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Abstract: Structure from Motion (SfM) is the most popular technique behind 3D image reconstruction. It is mainly 

based on matching features between multiple views of the target object. Therefore, it gives good results only 

if the target object has enough texture on its surface. If not, virtual holes are caused in the estimated models. 

But, not all holes that appear in the estimated model are virtual, i.e. correspond to a failure of the 

reconstruction. There could be a real physical hole in the structure of the target object being reconstructed. 

This presents ambiguity when applying a hole-filling algorithm. That is, which hole should be filled and 

which must be left as it is. In this paper, we first propose a simple approach for the detection of holes in 

point sets. Then we investigate two different measures for automatic classification of these detected holes in 

point sets. According to our knowledge, hole-classification has not been addressed beforehand. Experiments 

showed that all holes in 3D models are accurately identified and classified. 

1 INTRODUCTION 

Generating accurate 3D image reconstruction has 

found its application in a wide variety of fields, such 

as computer aided geometric design, computer 

graphics, virtual reality, computer vision, medical 

imaging, human computer interaction, computer 

animation, and robotics. Because of the availability 

of relatively cheap sensors, surface reconstruction 

has gained considerable interest (Zaman et al., 

2016). Nowadays, many simple applications that are 

based on Structure from Motion (SfM) allow users 

to create own high-quality 3D models on their 

smart-phones not requiring any experience or 

specific knowledge regarding that technique 

(Muratov et al., 2016). SfM is based on matching 

correspondences between multiple views of the 

target object. That matching is based on 

correspondence establishing of features such as 

corner points (edges with gradients in multiple 

directions) from one image to the other. Therefore, 

feature detection is highly needed in SfM. One of 

the most widely used feature detectors is the Scale-

Invariant Feature Transform (SIFT) (Lindeberg, 

2012). Unfortunately, the performance of the SIFT 

algorithm over texture-less surfaces is poor, because 

no feature point can be detected in such surfaces 

(Alismail et al., 2016). Consequently, SfM technique 

fails to estimate 3D information in regions having 

weak texture information, where no matching points 

can be found (Saponaro et al., 2014). That is the 

reason why most of the popular 3D reconstruction 

techniques give good results only if the target object 

has enough texture on its surface. If not, virtual 

holes appear in the estimated models. For this kind 

of low-textured objects, laser scanners are frequently 

used instead of the traditional image based 3D 

reconstruction techniques. But, holes may also 

appear in the resulting models due to surface 

reflectance, occlusions, and accessibility limitations 

(Wang et al., 2007).  

These days, having a high-quality reconstruction 

of objects is an essential demand by many 

applications. Therefore, hole-filling or surface 

completion has become an important component in 

3D image reconstruction process. But, no hole filling 

can be applied without the detection of holes in point 

clouds. So, hole-detection in point sets is also an 

important component in that process. Usually, 3D 

image reconstruction methods produce unstructured 

point clouds. That is, there is no explicit 

connectivity information encoding the surface of the 

object. This makes the problem of the detection of 

holes on the surface an ill-defined problem (Bendels 

et al, 2006).  

It is worth mentioning that not all holes 

appearing in the estimated model are virtual, i.e. due 

to missing reconstructions of featureless surfaces.  

Aldeeb N. and Hellwich O.
Detection and Classification of Holes in Point Clouds.
DOI: 10.5220/0006296503210330
In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017), pages 321-330
ISBN: 978-989-758-227-1
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

321



 

Some of the holes may also represent a real physical 

hole, which is part of the structure of the object 

being reconstructed. Unfortunately, just looking at 

the point cloud, it is almost impossible to 

differentiate between these two types of holes (real 

and virtual). Particularly, when there is a real 

physical hole in the structure of the target object 

having uniformly distributed inner-color or inner-

details not appearing in the 2D views, this kind of 

regions will appear as regions missing depths in the 

estimated model. These are real holes that should be 

left as they are during the filling process.  

The ambiguity in differentiating between real 

and virtual holes is a significant problem, which is 

usually faced when running a hole-filling algorithm. 

Thus, analysing each of the detected holes and 

classifying them to either real or virtual hole is a 

very important component in hole-filling process. 

Finally, it is now clear that the problem of hole-

filling in point clouds requires two tasks. First, 

identifying the holes, and then classifying them. By 

classification, the necessity of filling the identified 

hole can be determined. Unfortunately, both tasks 

are nontrivial. But in this paper, we propose a simple 

approach which will contribute to the accurate 

detection and classification of holes in point clouds, 

and consequently support systems for surface 

reconstruction and hole filling. 

The rest of this paper is organized as follows: 

section 2 presents a brief background and lists the 

related work. Section 3 discusses the proposed 

approach. Experimental results and discussion can 

be found in section 4. Finally, section 5 concludes 

with a conclusion, perspectives, and future work. 

2 BACKGROUND AND RELATED 

WORK 

Structure from Motion (SfM) techniques have 

attracted researchers since the work of (Tomasi and 

Kanade, 1992). SfM algorithm involves finding 

correspondences between different input images for 

the object being reconstructed, and then estimates a 

3D model and a set of camera parameters.  

Therefore, reconstructing regions having low 

textures is challenging for most of SfM-based 

approaches. 

As mentioned before, the need for accurate 3D 

models makes hole-filling a very important problem. 

For a successful hole-filling, accurate detection and 

classification of holes in point clouds are needed. 

According to our knowledge, and after an intensive  

   

review of the literature, not much work has been 

published about detecting holes in point clouds. 

Nevertheless, some methods employed either special 

equipment or triangular meshes, sometimes 

associated with some input entered manually by 

users for hole-identification.  For example, in (Noble 

et al., 1998), the internal geometry feature of 3D 

objects is measured by employing an X-ray 

inspection method; thereby they were able to 

position the drilled holes on the object's surface. In 

(Kong et al., 2010), a hole-boundary identification 

algorithm for 3D closed triangle mesh is presented. 

In this method, the user has to interactively select 

the region of interest by mouse dragging.  From our 

point of view, this method has one more drawback 

besides the need for manual inputs. Dependence on 

meshes instead of point clouds will not guarantee the 

detection of all holes, because some meshing 

algorithms may fill the regions of missing depth. 

Consequently, this prevents distinguishing real from 

virtual holes.  

The authors of (Wang et al., 2012) proposed a 

method which aims to find solid holes inside 3D 

models. This method is also based on triangular 

mesh models. By grouping interconnected coplanar 

triangles, they extract the contour of the model using 

the boundaries of the adjacent planes. Then, based 

on the extracted contour, they form several disjoint 

clusters of model vertices. Finally, by analysing the 

relationship between the clusters and planes, holes 

are identified. But, this method only finds solid 

holes inside models, and does not detect regions of 

missing depths. 

The main goal of (Wang et al., 2007) is filling 

holes in locally smooth surfaces. But, as a pre-

processing step, holes are found based on the 

triangular mesh of the input point cloud. In this 

method, holes are identified automatically by 

tracking boundary edges. If an edge belongs only to 

a single triangle, then it is a boundary edge, 

otherwise it is a shared edge, which shares more 

than one triangle. But, employing this strategy in 

finding holes will detect all holes including the real 

holes those need not be filled. Therefore, in this 

work, user input is required as an assistance. So, 

again, manual user inputs are needed in this work. 

An automatic hole-detection approach has been 

presented in (Bendels et al., 2006). Properties of 

point sets have been investigated to derive several 

criteria which are then combined into an integrated 

boundary probability for each point. This method 

seems to be robust, but we have noticed that it has 

some drawbacks. First, in their combination of 

probability criteria, they used some weights, which  
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have to be set by the user according to visual 

inspection. Second, they have a set of predefined 

parameters, which limits the scalability of the 

approach. For example, a predefined diameter is set 

for the hole to be detected. 

Some other approaches address a closely related 

problem. For example, (Dey and Giesen, 2003) 

present an approach for the detection of under-

sampled regions. The detection is guided using a 

sampling requirement, which has been defined to 

ensure a correct reconstruction of surfaces. For 

example, for correct reconstruction, every point on 

the surface should have at least one sample point 

within a ball with a predefined size. But, according 

to this definition, their method will not succeed in 

detecting holes in planar regions, where this 

requirement is mostly fulfilled by a little number of 

samples. 

3 THE PROPOSED ALGORITHM 

Fig. 1 shows the flowchart of the proposed 

algorithm. In the following subsections, each of the 

main processes will be discussed in brief using 

demonstration examples. 

3.1 Input a Number of Views 

The first step in the proposed algorithm requires a 

number of input images. Because the technique 

proposed in this paper uses stereo correspondences, 

two calibrated images from different viewpoints for 

the object being reconstructed are needed at least. 

3.2 Bundle Adjustment 

Bundle Adjustment is the process of jointly refining 

a set of initial camera and structure parameter 

estimates for finding the set of parameters, which 

most accurately predict the locations of the observed 

points in the set of available images (Alismail et al., 

2016). Assuming we have n 3D points that are seen 

in m views, and the projection of the ith point into 

view j is denoted by Xij, and let vij be a binary 

number equals 1 if the point i is visible in view j and 

0 otherwise. Also, let aj denote the vector carrying 

the parameters of camera j and bi is the vector 

carrying the coordinates of the 3D point i. Then by 

minimizing the following energy function, we get 

the optimal projection matrix for each camera. 

 

𝑚𝑖𝑛
𝑎𝑗,𝑏𝑖

∑∑𝑣𝑖𝑗𝑑(𝑄(𝑎𝑗 , 𝑏𝑖), 𝑋𝑖𝑗)
2

𝑚

𝑗=1

𝑛

𝑖=1

 (1) 

 

where, Q(aj,bi) denotes the predicted projection of 

point i onto view j and d(x,y) denotes the Euclidean 

distance between the image points x and y. In our 

research, we used Bundler (Snavely et al., 2008; 

Snavely et al., 2006) for getting the camera matrices. 
 

 

Figure 1: Flowchart of the proposed approach, detection 

and classification of holes in point clouds. 

3.3 Reconstruction of the 3D Structure 

Patch-based Multi-View Stereo (PMVS) software 

(Furukawa and Ponce, 2010) has been employed to 

reconstruct the 3D structure of objects visible in 

images. According to our proposed approach, we 

need to know the views in which the generated 3D 

points are visible. One of the outputs generated by 

PMVS is the PATCH file, which contains full 

reconstruction information. That includes the 

number of reconstructed 3D points, the 3D location, 

the normal, and photometric consistency score for 

each point. Also, it states the number of images in 

which the point is visible as well as the actual image 

indexes. That is the main reason for using PMVS in 

our implementation.  
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3.4 Generating Depth and Visibility 
Maps 

The goal of this research is to analyse the 3D 

structure of objects appearing in images through 

investigating the combination of the 3D structure 

together with the features and details provided by 

the images. Therefore, the goal of this process is to 

relate the 3D information, which we got in the 

previous process, with the 2D views (images). 

In point clouds, each point can be denoted using 

a homogeneous 3D coordinate as (x y z 1). Similarly, 

the homogeneous 2D coordinate of its projection 

into images can be denoted as (u v 1). From the 

patch file, we know the view in which each of the 

3D points is visible. Then, using the corresponding 

camera matrix, P, we can relate each 3D-coordinate 

to its 2D-coordinate by following (2), where d is the 

depth of that point. 
 

𝑑[𝑢 𝑣 1]𝑇 = 𝑃[𝑥 𝑦 𝑧 1]𝑇 (2) 
 

We can thus generate depth-maps for our object 

based on all its views (images). Because images are 

10 times down sampled, the value of each pixel in 

that map is the average of the depth values of the 

projected 3D points into that pixel location. If for a 

given pixel no depth information is given, it is 

assigned a depth equals √2 times the maximum 

depth in the map (very far). Thereby, we guarantee 

that the generated value is larger than the maximum 

depth in the map. Here, it is worth mentioning that 

values other than √2 can also be used. But the used 

value has a direct effect in segmentation, as it will 

become clear in section 3.5.2. 

Also, exploiting the visibility information from 

the PMVS's PATCH file, we can generate visibility-

maps, where each pixel is assigned a number which 

equals the total number of 3D points which are 

projected to that pixel location. This happens 

because of the down sampling of images. Fig. 2 

shows both maps for one view of the house model as 

an example (see section 4 for more details about the 

dataset). In the visibility-map, for demonstration, a 

pixel is marked red if it has depth information in the 

generated 3D structure and marked black otherwise. 
 

   
(a) (b) (c) 

Figure 2: Example depicting (a) original image, (b) depth-

map and (c) visibility-map. 

Afterwards, we will use either of these maps to 

identify the problematic regions, which have no 

depth information, out of each image employing 

graph cuts.  

3.5 Segmentation using Graph Cuts 

To take advantage of the competent solutions of 

graph-based approaches for segmentation problems, 

we built an s-t-graph (Boykov and Funka-Lea, 

2006). The number of nodes in the graph equals to 

the number of pixels in the input map. Two more 

additional nodes, the source and the sink, represent 

the segmentation labels. Each node in the graph is 

connected to its 8-neighborhood nodes based on the 

neighbourhood information of pixels. In addition, 

each node is joined to the source and the sink using 

two weights, which represents the likelihood of the 

corresponding pixel to either of the segmentations 

labels. Fig. 3 shows a sketch of the graph.  For 

accurate segmentation results, weights form 

different types of regions must assure a large 

difference. For reasons of comparison, weights are 

selected based on the depth-maps one time and on 

the visibility-maps at the other time.  
 

 

Figure 3: Sketch of the graph and connectivity 

(w3.impa.br/~faprada). 

3.5.1 Supporting Graph Cut Segmentation 

For supporting our graph-based segmentation, 

before we set the weights for the graph, we estimate 

another kind of segmentation, which gives an 

indirect indication about the nature of pixels. That is, 

whether they have depth information or not. Since 

SfM techniques perform poorly in regions having 

weak or no textures, we first detect these regions in 

original images, then each pixel is classified to 

belong either to a textured or texture-less region. 

Finally, weights on graph edges are affected by 

those classification results.  

VISAPP 2017 - International Conference on Computer Vision Theory and Applications

324



 

According to (Scharstein and Szeliski, 2002), 

texture-less regions are defined as regions where the 

average of the squared horizontal gradient over a 

predefined window is below some given threshold. 

Using (3), we get the squared horizontal intensity 

gradient for two neighbouring pixels. It is calculated 

over the three color-channels, c, and then averaged. 

If we repeat this for all pixels in image, we get the 

Gradient Image GI, where i and j are the image’s 

row and column indices respectively. 
 

𝐺𝐼(𝑖, 𝑗 + 1) =
1

3
∑(𝐼𝑐(𝑖, 𝑗) − 𝐼𝑐(𝑖, 𝑗 + 1))

2

3

𝑐=1

 (3) 

 

If for a given region, which is covered by a window 

of a predefined size S×S, the average of the squared 

gradient is less than some predefined threshold T, 

then this region is assumed as a texture-less region. 

The average squared gradient over a predefined 

window can be calculated as: 
 

𝐴𝑣𝑔 =
1

𝑆2
∑ ∑ 𝐺𝐼

𝑆/2

𝑏=−𝑆/2

(𝑖 + 𝑎, 𝑗 + 𝑏)

𝑆/2

𝑎=−𝑆/2

 (4) 

 

Image indices i and j are set such that the window 

remains inside the image boundaries each time the 

Avg is calculated. Pixels falling in weak or texture-

less regions are assigned the value β = 1, (white 

color). All other pixels are assigned the value β = 0, 

(black color). Fig. 4 shows the classification results 

for one view of the Folder model (see section 4 for 

more details about the dataset).  We used the 

parameters S=9 and T=3. 
 

  
(a) (b) 

Figure 4: Example showing (a) original image, (b) 

“textured”, ‘texture-less” classification results. 

3.5.2 Segmentation based on Depth-Maps 

Based on depth-maps, the weights of the graph are 

given in a way such that the min-cut / max-flow 

goes through regions where no depth information is 

available. If the maximum depth for a given depth-

map, D, is Dmax, and the depth for a given point, p, is 

D(p), the term weight, Wp, is estimated using (5). 

Where, βp is the supporting parameter, which is the 

classification of the pixel corresponds to point p (see  

   

section 3.5.1). And α is a tuning parameter, used to 

suppress the effect of the supporting term. This kind 

of suppression is very important, because the 

presence of a pixel in a textured region, βp = 0, does 

not guarantee that we have a corresponding depth 

information. This usually happens if the pixel is not 

visible in other views. Therefore, we set α to 10, this 

has the effect of a little decrease in point weight. It is 

worth mentioning that if a pixel falls in a texture-less 

region, βp = 1, then the supporting term becomes 

zero. So, the maximum possible point weight is 

guaranteed. This makes sense, as there will be no 

corresponding depth information for that pixel. 

Basically, Wp is the probability that point p belongs 

to a problematic region. 
 

𝑊𝑝 =
𝐷(𝑝)

√2 ∗ 𝐷𝑚𝑎𝑥
− (1 − 𝛽𝑝) ∗

log10 √2

𝛼⏟            
supporting term

 (5) 

 

In addition, each edge, Epq, which connects any two 

points, p and q, is assigned two weights, Wpq and 

Wqp, as seen in (6) and (7) respectively. 
 

𝑊𝑝𝑞 = 𝑊𝑝 (6) 
 

𝑊𝑞𝑝 = {
𝑊𝑞 , 1 − 𝑊𝑝 ≥ 𝑊𝑞
1 −𝑊𝑝 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 

 

Fig. 5 (b) shows the result of segmenting a depth-

map, which has been shown in Fig. 2 (b). White 

color is used to refer to pixels having no depth 

information. 

3.5.3 Segmentation based on Visibility-maps 

As in section 3.5.2, the weights of the graph are 

given such that the min-cut / max-flow goes through 

the problematic regions, but now based on the 

visibility-maps. Based on our definition of a 

visibility-map, V, problematic regions are the 

regions composed of pixels that have the least 

number of projections. Therefore, these points are 

given highest weight in the graph. For some given 

point, p, which has the total number of projections 

V(p), the term weight, Wp, is estimated as in (8). 

Note that here we also use a supporting term, which 

is exactly same as the term used in section 3.5.2. 
 

𝑊𝑝 = (1 − min (1 ,
𝑉(𝑝)

2
 )) − (1 − 𝛽𝑝)

∗
log10 √2

𝛼
 

(8) 

 

Also, each edge, Epq, is assigned two weights, Wpq 

and Wqp, which are calculated as in section 3.5.2 but 

now point weights are estimated using (8). Fig. 5 (c) 
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shows the result of segmenting a visibility-map, 

which has been shown in Fig. 2 (c). White color is 

used to refer to pixels having no depth information. 
 

   
(a) (b) (c) 

Figure 5: Segmentation results for both maps shown in Fig 

2. Part (a) is the original point cloud, (b) depth-map 

segmentation, and (c) visibility-map segmentation. 

At first glance, segmentation results look in 

somehow the same and this might also be supported 

theoretically. Because if we have a 3D point, this 

means for sure that it is visible in at least two of the 

views, so depth means visible.  But, for the detection 

of the problematic regions, we prefer depending on 

depth-map-based segmentations for the following 

reason: Taking the exact depth value of each point 

for weighting the graph is more efficient and robust 

than taking the cue that the point is visible in the 

view. Because, the noisy 3D points will be noted as 

visible in views, and will contribute in weight 

estimations with the same amount as the non-noisy 

points. But based on depth-maps, noisy points, 

which have been assigned erroneous depths, will 

contribute with their depths, which will be different 

from the other non-noisy points depths.  

3.6 Regions of Interest (ROI) Detection 

In this process, we need not only delineate the 

problematic regions, but also, we need a direct 

access to the points inside those regions for further 

processing. Therefore, contours will be the most 

appropriate tool fulfilling our demand. We also need 

the detected contours to be closed. I.e., the 

boundaries or edges of the problematic regions need 

to be connected. In the segmentation results, which 

we already saw in Fig. 5, the problematic regions, 

those having no depth information, are tightly 

delineated or connected. So the detection of such 

regions using closed contours is quite easy. But, 

after many observations, we have noticed that this 

might not be the case all the time. This presents 

challenges in the detection process. Therefore, as an 

attempt to connect the non-connected edges, we 

decided to first detect the edges of the object being 

reconstructed using the original images, and then 

combine the detected edges with the segmentation 

results. Fig. 6 shows an example, where this 

combination helps in detecting closed contours  

   

surrounding ROI. As shown in (d), it is clear that the 

contours are not tightly delineating the problematic 

regions. But after the inclusion of the object's 

detected edges to the segmentation edges, as shown 

in (e), the detected contours are now delineating the 

problematic regions in a helpful manner, as seen in 

part (f). 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 6: Example depicting the benefit of combining both 

depth and real edges in the process of ROI detection. (a) 

Original Image. (b) depth-map segmentation. (c) Detected 

edges based on (b). (d) Detection of the ROI based on (c). 

(e) Combining both the original object edges with the 

depth based edges shown in (c). (f) Detection of the ROI 

based on (e). 

3.7 Classification of the Detected 
Problematic Regions 

After the detection of the problematic regions in 

images, simple approaches are investigated to check 

their performance in the classification of the 

detected regions.  

First, we conduct a statistical measure on the 

pixels in each problematic region to be classified. 

This measure assumes that the behaviour of each 

ROI among the views should tell about the nature of 

it. This assumption has been inspired from the fact 

that the human does the same whenever holes are to 

be recognized by looking for details inside the hole, 

like the shadow. For the sake of robustness, the 

calculations are done using Hue-Saturation-Value 

(HSV) color-space. Because, HSV separates the 

image intensity from the color information (Haluška 

et al., 2015). For the classification of a given 

detected problematic region P, which appears in n 

views, we first find the mean set, 𝑀 =
 {µ1 , µ2 ,   . . , µ𝑛}, where µ𝑖 is the average intensity 

inside the region P in view i. Then we find the 

variance and standard deviation of the set M as 𝜎2 =

(1/𝑛)∑ (µ𝑖 − µ)
2𝑛

𝑖=1 , and 𝜎 =  √𝜎2 respectively, 

where µ is the mean of the set M. Finally, we make a 

list of pixels appearing inside the problematic region 

P in all the views and check each pixel p whether it 

satisfies the condition (µ − ⌊𝜎⌋) ≤ 𝑝 ≤ (µ + ⌊𝜎⌋) or 
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not. If the percentage of pixels satisfying that 

condition exceeds a given threshold, T (see section 

4), then P is assumed as a virtual hole, otherwise it is 

assumed as a real hole.  

Second, we experiment a depth measure, which 

re-projects the problematic region to be classified 

into the 3D space and simply differentiates the 

average depth of the 3D points on the contour 

delineating the region from that inside the same 

region. If the region corresponds to a real physical 

hole, then it is supposed to have a significant depth 

difference. Otherwise, if the region corresponds to a 

virtual hole, the difference is supposed to be 

negligible. A depth threshold, Td, is used for that 

reason (see section 4). 

4 EXPERIMENTAL RESULTS 

As mentioned before, hole-classification has not 

been addressed beforehand. Therefore, no 

comparisons to other works will be given in this 

section. However, many experiments have been 

conducted to investigate the performance of the 

proposed approach in terms of accuracy in detecting 

and classifying holes. The material used in this part 

includes a dataset of 55 models for different indoor 

objects and scenes, each of which is reconstructed 

using VisualSFM (Wu, 2011) based on a set of 

images (5184 x 3456) taken from different 

viewpoints. For performance issues, after estimating 

the 3D models, all images are 10 times down 

sampled. Fig. 7 shows a sample set of the models 

used in this paper.  

The reconstructed models contain many 

problematic regions, with size ranges from 600 to 

150,000 pixels. The size of a problematic region P is 

the least number of pixels appear in P when 

projected to each of the down-sampled views. As a 

ground truth, we make a record of randomly selected 

set of problematic regions, each of which is assigned 

to either real or virtual hole. 40% of the selected set 

are for real holes and 60% are for virtual holes. 

Training our statistical and depth classifiers is to 

estimate the values of thresholds, T and Td, by which 

problematic regions can be classified. For that 

reason, 20 models are selected randomly for 

training. Many observations have been applied for 

different values of these thresholds. The accuracy 

corresponds to each observation has been recorded. 

The highest average classification accuracy was 

obtained when setting T = 30 % and Td = 0.01 

(normalized).  
 

   
(a) Castle-P19 

(Strecha, 2008) 
(b) Screen (c) Chair 

 
 

 

(d) Drawer. (e) Door. (f) Tiny House. 

   

(g) Hall. (h) Shelf. 
(i) Herz-Jesu-P8 

(Strecha, 2008). 

   

(j) House. (k) Sofa. (l) Wheels. 

Figure 7: Some of the models used in evaluating the 

proposed approach.  

4.1 Evaluating the Detection of the 
Problematic Regions 

Figure 8 shows an example of problematic regions 

detection. As mentioned before, contours are used to 

delineate the problematic regions. Therefore, to 

quantitatively assess the detection accuracy, we 

measured the similarity between the detected 

contour and the ideal contour, which is set manually. 

This has been done for a set of the test models. The 

similarity between contours is measured using the 

Pratt’s Figure of Merit (PFOM) (Abdou and Pratt, 

1979) defined in (9). This measure basically depends 

on estimating the distance between point pairs of the 

two contours. 
 

𝑅 =
1

𝑚𝑎𝑥 (𝐼𝐼 , 𝐼𝐷)
∑

1

1 + 𝛼𝑑𝑖
2

𝐼𝐷

𝑖=1

 (9) 
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Where, II and ID are the numbers of edge points in 

the ideal, ground truth, and the detected contour 

respectively. di is the distance between the ith pixel 

in the detected contour and the nearest pixel in the 

ideal contour. Finally, α is an experimental constant 

which was set to 1/9 according to (Abdou and Pratt, 

1979). The value of R ranges between 0 and 1. The 

larger the value of R, the more accurate the detected 

contour is. The average value of R we got in this 

experiment is 0.89. This value means that 

approximately 90% of the ROI is detected. This is 

sufficient for the next processing steps to achieve the 

goal of this research.  This is because 90% of the 

region’s area will definitely contain most of the 

details, in which we are interested for the next 

processing step. 
 

  
(a) (b) 

  
(c) (d) 

Figure 8: Demonstrating the detection of the problematic 

regions. (a) Toy Model, reconstructed using Visual-SFM 

(10 images). (b) detected problematic region in one of the 

images used in (a). (c) House Model, reconstructed using 

Visual-SFM (10 images). (d) Two detected problematic 

regions in one of the images used in (c). 

4.2 Evaluating the Classification of the 
Problematic Regions 

To evaluate the accuracy of the proposed 

classification approaches mentioned in section 3.7, 

we compare the outcome of the classification 

experiments with the ground truth classification. The 

average accuracies for classifying virtual and real 

holes using the proposed statistical classifier can be 

seen in Fig. 9. Problematic regions are categorized 

into 6 categories based on their sizes. 

The average true positive rates for classifying 

virtual and real holes are 81.74% and 80.09% 

respectively. As seen in Fig. 8, the smaller the 

problematic region is, the lower the true positive rate 

we get. Many small virtual holes were classified as 

real holes. The reason behind this is the effect of the 

change in lighting conditions on those regions from 

one view to the other. This effect usually biases our  

   

classifier. Also, many small real holes were 

classified as virtual holes. Because the details behind 

these holes are not clearly visible.  
 

 

Figure 9: True positive rates for the statistical classifier. 

Figure 10 shows the average accuracies for 

classifying virtual and real holes using the proposed 

depth classifier. The average true positive rates for 

classifying virtual and real holes are 80.44% and 

83.76% respectively. In fact, for the latest measure, 

the models, in which problematic regions were false 

positive or false negative, are either noisy models or 

having regions, in which it is very difficult to 

calculate the measure because of having no depth 

information inside it. 
 

 

Figure 10: True positive rates for the depth classifier. 

4.3 Evaluating the Efficiency of the 
Proposed Approach 

The results listed in this section were taken using a 

personal computer running Windows 7 64-bit 

operating system with Intel Core i7 3.6 GHz 

processor and 16 GB Memory installed. The 

approach has been implemented using C++.  

The efficiency of the proposed approach is 

highly dependent on the starting point from which 

the processing will start, see Fig. 1.  The point from 

which we start usually depends on which type of 

data do we have. If we only have the images of the  
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object and still have no 3D reconstruction of it, then 

the time consumed by the proposed approach will 

include the time for the bundler and 3D 

reconstruction pipeline. Unfortunately, these two 

components usually take long time, depending on 

the size and number of input images (approximately 

3 minutes to process 8 images each of which has 

size 5184×3456). Nonetheless, the rest of 

components in the proposed approach are very 

efficient. Fig. 11 shows the average time required 

for generating and segmenting depth-maps given 

different numbers of input images. It is worth 

mentioning that, as the number of the input images 

increases, the classifications of the problematic 

regions will become more stable. But, as seen in the 

figure, the larger the number of views results in 

longer processing times. Therefore, a kind of trade-

off is required. In practice a number between 4 and 8 

images has proved to be sufficient for achieving the 

goal in less than one second. Nevertheless, despite 

of having a quite large number of input images, the 

required time still less than 1 second for generating 

the maps and less than 2.5 seconds for segmenting 

them. 

 

Figure 11: Average time required to generate and segment 

depth-maps, corresponding to a given number of views. 

Finally, to estimate performance of the time 

required for the detection and classification of the 

problematic regions, we conducted an experiment 

using a set of models containing several problematic 

regions with different sizes. The average 

problematic region detection time we got is 0.0026 

second and the average classification times we got 

using the statistical and depth classifiers are 0.042 

and 0.80 second respectively.  

5 CONCLUSION AND FUTURE 

WORK 

A simple approach for the detection and 

classification of holes in point sets is proposed. In 

this research, it has been proved that depth-map is a 

robust and efficient resource for the detection of 

problematic regions in point-clouds. We also proved 

that simple statistical measures can be used for the 

automatic classification of the detected problematic 

regions in point sets. The results of the experiments 

we got are quite promising. Holes are accurately 

identified and classified. Nevertheless, there are still 

some problems that need to be addressed in future. 

For example, robustness to lighting variations on 

surfaces, as well as to noise in point clouds. Also, 

our future work will concentrate in filling holes, 

which are classified as virtual holes. 
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