and negotiable terms, while facilitates
matchmaking via negotiable metric intervals.

The syntax is formally defined in the Extended
Backus Naur Form (EBNF), in which italic denotes
non-terminal symbols and teletype terminal ones. The
symbol ::= is used when a new rule is added to the
SLAC syntax, while += is used to extend an existing
syntactic core language rule, i.e., the extensions are
added into the existing language definition. The /=
specifies a special case of core language rule extension
which can be used only in template specification.

Templates are extended SLA specifications also
including general aspects of Negotiation between the
involved parties, described in a certain section. This
section defines the negotiation’s Strategy and Protocol.
The supported strategies are: Vertical (user budget is
used to enhance the quality for the term with highest
priority), and Horizontal (user budget is exploited to in-
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Table 2: Modification on the syntax of SLAC to make it
compatible with OWL-Q.

SLATemplate ::= SLA Negotiation
Negotiation ::= Strategy Protocol

Strategy ::= Vertical | Horizontal
Protocol ::= Auction | SingleTextMediated

| Bilateral Negotiation

TermTemplate /= Term Weight∗
Weight ::= Literal

SLA += . . . ContractDates

ContractDates += (EffectiveDate ExpirationDate)?

Term += (monitoring frequency Expr

Unit window Expr Unit by Parties)?

Metric += . . . | OWLQ URI

Unit += . . . | OWLQ URI

crease overall quality proportionally to the user prefer-
ences given). The protocol can be: Auction, where con-
sumers bid for resources; SingleTextMediated where a
single document is used to mediate between conflict-
ing participant preferences; and Bilateral Negotiation,
where the SLA is defined by a bilateral negotiation.

The Terms definition in templates is also extended.
The TermTemplate enables specifying Terms defined
in the core language with a Weight representing their
relative importance for the respective negotiation party.
This weight is optional and used to build a preference
model, exploited also for relaxed service matchmaking.
It is defined in the scale of 10, i.e., the sum of all
term weights must be 10. For non-weighted terms,
the weight assumes the value necessary to reach 10.
More formally, Equation 1 defines the weight of all
non-weighted terms (Wnw), where Tw and Ntnw are the
set of weighted and non-weighted terms, respectively.

Wnw =
10−∑tw∈Tw tw

Ntnw

(1)

The general language modifications (denoted with
+=) cover missing SLAC information and make the
languages composable. In particular, the agreement va-
lidity period (specified via the effective and expiration
dates) can now be defined. Moreover, the monitoring
frequency, window and agent that monitors a respec-
tive term can be specified. SLAC now cross-references
Metrics and Units to their respective specification in
OWL-Q via an OWLQ URI to resolve the fixed term
list drawback. This powerful mechanism enables to
provide a formalism for these terms and exploit inter-
esting OWL-Q features in SLAC, such as semantic
verification and metric equivalence derivation.

3.1 Lifecycle Activity Coverage

Apart from the improved modelling features of SS-
LAC, we now describe its main benefits over the whole
service lifecycle. These benefits come from employ-
ing a specific method which explicates where in the
lifecycle each language is used individually and where
in the combined form. Figure 1 reflects this method by
depicting the lifecycle and the way it is covered by the
combined framework of the language agglomeration.

The combined framework comprises 2 sub-
frameworks. Initially, a SSLAC template is specified
via the SLAC editor, then parsed and converted to
OWL-Q to cover the service description activity. The
latter OWL-Q specification is then exploited by the
first sub-framework, the OWL-Q one, to support the
service advertisement, matchmaking and negotiation
activities. As such, OWL-Q is exploited until that life-
cycle point, a well expected fact from the analysis in
(Kritikos et al., 2013) regarding the service lifecycle
coverage of service quality specification languages.

The negotiation result, i.e., the agreement, is then
converted to its SSLAC form to preserve the semantics
of the OWL-Q specification and incorporate the cross-
references needed. From that point and on, the SLA
enforcement sub-framework built around SLAC can
be used as the produced SSLAC specification includes
all the information needed to support the remaining
activities. This framework is currently extended to
support the monitoring and evaluation of dynamically
defined metrics. It is also integrated with the OWL-Q
one to support the semantic validation and processing
of the SLA parts that cross-reference OWL-Q.

The bidirectional SSLAC-to-OWL-Q transformer
is the main connection point between the 2 sub-
frameworks exploited. It guarantees the consistency
of models produced from one language to the other.

By combining both sub-frameworks and languages,
the end result is a complete and powerful SLA man-
agement framework which apart from language com-
pleteness, supports the whole service lifecycle with

Advertisement Discovery Negotiation Monitoring Adaptation 

Parser 

Aligner 

Term 
Matcher 

Discovery 
Engine 

Negotiation 
Engine 

CP Engine 

Semantic 
KB 

OWL-Q Framework 

Monitoring 
Parser 

Guarantee 
Evaluator 

SLA Parser 
Z3 

Consistency 
Checker 

Constraints 
Composer 

SLAC Framework 

Bidirectional 
OWL-Q To 

SLAC 
Transformer 

Description 

Figure 1: Architecture of integrated SLA frameworks.
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specialised capabilities spanning: (a) all model vali-
dation types where semantic validation concerns val-
idating elements cross-referenced in OWL-Q, while
constraint-based validation caters for checking com-
plex metric conditions; (b) semantic matchmaking and
alignment over non-functional terms is supported by
the OWL-Q framework (see Section 2.1); (c) SLA en-
forcement able to handle dynamically specified parts
and the transitioning between service levels. Please
note that support for negotiation is under-way.

4 USE CASE MODELLING WITH
SSLAC

A hospital provides diagnostics based on Magnetic
Resonance Imaging (MRI). Instead of having a data-
center, which could lead to high costs and loss of focus
on core business, the hospital decides to outsource it to
a cloud provider, which uses machine learning for MRI
analysis and verifications of the connection between
the brain regions and their functions.

This relatively common use case is not fully sup-
ported by the existing SLA languages. For example,
the flexibility required to change the valid SLA terms
is only partially supported via renegotiation, which
does not guarantee the possibility to change the terms
when required. Moreover, the capability to define
new metrics and their context (e.g., measurement fre-
quency) as well as the involved parties in each term
is also only partially supported. In this section, we
demonstrate the SSLAC advantages over the above
issues via describing its application in this use case.

4.1 Modelling Consumer Requirements

The hospital poses requirements on three metrics: re-
sponse time, i.e., the time needed to produce the MRI
diagnostics, the availability of the service and maxi-
mum number of requests per hour. The provider must
also offer the flexibility to change the SLA terms based
on the consumer needs in a pre-defined manner to cater
for different classes of consumers. The hospital man-
agers define 3 main situations: normal, where at least
6 MRIs/requests can be sent for diagnosis/hour with
response time from 6 to 10 minutes; advanced, where
from 9 to 14 MRIs can be sent per hour with guaran-
teed response time of 4 to 7 minutes; and emergency
with significantly reduced response time (at most 2
minutes) and at least 12 MRIs per hour. Availability
should be greater or equal to 98% in all cases.

The service charging should be hourly based; upon
consumer request, the service can change state (map-
ping to the above 3 situations) for the next 1 hour. For

example, the service is in normal state and a doctor has
an urgent case. The doctor will then request to change
the service level to emergency such that all MRIs sent
in the next hour will be diagnosed within 2 minutes.
Based on the expected pricing scheme of hour-based
charging, the hospital can only pay at most 1.2 euros
per hour in the normal class; at most 2.4 euros in the
advanced; and at most 4.2 euros in the emergency.

As the managers desire to negotiate the service
terms with potential conforming service providers,
they define requirements and priorities over all 3 terms,
which are negotiable based on an horizontal negotia-
tion strategy. The priorities are: 5 for availability and
price; 2.5 for response time and request rate.

In SSLAC, each service class is modelled as a
group, whose terms are valid only in that context. The
service level changes are specified in the Dynamic sec-
tion of the SLA and can be applied under consumer
request. The priorities and negotiable terms are speci-
fied via the extension proposed in this paper, which is
compatible with OWL-Q. This compatibility enables
using several matchmaking algorithms proposed for
this language (Kritikos and Plexousakis, 2014).

The hospital sends a template to a broker that ranks
providers compatible with the request. Before match-
making, the SLA consistency from different perspec-
tives (syntactic, semantic and constraints), now avail-
able in SSLAC, is verified. The following examples of
consistency error types can be detected: constraint: a
definition of the same term in a Group and in the Term
section would lead to a constraint error (2 constraints
refer to the same term at the same level); semantic:
metrics are subclassed via reasoning based on axioms.
As such, it could be discovered that a metric is both
raw and composite as it is associated to both a sensor
and a metric formula. As these two subclasses are
disjoint, a semantic error will be raised.

4.2 Offer, Negotiation and Final
Agreement

3 functionally-equivalent services match the request
(see Table 3). They include the same service levels and
charging scheme and enable moving from one level to
another when needed. From these 3 providers, only
the first 2 non-functionally match the request, since
the 3rd violates the 2 minutes response time constraint
for the critical level. While almost all providers and
hospital managers adopt the same metrics set from an
OWL-Q ontology, the second provider uses her own
metrics for availability and response time which are
equivalent to the others. The latter is derived after
aligning all non-functional specifications together.

Concerning the alignment, there is a perfect match
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CompositeMetric:RT_AVG

CompositeMetric:AV_AVG

RawMetric:RT_Raw

Formula:F1

Function:AVG

-accessModel = PULL

-accessURI = http://198.51.100.2:2031/getMetric?metric=RAW_RT

Sensor:RTSensor

ArgumentList:AL1

-scheduleType = FIXED_RATE

-interval = 30

Schedule:SchRT
-timeSize = 30

-windowType = FIXED

-windowSizeType = TIME_ONLY

Window:WRT

sensor

contents

argumentList

formula

MetricContext:Cxt_AVG_RT

metricContext

window
schedule

function

RawMetric:AV_Raw

RawMetric:Uptime

-accessModel = PULL

-accessURI = http://198.51.100.2:2031/getMetric?metric=UPTIME

Sensor:UptimeSensor
sensor

MetricContext:Cxt_RAW_Uptm

metricContext

-scheduleType = FIXED_RATE

-interval = 10

Schedule:SchUp

Dimensionless:Percentage

schedule

Function:DIV ArgumentList:AL2
-value = 60

IntValue:Sixty

Formula:F2

MetricContext:Cxt_RAW_AV

-scheduleType = FIXED_RATE

-interval = 10

Schedule:SchRAV

-timeSize = 10

-windowType = FIXED

-windowSizeType = TIME_ONLY

Window:WRV

Formula:F3

ArgumentList:AL2

MetricContext:Cxt_AVG_AV

-scheduleType = FIXED_RATE

-interval = 1440

Schedule:SchRAV

-timeSize = 1440

-windowType = FIXED

-windowSizeType = TIME_ONLY

Window:WAV

SingleUnit:SEC

SingleUnit:MIN
unit

unit

unit

unit

unit

unit

unit

argumentList

function

formula

contents

metricContext

schedule

window

window

schedule

metricContext
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Figure 2: OWL-Q specification for the use case metrics.

Table 3: Service offerings of three cloud providers.

Provider Level RT AV RR Price
M-Images Nor. [6,8] [99,99.4] [7,9] [1.0,1.2]
M-Images Adv. [4-6] [99,99.6] [10,12] [2.4,2.8]
M-Images Em. [1-3] [99.5,99.9] [13,15] [3.9,4.2]
H-Analysis Nor. [7,9] [98.5,99] [6,8] [0.8,1.0]
H-Analysis Adv. [4-7] [99,99.4] [9,11] [2.0,2.4]
H-Analysis Em. [2-3] [99.4,99.7] [12,14] [3.5,3.9]
MedImage Nor. [8,9] [98,98.5] [6,7] [0.5,0.8]
MedImage Adv. [6-7] [98,98.5] [9,10] [2.0,2.3]
MedImage Em. [3-5] [98,98.5] [12,14] [3.1,3.5]

between the response time metrics by considering that
for the 2nd provider, response time is computed via
a formula which subtracts the times that the service
response is received and request sent, while for the
other providers, it is computed from a sensor. Based on
the metric matching cases in the alignment algorithm
(Kritikos and Plexousakis, 2014), when two metrics
measure the same property and differ in one level,
they can be considered equivalent (unless in our case a
statistical function was used in the composite metric).

The availability metrics perfectly match on the
higher level as they use the same statistical function
and measure the same property. However, they are
computed from different component metrics. The raw
availability metric for the 2nd provider is computed by
formula: uptime

downtime+uptime while the same metric for the
other providers is computed by: 1− downtime

uptime+downtime .
By taking the difference between these formulas and
performing symbolic mathematical simplification, this
difference is inferred as 0 such that we can conclude
the raw availability metrics equivalence and the conse-
quent composite availability metrics equivalence.

While explicating the matchmaking result, the
main issue that the hospital managers face is which
providers from those matched should be contacted to
start negotiation, where 3 alternative cases hold in our

scenario: (a) the 2 results are ranked and negotiation
takes place only with the topmost result’s provider;
(b) both providers participate in the same negotiation;
(c) broker filters the matched results based on the sup-
ported and preferred negotiation protocols. The hospi-
tal managers follow the third case and negotiate with
the 2nd provider, as it matches the required negotiation
protocol (single-text mediated protocol), by exploiting
the respective broker service which exploits the already
possessed knowledge about the hospital’s negotiation
preferences and strategy from its SLA template.

The 2nd provider also adopts a horizontal nego-
tiation strategy. She also requires that all terms are
negotiable. The preferences lead to price having the
highest weight of 5, followed by availability with 3,
and request rate and response time with a weight of 2.

By considering the preferences from both parties,
a successful negotiation result is produced.The fol-
lowing facts can be derived: (a) for the normal and
emergency levels, the maximum price provided, as it
was lower than the maximum bound requested, was
used to select the best possible values for each metric;
(b) for the advanced level, the middle value for price
was selected which also led to obtaining middle values
for the rest of the metrics.

In the final agreement, it is specified that quality
metrics are assessed and measured by an auditor. In
particular, the response time should be reported by the
customer and assessed by the auditor, while availability
measurement and assessment bares only the auditor.

For an availability violation, the provider must of-
fer 10% discount, while a 5% discount must be given
for each response time violation. The discounts sum
up to 60% of the spending. Availability is averaged
over 24 hours, where raw availability is calculated ev-
ery 10 minutes based on uptime computed every 10
seconds. Response time is averaged over 30 minutes
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Table 4: Final agreement of the use case in SSLAC (excerpt).

SLA, term groups:

Normal:

Provider→ consumer:RT 7 minutes monitoring

frequency 10 min window 24 hours by Auditor

Provider→ consumer:sslac/Throughput 8 #

Provider→ consumer:Availability 99 %

Consumer→ provider:cost 1 hour

Advanced: . . .

terms:

[1,1] of Normal

guarantees:

on violation of availability:

if total discount < 60

discount +10 % of total cost win month

dynamism:

on consumer request:

if week violations > 3

terminate contract . . .

from the raw response time values reported by the cus-
tomer. If availability is violated more than 3 days or
response time more than 12 times in a week, the con-
sumer may end the contract without any penalty, by
paying only the amount due to the number of requests
issued within the current period till that time point.

Table 4 shows an excerpt of the final agreement.
The service is defined in the term groups, including
their monitoring frequency and window, and instan-
tiated in the terms section (initially in Normal class).
The guarantees section describes the violation and
penalty for the defined terms, in form of discount
over total cost within a month. Finally, the dynamism
section specifies the aforementioned settlement cases,
where the consumer has the right to terminate the
agreement unilaterally, and the possible changes in
the quality of service (omitted for the sake of brevity).

5 CONCLUSIONS

This paper has proposed SSLAC to fill the gaps in
the current SLA languages in the cloud. SSLAC is
a combination of OWL-Q, a prominent service non-
functional specification language, and SLAC, a promi-
nent domain-specific SLA language. The complemen-
tarity of these languages and the language integration
mechanism have led to a combination that covers most
SLA lifecycle aspects and enables the SLA syntactic,
semantic and constraint verification and validation.

To realise this combination, we first extended
SLAC to become compatible with OWL-Q. Then, we
described the integration of the frameworks developed
for these languages, including the bi-direction SLA
transformation, to cover the whole SLA lifecycle. The

benefits of SSLAC and its framework were demon-
strated by applying it over a real use case.

Concerning future work, we plan to further en-
hance SSLAC so as to score optimally across all SLA
lifecycle activities. Moreover, we will thorough evalu-
ate SSLAC against a series of use cases. Finally, we
will explore additional language and integrated frame-
work extensions to further support service negotiation.
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