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Abstract: The several existing Platform-as-a-Service (PaaS) solutions are providing application developers with differ-
ent and various offers in terms of functional properties (e.g. storage), as well as, non-functional properties (e.g.
cost, security). Consequently, developers may need to provision components of the same application across
several PaaS depending on their related requirements and/or PaaS capabilities. This paper proposes generic
mechanisms that allow seamless component-based applications provisioning across several PaaS. These mech-
anisms are based on the COAPS API; an already defined OCCI-compliant API that allows provisioning of
monolithic applications in PaaS using generic descriptors and operations. To illustrate the proposed mecha-
nisms, the paper showcases a realistic use case of provisioning of a JEE-based simulation application across
Elastic Beanstalk and Cloud Foundry platforms.

1 INTRODUCTION

Cloud computing is an emerging model for enabling
ubiquitous, convenient, and on-demand network ac-
cess to a shared pool of configurable computing re-
sources (Mell and Grance, 2009). Cloud comput-
ing providers offer their services according to three
different models, namely Infrastructure as-a-Service
(IaaS), Platform as-a-Service (PaaS), and Software
as-a-Service (SaaS). According to these three ser-
vice models, Cloud resources should be swiftly pro-
visioned with minimal management effort.

The completion and the achievement of such
model have induced the proliferation of not only
cloud end-users but cloud service providers as
well (Dash et al., 2009). The agreements be-
tween both sides are based on the pay-as-you-go
model (Grossman, 2009). Generally, cloud providers
(e.g. IaaS, PaaS) vary their offers in terms of func-
tional properties (e.g. storage, networking), as well
as, non-functional properties (e.g. cost, security) in
order to attract as many clients as possible. Conse-
quently, end-users are facing real challenges in order
to fully optimize their cloud usage while meeting their
functional and non-functional requirements. This in-
evitably involves the need of multi-provider provi-
sioning of the handled resources, since probably none

of the involved cloud providers will be able to pro-
vide the entire required services, with respect to all
end-user requirements.

Provisioning cloud resources cover describing,
deploying and managing them (Yangui and Tata,
2016). For instance, for cloud end-user applications
case, the related provisioning process consists of: (1)
Describing the application requirements, (2) allocat-
ing PaaS resources necessary to meet such require-
ments, (3) deploying the application over these re-
sources and (4) managing (including executing) it.
However, when considering such context, many lim-
itations and issues still persist in order to be able to
provision applications across several PaaS. These is-
sues are mainly due to the diversification of the PaaS
solutions and the strong heterogeneity of their pro-
vided resources, services, APIs, etc. In fact, existing
PaaS solutions (e.g. Google Cloud Platform1, Cloud
Foundy2, Heroku3) propose heterogeneous frame-
works and runtimes for applications depending on
their implementation technologies and capabilities. In
addition, these frameworks are provisioned by PaaS
in a specific way. Each PaaS has its own deployment

1cloud.google.com
2cloudfoundry.org
3heroku.com
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Figure 1: JEE-based simulation application deployment across several PaaS.

scenario and procedures. Consequently, these speci-
ficities and limitations make difficult provisioning of
component-based applications, such as applications
described according to Service-Oriented Architecture
(SOA) specifications, in a multi-PaaS environment.

To address these issues, this paper proposes
generic mechanisms that allow seamless component-
based applications provisioning across several PaaS.
These mechanisms enable the placement of applica-
tions’ components into several PaaS in order to fully
take advantage of their various offers when deploy-
ing and managing them. This provisioning is per-
formed using the same operations and descriptors.
The proposed solution uses and extends Compati-
bleOne Application Provisioning Service4 (COAPS
for short). COAPS provides unified description model
and API that allows provisioning applications in a
given PaaS (Yangui and Tata, 2016) (Sellami et al.,
2013b). It is based on the Open Cloud Comput-
ing Interface (OCCI) recommendation for a stan-
dard (OCCI, 2016). A prototype was implemented
in order to validate these findings.

The rest of the paper is organized as follows: Sec-
tion 2 introduces a motivating use case. Section 3
presents the already existing COAPS API. Section 4
presents M-COAPS, the proposed extension for en-
abling generic multi-PaaS applications provisioning.
Section 5 describes the implementation details and the
developed prototype for its validation. Section 6 eval-
uates the existing related work. Section 7 concludes
the paper and discusses the planned future works.

2 USE CASE AND MOTIVATIONS

Let us consider the provisioning of the JEE-based
simulation application across several PaaS as use
case. This application is shown in Figure 1. It allows

4compatibleone.com/cgi-sys/suspendedpage.cgi#coaps

simulating the operation of applications in cloud envi-
ronments based on a given configuration provided by
the user. The user provides a description of the appli-
cation and the configuration of the cloud environment
to simulate. Each configuration describes a prospec-
tive hosting cloud environment in terms of required
datacenters, VMs, applications instances and so on.
The simulation application is designed according to
the MODEL-VIEW-CONTROLLER pattern. It con-
sists of three components:

• The Front-end component provides a set of
graphic Web interfaces that allow users to define
and/or edit a simulation configuration template
(Figure 1, action 1). A snapshot of such interface
is shown in Figure 2. Specifically, a user has two
options: (1) Define a new configuration and run
its simulation or (2) display an existing configu-
ration with its already calculated simulation data.
This component refers to as the VIEW entity.

• The Recorder component allows the storing of a
newly defined simulation template in a persistent
database for reuse purposes (Figure 1, action 2). It
also allows uploading and sending stored configu-
rations, and eventually their related simulation re-
sults, to the Front-end component for display. The
used database schema is No-SQL key-value. This
component refers to as the MODEL entity.

• The Simulator component is based on CloudSim5,
an open-source cloud simulation tool. It simu-
lates and evaluates cloud applications character-
istics (e.g. performance) for a given set of con-
figuration templates. The simulation result is sent
to the Front-end component for display (Figure 1,
action 3) and to the Recorder component for stor-
age (Figure 1, action 4). This component refers to
as the CONTROLLER entity.

On one side, developers may have to deploy
and/or manage such application across several PaaS.

5cloudbus.org/cloudsim/
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Figure 2: The configuration templates management interface.

A multi-PaaS provisioning could be motivated by sev-
eral reasons such as security, cost and/or performance.
For example, for cost point of view, a basic compute
node (i.e. Linux OS, 1 core CPU, 128 GB of RAM
and 1Go of storage disk) costs $0.006/Hour in Cloud
Foundry while it costs $0.013/Hour in Amazon EC2.
In addition, the average cost of 1GB of basic key-
value storage service is $71/Month in Cloud Foundry
(RedisDB service) while it is $43/Month in Ama-
zon (DynamoDB service). Therefore, based on these
rates, developers might be interested by the alternative
of provisioning the application’s components that re-
quire intensive compute resources in Cloud Foundry
rather than Amazon (Figure 1, action B). In the same
way, they may consider provisioning components that
handle data storage in Amazon rather than Cloud
Foundry (Figure 1, action C). Finally, it should be
noted that the GUIs could be provisioned locally in
the end-users terminals for cost optimization and per-
formance purposes (Figure 1, action A). This is very
common practice for components that are part of the
VIEW entity in applications designed according to the
MODEL-VIEW-CONTROLLER pattern.

On the other side, runtimes, frameworks and host-
ing cloud resources are provisioned by existing PaaS
in specific way. This makes the aggregation and the
automation of multi-PaaS provisioning difficult to set.
Each PaaS solution has proprietary model to describe
and provision applications and their related hosting
resources. Furthermore, the user APIs implement-
ing these description models are strongly heteroge-
neous (e.g. proprietary operations, specific provision-
ing scenarios, etc.). These limitations are forcing de-
velopers to adapt their applications and procedures
when they deploy and manage component-based ap-
plications across several PaaS in order to bypass the
vendor lock-in (Satzger et al., 2013).

To address these issues, a couple of requirements
need to be met. The first requirement is the need for
mechanisms that enable and automate provisioning
of component-based applications across several PaaS.
This will allow taking benefit from the variety of the
PaaS offerings. It also provides the developers with
more alternatives to satisfy their needs and optimize
their applications operating. The second requirement
is the need for a unified model and generic provision-
ing mechanisms. PaaS-independent mechanisms will
considerably harmonize and simplify the provisioning
procedures of applications’ components across sev-
eral PaaS.

COAPS meets the latter requirement related to the
need for unified model and generic operations. In-
deed, as part of a previous work, COAPS was de-
signed and implemented as PaaS-independent solu-
tion that provides a set of generic REST interfaces.
These interfaces aggregate the APIs exposed by the
PaaS offerings based on a unified resources descrip-
tion model (Sellami et al., 2013b) (Yangui et al.,
2014). However, it should be noted that COAPS only
supports the provisioning of monolithic applications.
Furthermore, it does not support any multi-PaaS pro-
visioning approach. Indeed, developers cannot use
COAPS to deploy applications on top of more than
one PaaS offering. Consequently, COAPS does not
meet the first requirement.

In this paper, an extended COAPS solution that
meets the first identified requirement related to the
automation of applications provisioning across sev-
eral PaaS is proposed. For understanding, COAPS
is firstly introduced in Section 3. Then, Multi-PaaS
COAPS solution (M-COAPS for short) is discussed
in Section 4.
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3 COMPATIBLEONE
APPLICATION PROVISIONING
SERVICE

COAPS is a PaaS-independent model and API for
PaaS resources provisioning. The introduced model
is based on the Open Cloud Computing Interface
(OCCI) specifications. It enables the description
of both platform and application resources indepen-
dently of the target PaaS.

OCCI is a set of specifications that define a meta-
model for abstract cloud resources and a RESTful
protocol for their management (OCCI, 2016). It of-
fers a flexible API with a strong focus on interoper-
ability while still offering a high degree of extensi-
bility. COAPS model consists of: (1) An OCCI plat-
form specification which describes all PaaS resources
that can be provisioned by a PaaS to set up an ap-
propriate hosting-environment (Yangui et al., 2013)
and (2) an OCCI application specification which de-
scribes the application resources to deploy in this
environment (Sellami et al., 2013a). Indeed, the
main resources handled by this model are Environ-
ment and Application. Environment resources are
composed of platform resources (e.g. containers,
databases). Application resources involve all neces-
sary artifacts required to execute the application once
it is deployed (e.g. source code, configuration files,
scripts). Each one of the defined resources is char-
acterized by a set of attributes and actions to handle
and manage them according to OCCI specifications.
The detailed list of these resources and their related
attributes and actions are discussed in (Yangui and
Tata, 2016).

COAPS API provides end-users with a set of
generic operations for applications provisioning.
These operations implement the actions that can be
applied to platform and application resources accord-
ing to the defined description model. COAPS API
is based on OCCI HTTP Renderings (Metsch and
Edmonds, 2011) and Representational State Transfer
(REST) architecture. The listing of COAPS abstract
generic interfaces and related specifications are de-
tailed in (Sellami et al., 2013b). COAPS is designed
according to a proxy system that allows implementing
and adapting its abstract interfaces when integrating a
new PaaS offering.

As shown in Figure 3, COAPS proxy architecture
consists of three layers:

• Front-end layer, that exposes the COAPS generic
interfaces. These interfaces represent abstract
RESTful operations for application and related
hosting-environment provisioning;

Figure 3: COAPS proxy system.

• Back-end layer, that represents the PaaS offerings
interfaces. These interfaces expose the propri-
etary API operations of a given PaaS;

• Mapping-end layer, that constitutes the middle
layer of the proxy. This layer ensures the map-
ping between the COAPS generic operations on
one side and the proprietary PaaS API operations
on the other side.

To create a new COAPS implementation for a
given PaaS offering, one can simply instantiate its
proxy after implementing its correspondent middle
layer to map between the COAPS generic interfaces
and the proprietary operations exposed by the API
of the selected PaaS. Currently, proxies for Cloud
Foundry, OpenShift, Elastic BeansTalk and Google
App Engine platforms are implemented (available
at (coa, 2016)). However, COAPS does not allow us-
ing more than one proxy at the same time to deploy
one application across multiple PaaS.

4 M-COAPS FOR MULTI-PAAS
PROVISIONING

The M-COAPS (M stands for Multi-PaaS) solution
discussed in this section aims at meeting the require-
ment related to automatic applications provisioning
across several PaaS. It addresses the identified limita-
tions and drawbacks of COAPS described at the end
of Section 3. M-COAPS supports component-based
applications provisioning. This includes applications’
components deployment and management in the sev-
eral involved PaaS offerings. The decision to place
the applications’ components in the available PaaS of-
ferings could be motivated by criteria such as hosting
cost, applications’ components requirements and/or
hosting PaaS capabilities. While the issues related to
the decision on components placement are important,
the contributions discussed in this paper i.e. the effec-
tive deployment across multiple platforms are com-
plex enough in themselves to deserve separate treat-
ment. Placement decisions are out of the scope of this
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Figure 4: M-COAPS provisioning process.

paper.
As it is the case for COAPS, M-COAPS pro-

vides generic interfaces in order to allow deploying
and managing components of the same application
in different PaaS offerings. The provisioning steps
are performed following the process shown in Fig-
ure 4. Broadly speaking, a developer first creates the
required hosting environments resources for its appli-
cation’s components in the target platforms. Then,
he/she creates the resources representing the applica-
tion’s components. After that, he/she proceeds to the
concrete deployment and the activation of the whole
application. Detailed description of each activity of
the provisioning process is provided in the rest of this
section.

4.1 createEnvironment Operation

createEnvironment operation instantiates an Envi-
ronment resource and allows allocation of the re-
quired platform resources for hosting and executing
an application (e.g. containers, DBMS). This opera-
tion is executed as many times as there are hosting-
environments to provision. Each created Environ-
ment belongs to a given PaaS offering. The properties
of each Environment, as well as, its target PaaS are
described in a descriptor provided by the developer
when calling this operation.

4.2 createAppComponent Operation

createAppComponent operation instantiates the re-
quired ApplicationComponent resources, that made
up a component-based application. This operation is
executed as many times as the number of components
of the application to deploy. The components’ prop-
erties (e.g. name, code version, and artifacts location)
are listed in the application descriptor provided by the
developer. The components listing order in the de-
scriptor has meaning. It defines the flow and indi-
cates the order of executing the several component in
order to implement the final application’s functional-
ity (business logic). In addition, the developer have
to mention in the descriptor to which already created
Environment each ApplicationComponent belongs. It

should be noted that the same Environment can be as-
signed to several applications’ components if needed.

4.3 deployApplication Operation

deployApplication operation allows uploading the
application’s artifacts over the hosting Environment
for the concrete deployment. It enables orchestrat-
ing the deployment of the several application’s com-
ponents. Specifically, it deploys the created Applica-
tionComponent resources over their related Environ-
ment in the target PaaS offerings. The orchestration
consists on processing the wiring of the application’s
components once they are deployed. It follows the re-
verse of the application execution chain mentioned in
its descriptor. Basically, deployApplication starts
by processing ApplicationComponent N. It uploads its
source code on the target PaaS, finalize the deploy-
ment and collects its associated public access URL
returned by the hosting PaaS. Then, it provides this
URL to ApplicationComponent N-1 when process-
ing its deployment until reaching the front-end com-
ponent. The location of ApplicationComponent N
is provided to ApplicationComponent N-1 through a
routing file attached to the application’s component
code at upload time.

4.4 startApplication Operation

startApplication operation allows activating the
whole deployed application’s components. An appli-
cation is considered as available when all its related
components are activated. The starting process or-
der follows the same order of the application execu-
tion chain. It begins by starting the front-end compo-
nent. Then, it starts the next component in the exe-
cution chain until reaching ApplicationComponent N.
It should be noted that the same order is followed for
stopApplication and restartApplication oper-
ations as well.
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Figure 5: M-COAPS Web client.

5 IMPLEMENTATION AND
VALIDATION

M-COAPS is implemented according to the specifica-
tion and the provisioning process shown in Figure 4.
It is developed as HTTP RESTful Web application
with Java (JAX-RS) using Jersey. The descriptors are
XML-based. Currently, the Cloud Foundry and Ama-
zon Elastic Beanstalk proxies are integrated to M-
COAPS. Adding new proxy support is done according
to the RESTful architecture principles. In addition to
that, the already performed COAPS Web client was
adapted in order to be in-line with the new M-COAPS
capabilities as it is shown in Figure 5. The client’s
interface allows henceforth several artifacts uploads
from different locations. Each artifact corresponds
to a specific application’s component. Similarly, the
resources path field allows henceforth specifying a
list of Environment and ApplicationComponent re-
sources IDs. In order to validate the implementation,
the provisioning of the JEE-based simulation appli-
cation introduced in Section 2 was performed using
M-COAPS across Cloud Foundry and Amazon Elas-
tic Beanstalk. The associated descriptors are shown
in Listing 1. The source code of this implementation
and a demonstration video showing the execution of
the different steps are available at COAPS API Web-
page (coa, 2016). According to the scenario discussed
in Section 2, the Simulator component is provisioned
in Cloud Foundry while the Recorder component is
provisioned in Amazon Elastic Beanstalk. The details
of the provisioning of this application are described in
the rest of this section according to the provisioning
process steps shown in Figure 4. The parallel opera-
tions are implemented as java threads for performance
purpose.

5.1 createEnvironment Operation

This step allows the creation of the required Envi-
ronment resources and the instantiation of these re-
sources on the two target PaaS. createEnvironment
is a POST REST request. It returns back a set of
EnvIDs related to the newly created Environment re-
sources. The XML elements describing Environment
resources properties are shown in Listing 1 (lines 6-
18).

SimEnv is the first hosting environment to create
(lines 6-11). The target PaaS (i.e. Cloud Foundry)
is indicated as value of provider attribute (line 6).
The associated description is provided in line 8. This
environment consists of a single PaaS resource node
i.e. an Apache Tomcat Web container (line 9). Stor-
ageEnv is the second hosting environment to create
(lines 12-18). The target provider is Amazon Elastic
Beanstalk (line 12). The environment description is
provided in line 14. This environment consists of two
nodes: An Apache Tomcat Web container (line 15)
and a DynamoDB database service (line 16).

It should be noted that for reuse purpose, it is
possible to define environment templates and simply
refer to the template name in the descriptor during
future environment creations. For instance, SimEn-
vTemp is associated SimEnv template (lines 7-10)
while StorageEnvTemp is associated to StorageEnv
template (lines 13-17).

5.2 createAppComponent Operation

This step allows the creation of the re-
quired ApplicationComponent resources.
createApplicationComponent is a POST REST
request. It returns back a set of AppIDs related to the
newly created ApplicationComponent resources. The
XML elements describing ApplicationComponent
resources properties are shown in Listing 1 (lines 19-
33). Simulator is the name of the first component to
create (lines 19-26). The hosting environment of this
component is SimEnv (line 19). Consequently, it will
be provisioned in Cloud Foundry. The description of
this component is provided in line 20. Its associated
artifacts name and location are provided in line
22. During the deployment of this component, the
target PaaS has to instantiate and run two instances
of it (lines 23-24). The main instance is Instance1
(default instance=”true”). The two instances has
to be started simultaneously (initial state=”1”).
The second component to create is Recorder (lines
27-33). Its hosting environment is StorageEnv (line
27). This component will be provisioned in Amazon
Elastic Beanstalk. Its description is provided in line
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1 <?xml version="1.0" encoding="UTF-8"?>

2 <paas_application_manifest name="SimulationApplicationManifest">

3 <description>This_manifest_describes_the_SimulationApplication_Environments_and_Components</description>

4 <paas_application name="SimulationApplication">

5 <description>This_App_simulates_deployment_costs_of_given_configs<description>

6 <paas_environment name="SimEnv" provider="CF" template="SimEnvTemp">

7 <paas_environment_template name="SimEnvTemp" memory="512">

8 <description>SimulatorHostingEnvironmentTemplate</description>

9 <paas_environment_node content_type="container" name="tomcat" version="7"/>

10 </paas_environment_template>

11 </paas_environment>

12 <paas_environment name="StorageEnv" provider="AWS" template="StorageEnvTemp">

13 <paas_environment_template name="StorageEnvTemp" memory="1024">

14 <description>64bit_Amazon_Linux_Tomcat7Java 7_RecorderHostingEnvironment</description>

15 <paas_environment_node content_type="container" name="tomcat" version="7"/>

16 <paas_environment_node content_type="database" name="DynamoDB" version="2012-08-10"/>

17 </paas_environment_template>

18 </paas_environment>

19 <paas_application_component name="simulator" environement="SimEnv">

20 <description>simulatorServlet</description>

21 <paas_application_version name="version1.0" label="1.0">

22 <paas_application_deployable name="simulator.war" content_type="artifact" location="COAPS/tmp"/>

23 <paas_application_version_instance name="Instance1" initial_state="1" default_instance="true"/>

24 <paas_application_version_instance name="Instance2" initial_state="1" default_instance="false"/>

25 </paas_application_version>

26 </paas_application_component>

27 <paas_application_component name="recorder" environement="StorageEnv">

28 <description>recorderServlet</description>

29 <paas_application_version name="version1.0" label="1.0">

30 <paas_application_deployable name="storage.war" content_type="artifact" location="COAPS/tmp"/>

31 <paas_application_version_instance name="Instance1" initial_state="1" default_instance="true"/>

32 </paas_application_version>

33 </paas_application_component>

34 </paas_application>

35 </paas_application_manifest>

Listing 1: JEE-based simulation application descriptor.

28 and the information related to its artifacts in line
30. A unique instance of this component will be
instantiated once it is deployed (line 31).

5.3 deployApplication Operation

This step implements a POST REST request that
enables the concrete deployment of the applications
components in the target PaaSs. This is done by asso-
ciating explicitly the AppIDs to the EnvIDs (see Fig-
ure 5). The upload of the components’ artifacts to the
two target PaaS is done during this step, as well as, the
wiring between the two components. DeployApplica-
tion first processes the deployment of the Recorder
component in Elastic Beanstalk. Then, it provides
the returned public URL provided by Amazon to the
Simulator component before its deployment in Cloud
Foundry.

5.4 startApplication Operation

This step implements a POST REST request that en-
ables activating the application. The application’s
components deployed in the two PaaSs are then
started. startApplication first starts the Simula-
tor component in Cloud Foundry before starting the
Recorder component in Elastic Beanstalk.

6 RELATED WORK

Most of the existing solutions focus on enabling in-
teroperability between cloud service providers, geo-
diversity and/or portability (Ranjan, 2014) (Martin-
Flatin, 2014) (Di Martino, 2014). Moreover, it should
be noted that most of them are made for the IaaS do-
main such as mOSAIC (Petcu et al., 2013) and Per-
fCloud (Mancini et al., 2009). For example, mO-
SAIC is a European FP7 project that aims at enabling
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data, services and applications portability and inter-
operability across multiple clouds (Petcu et al., 2013).
The hosting multi-clouds system covers mainly IaaS
providers. However, mOSAIC provides platform (i.e.
Software Platform Support layer) that supports end-
user applications provisioning. mOSAIC is based on
brokering mechanisms that search for cloud services
matching the applications’ requirements. mOSAIC
framework consists of several layers (SaaS, PaaS and
IaaS) and offer a set of APIs in each one of these lay-
ers. The applications’ execution framework is pro-
vided by mOSAIC on top of a set of integrated IaaS.
The selection of the target IaaS is based on broker-
age contracts. The interactions between mOSAIC and
the IaaS providers is performed through appropriate
adaptors. Currently, mOSAIC provides adaptors for
Amazon EC2, Flexiscale, Eucalyptus and OpenNeb-
ula. mOSAIC does not meet the first requirement re-
lated to automatic provisioning of applications across
several PaaS. It focuses mainly on IaaS providers inte-
gration. However, it meets the second requirement re-
lated to unified model and generic provisioning oper-
ations thanks to the semantic ontology for capabilities
description and the generic API exposed by the Soft-
ware Platform Support layer. On the other hand, sev-
eral projects and academic works targeted end-user
applications and PaaS domain. For example, in (Ka-
materi et al., 2013), the authors propose an approach
to semantically interconnect heterogeneous PaaS that
share the same technology. This solution was de-
veloped as part of the European FP7 Cloud4SOA re-
search project. It aims to provide better accessibil-
ity and flexibility in the fragmented PaaS market.
The aggregation of the integrated PaaS capabilities in
Cloud4SOA framework is done thanks to a semantic
common ontology and a harmonized API (D’Andria
et al., 2012) . A proof-of-concept showing SOA
applications management in hybrid multi-PaaS envi-
ronment is also presented in (Zeginis et al., 2013).
Cloud4SOA partially meets the first requirement re-
lated to the automatic provisioning of component-
based applications across several PaaS. In fact, it sup-
ports only provisioning of applications that are de-
signed according to SOA specifications. These ap-
plications are subset of the component-based applica-
tions set supported by M-COAPS. Cloud4SOA meets
the second requirement related to unified model and
generic provisioning operations thanks to the seman-
tic ontology describing the aggregated resources and
the harmonized API.

MODAClouds is a research project that aims at
supporting developers and service providers when op-
erating in a multi-cloud system (Ardagna et al., 2012).
It defines a model-driven approach to design and de-

ploy applications at large including IaaS and PaaS
applications across several clouds. PaaSage project
reuses MODAClouds basics and findings. It aims at
designing and implementing a PaaS for end-user ap-
plications development and deployment in existing
clouds (Baur et al., 2015). The defined methodol-
ogy is inspired by MODAClouds model. Specifically,
when deploying an application, appropriate interfaces
and connectors are generated automatically for ap-
plication integration with user systems in northbound
and target cloud at the southbound. However, the gen-
eration process is not fully automated. It requires the
involvement of the user to provide additional infor-
mation such as the choice of cloud providers and ser-
vices, and the reuse of external services (Ferry, 2015).
Hence, MODAClouds and PaaSage did not meet the
first requirement related to the automatic provision-
ing of applications across several PaaS. However, they
meet the second requirement related to the unified
model and provisioning operations.

PaaSHopper is a framework for operating SaaS
applications on top of a multi-PaaS environ-
ment (Walraven et al., 2015). The application’s
owner specifies its properties and the required PaaS
capabilities. These properties describe the con-
straints and rules in a declarative way, extracting them
from the application code in a modular and reusable
way. Depending on the provider-specific capabili-
ties, PaaSHopper decides where in the multi-cloud a
task will be executed or data will be stored. It uses
deployment descriptor, specifying the different PaaS
platforms and resources to be used in the multi-PaaS
system. PaaSHopper meets the first requirement re-
lated to automatic provisioning of applications across
several PaaS. However, it does not meet the second
requirement related to unified model and generic pro-
visioning operations. Indeed, even if the deployment
descriptor is based on a model, it still poor and not
rich enough to cover all the specificities and the strong
heterogeneity of the resources handled by the existing
PaaS offerings. Furthermore, it is not extensible. It is
simply based on a command-line shell (i.e. Microsoft
Windows PoweShell) and a limited set of pre-defined
commands to describe the applications’ requirement
and the PaaS resources.

In (Paraiso et al., 2012), the authors present a fed-
erated multi-cloud system that enables the provision-
ing of applications described according to the Service
Component Architecture (SCA) specifications. This
approach provides a unified model and generic provi-
sioning of applications across several PaaS and IaaS
that should be provided with SCA containers. A pro-
totype is also provided (Paraiso et al., 2016). How-
ever, it only supports SCA-based applcations. Sim-
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Table 1: Related work evaluation synthesis.

References
Requirements

R1 R2

(Kirkham, 2013) (Petcu et al., 2013) (Ferry, 2015) No Yes
(Kamateri et al., 2013) (D’Andria et al., 2012) (Paraiso et al., 2012) (Paraiso et al., 2016) Partially Yes

(Walraven et al., 2015) Yes No
(Cunha et al., 2014) Yes Not mentioned

(Pahl, 2015) (Hadley et al., 2015) (Wei et al., 2011) (Ardagna et al., 2012) No No

ilarly, the targeted cloud environments should also
support SCA containers. This work partially meets
the first requirement related to the automatic provi-
sioning of component-based applications across sev-
eral PaaS. It supports only provisioning of SCA-
based applications that are designed according to
SOA specifications which are subset of SOA appli-
cations. Moreover, it meets the second requirement
related to unified model and generic provisioning op-
erations thanks to the introduced mapping model in
between the cloud offerings.

In (Wei et al., 2011), the authors introduce Ap-
plication Platform-as-a-Service for Cloud Computing
called Aneka. It acts as a framework for building cus-
tomized applications and deploying them on either
public or private clouds. Basically, Aneka does not
support multi-PaaS environment. But, a newly added
extension supports distributed end-user applications
deployment in multi-cloud environments (Buyya and
Barreto, 2015). To illustrate the benefits of the new
extension, the authors deploy an application com-
posed of independent tasks by Aneka in multi-cloud
environment using resources provisioned from Mi-
crosoft Azure and Amazon EC2. Aneka does not en-
able automatic provisioning and does not provide any
unified model and/or generic provisioning operations.
Consequently, it does not meet the two requirements.

In (Brogi et al., 2015), the authors provide an
open source framework called SeaClouds to address
the problem of deploying, managing and reconfig-
uring complex applications over multiple and het-
erogeneous clouds. This framework is based on
Topology and Orchestration Specification for Cloud
Applications (TOSCA) specifications to describe the
topology of the applications independently of the tar-
get cloud providers and Cloud Application Manage-
ment for Platforms (CAMP) API for its manage-
ment. TOSCA and CAMP are standardization ten-
tatives within OASIS consortium. SeaClouds auto-
mates the provisioning process using CAMP API op-
erations; however, it imposes the support of TOSCA-
enabled containers for the target PaaS. Consequently,
it partially the first requirement related to the auto-
matic provisioning of component-based applications
across several PaaS. In addition, it meets the second
requirement related to unified model and generic pro-

visioning operations thanks to a mapping model in be-
tween the cloud offerings.

In (Cunha et al., 2014), the authors propose a
framework denominated PaaS Manager that aims to
struggle the existing lock-in in the PaaS market. PaaS
Manager is intended to fit the many developer’s needs
in a multi-PaaS environment, such as developing
and deploying applications, monitor operation date
in real-time and migrate applications between PaaS
offerings. Hence, it meets the first requirement re-
lated to automatic provisioning across several PaaS.
To deal with the multi-PaaS environment, the user can
fill a form with the technical profile of the application
through a command-line or a Web interface. How-
ever, the authors did not detail on the properties that
the user may enter.

Finally, it should be noted that several works use
the containerization approach to enable distributed
applications deployment across several clouds (e.g.
see (Pahl, 2015), (Hadley et al., 2015)). These
approaches consists on packaging the applications’
components dynamically in a generated service con-
tainers. The generated service containers imple-
ment the applications’ components requirements (e.g.
required runtime, libraries). Then, the contain-
ers are pushed to the cloud as standalone applica-
tions. These approaches require manual deployment
through command-line and do not provide any unified
model and/or provisioning operations. Hence, they do
no meet the two evaluation requirements.

Table 1 provides a summary of the critical evalua-
tion provided in this section.

7 CONCLUSIONS AND FUTURE
WORK

This paper presents M-COAPS API for component-
based applications provisioning across several PaaS
offerings. This approach uses and extends COAPS
API that relies on a generic OCCI-based descrip-
tion model. M-COAPS provides a concrete solu-
tion to struggle the existing lock-in in the PaaS mar-
ket and enables developers to deploy and manage
their applications’ components easily and seamlessly
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in multi-PaaS environment. For example, the devel-
opers henceforth can use a unique and common de-
scriptor when deploying the components in hetero-
geneous PaaS solutions. Moreover, they can man-
age (e.g. starting) the components in the same way
whatever the target PaaS is. The implementation of
the motivating use case was performed to validate
the proposed approach and demonstrate its feasibility.
Such approach can be considered as a step forward to
achieve PaaS cooperation and federation. It also pro-
vides concrete perspective to enable cloud end-user
applications portability. Furthermore, unlike the re-
viewed related work, M-COAPS and its associated
OCCI model do not impose any integration contraints
and/or modifications from the providers side which
makes easy its adoption.

As next steps in the future, the integration of this
solution to the open source CompatibleOne cloud
broker is contemplated. In addition, the design and
the implementation of a placement algorithm that
can be integrated is also considered. Such algo-
rithm will provide M-COAPS with the optimal com-
ponents placement plan when deploying an applica-
tion . Placement decisions will be based on well-
defined requirements (e.g. cost, latency). Finally, the
inclusion of migration capability is planned. It will
enable moving components from one PaaS to another
during runtime. The moving decisions can be trig-
gered by events such as a rate change in the hosting
PaaS.
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