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Abstract: The electrical field potential of the heart recorded from the thoracic part of the human body is depicted by the
electrocardiogram signal. This last one is complex and depends on many factors: Position of heart, thickness
of the body skin, surface electrode conductivity, acquisition noise and many others. In clinical use, the ECG
signal is analysed using twelve leads but in many works in the literature, the analysis methods of the ECG
is based on two leads. We present a new method to delineate QRS complexes and T and P waves from
electrocardiogram signal. It is based on the continuous wavelet transform. The method is applied on several
leads, recorded simultaneously, to improve the localization of the detection. Indeed, if a delineation method is
applied on only one lead with some disturbances in it, the result of the delineation could be affected. As the
method proposed here merges the result of several leads, the delineation is less affected by disturbances on
few leads. The results from this method and from a doctor in medicine are compared. That shows the good
ability to separate waves and the enhancement of delineation accuracy when several leads are used.

1 INTRODUCTION

The QRS, P and T waves detection in the electro-
cardiogram (ECG) represents a great interest to di-
agnose pathological conditions (Navoret et al., 2013;
Mahamat et al., 2016a; Mahamat et al., 2016b). How-
ever, their extraction from ECG is not an easy task.
Some methods exist, including mathematical mod-
els (Madeiro et al., 2013), peak detection (Zhu and
Dong, 2013), nonlinear transforms (Sun and Sup-
pappola, 1994), filtering (Bashir et al., 2014). The
shapes of QRS, P and T waves are well known, es-
pecially their time and frequency components which
depend on the physiological characteristics of peo-
ple. It may be difficult to extract ECG complexes be-
cause their frequency compositions are close to some
noises. The algorithm presented here uses the contin-
uous wavelet transform (CWT) which keeps a good
frequency resolution. Wavelet transforms (Addison,
2005; Li et al., 1995; Zidelmal et al., 2012) have al-
ready been applied to ECG signals to enhance QRS
detection, to delineate the ECG feature, and to re-
duce computation time. However, the major part of
ECG delineation methods deals with Discret Wavelet
Transform, which loses frequency resolution due to

re-sampling at each decomposition. That is not the
case in CWT. The method was tested with The Com-
puters in Cardiology Challenge 2011 database be-
cause it contains 12 leads for each ECG. From this
collection, a set of fifty 12 leads ECGs, chosen in
the ”acceptable records” list given by Physionet, was
used for our tests. In addition, this database provides
ECG from patients with different pathologies leading
to some irregularities in ECGs. Therefore, our algo-
rithm (Yochum et al., 2016) was tested on several par-
ticular ECGs such as arrhythmias and extrasystoles.
Our method uses the 12 leads together to extract QRS,
P and T waves from each ECG, which improve the lo-
calization. The method performs a serial detection of
the components of the ECG signal as these compo-
nents usually follow a decrease in their energy (QRS
complexes contain more energy than T wave, and T
waves contain more energy than P waves). Results
show the use of 12 leads simultaneously reinforces
the detection and also avoids misdetections if distur-
bances exist on few leads.
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Figure 1: a. Example of VECG signal from Physionet collec-
tion. b. CWT transformation of VECG signal with a0 = 38
corresponding to the maximum of Ca,b coefficient. We can
also see the representation of the difference between max-
ima of Ca0,b coefficients during QRS complexes (cross) and
maxima Ca0,b coefficients during T complexes (plus) which
allows the localization of QRS complexes. Both dashed
lines are the h threshold representation of positive and neg-
ative parts computed with the equation 2. c. Histogram
of local maxima values. We distinguish a bimodal distribu-
tion. d. VQRS result example with mQRS mask applied on the
VECG signal in a. A good localization of QRS complexes are
observed.

2 METHOD

The algorithm is remained in this part, but all the de-
tails can be found in (Yochum et al., 2016). It pro-
ceeds in four steps. The first step determines the
best scale factor which exists between the ECG sig-
nal (VECG) and a mother wavelet (ψ the Daubechie
wavelet) according to a set of scale factors. A CWT
is applied between VECG and ψ on a discrete grid of
scale factors a and a position b on the time axis. Such
as:

Ca,b(VECG(t),ψ(t)) =
∫ ∞

−∞
VECG(t)

1√
a

ψ
(

t−b
a

)
dt, (1)

Scale factors go from 1 to 100 by step of 1. This
range allows the analysis of various sizes of ECG
complex. To find the best scale factor a0, we esti-
mate the scale factor which corresponds to the maxi-
mal value of the CWT coefficients, named Ca,b. The
second step builds a temporal mask in the wavelet do-
main by using the Ca0,b coefficient which is a vector.
This mask allows the extraction of QRS complexes
from the ECG signal. Figure 1b shows an example
of a CWT applied on a VECG (see panel a in Figure
1). Notice that Ca0,b values corresponding to QRS
complexes are higher than Ca0,b values correspond-
ing to T or P waves, which is not always the case
in VECG. Using this fact, QRS complexes is distin-
guished from VECG with a thresholding method. A
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Figure 2: a) VECG signal without QRS complexes corre-
sponding to the examples in Figures 1. b) Ca0,b coefficients
from CWT with a0 scale factor. Both dashed lines are the
h threshold representation for positive and negative parts
computed from the equation 2. c.VT result example. d.VP
example. A good localization of T and P waves is observed.

threshold is created automatically using a local max-
ima method. Those maxima are represented in Figure
1b, by crosses (during QRS) and plus (during T). In
Figure 1c, the histogram of those maxima is plotted.
It shows a bimodal distribution. To find automatically
the threshold, the centroid of these points in the his-
togram is computed:

h =
∑n

i=1 xiyi

∑n
i=1 yi

, (2)

where h is the threshold, xi are the local maxima Ca0,b
values, yi are the distribution value of Ca0,b coeffi-
cients and n represents the histogram range. Then,
once the threshold is computed, a mask is created us-
ing

∣∣Ca0,b
∣∣ absolute coefficient values and the thresh-

old h. A preliminary mask (mp) is equal to 1 if
∣∣Ca0,b

∣∣
are above the threshold, which corresponds to the
QRS complexes. The mask is equal to 0 if

∣∣Ca0,b
∣∣

are below the threshold, corresponding to the T or P
wave parts. To avoid some glitches in the mask, an
erosion algorithm (a mathematical morphology oper-
ation (Serra, 1982)) is applied to the mp and gives
the final mask named mQRS. The third step localizes
QRS complexes by multiplying the mask mQRS with
the VECG signal.

VQRS(t) =VECG(t) ·mQRS(t), (3)

An example of VQRS is shown in Figure 1d which cor-
responds to VECG signal in Figure 1a. As we can
see, QRS complexes are well localized in VECG sig-
nal. The last step of the method is to repeat the three
first steps on the VECG signal without QRS complexes.
An example is shown in Figure 2a. In Figure 2b, we
see Ca0,b coefficients corresponding to the CWT of the
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VECG signal without QRS complexes. The local max-
ima are represented by crosses (during T waves) and
plus (during P waves). Thanks to those local max-
ima, the threshold was computed. It is plotted with
the dashed line. Then, the mask mT is created to find
T waves signal VT with:

VT (t) =VECG(t) ·mT (t) (4)

An example of VT is shown in Figure 2c which corre-
sponds to the VECG signal in Figure 1a. As we can see,
T waves are well localized from VECG signal. The P
waves are detected as the rest of the VECG signal with-
out QRS complexes and T waves. In addition, the
smallest remaining segments are removed. An exam-
ple is displayed in Figure 2d.
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Figure 3: Examples of results of reliability indexes in a) for
the QRS complexes, in b) for the T complexes and in c) for
the P complexes. The threshold is plotted with dashed lines
for each complex as the mean of the reliability index.

To improve the localization of each complex QRS,
T and P in an ECG, the results of several leads were
combined. In cardiac diagnostic test, it is common
to have several leads in ECG signal. In this case,
even if few leads are unusable, merging results of each
lead could increase the localization of each complex
or wave. Masks mQRSk , mTk and mPk created for each
lead (where k = [1,12], k ∈ N according to the lead)
are then used to compute a reliability index. If the lo-
calization result is common to the twelve leads, then
there is a strong probability that the QRS complexes
or P and T waves are well detected. On the other hand,
if there are only few localizations among the twelve
leads, then there is a low probability that the local-
ization result is true. A reliability index of each QRS
complex or P and T wave is then computed as the sum
of twelve lead masks:

Iw(t) =
12

∑
k=1

mhk(t) (5)

where w is QRS, T or P. Therefore, the reliability in-
dexes are respectively IQRS for QRS complexes, IT for
T waves and IP for P waves. A good localization is
more likely if the index is close to 12. In the oppo-
site case, a good localization is unlikely if the index is
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Figure 4: Application of the algorithm on 1 lead very noisy
ECG signal. Note that the detection is not correct.
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Figure 5: Application of the algorithm on 2 leads, a very
noisy one and a disturbed one. Note that the detection is not
correct. The colors correspond to the legend in Figure 4.

close to 0. In Figure 3, a result of reliability indexes
is shown (in a for the QRS, in b for the T and in c for
the P). An automatic threshold is computed for each
wave as the mean of reliability index. In Figure 3,
these three thresholds are plotted with dashed lines.
The localization of a complex is considered true if the
value of the reliability index is above the threshold
otherwise it is considered false.
To illustrate the advantage of using more than one
lead, Figures 4 to 7 present the result of the method
with 1, 2, 4 and 12 leads. In Figure 4 just one noisy
lead is used. Note that the detection is incorrect. In
Figure 5 only two leads are used, a noisy one and a
disturbed one. Note, once again, that the detection is
incorrect. In Figure 6 only four leads are used with a
noisy one and a disturbed one. Note that, this time,
the detection is visually correct, even if two leads are
perturbed. Because the algorithm used multi-lead in-
stead of just one, the algorithm is able to compensate
disturbances on several leads. The same fact is shown
in Figure 7.

3 RESULTS

In Figure 8, four different examples are given show-
ing some particular cases where the determination of
QRS complex, T and P waves might be difficult. In
panel a, the SNR ratio of the ECG is really low. Nev-
ertheless, the different waves are well detected by the
algorithm without any post acquisition process (de-
noising, amplitude enhancement,...). In panel b, T
waves are higher than QRS waves. That could lead
to mix up of those two if a thresholding technique
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Figure 7: Application of the algorithm on 12 leads with a
very noisy one and a disturbed one. Note that the detec-
tion is visually correct even if two leads are very perturbed.
Colors correspond to the legend in Figure 4.

was used directly on the ECG signal. However, as
the thresholding is done in the wavelet domain, the
result shows a correct complexe detection. It is possi-
ble that the baseline of an ECG is not stable. This
is the case in panel c. Despite that, the algorithm
shares correctly each wave without low frequency fil-
tering. In panel d, we can see that all waves are in
the same range of amplitude which could lead to mix
them. However, the robustness of our algorithm pre-
vents this and the results are therefore not affected.
In this case, standard thresholding algorithms are un-
able to discriminate correctly QRS complexes and T
waves, they could be mixed.

4 APPLICABILITY

The results of our algorithm applied to the Physionet
collection is compared with delineation determined
by a doctor in medicine. The interest is to know the
beginning and the end for each ECG complexes from
an expert as a true result. The physician chooses one
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Figure 8: Example of results with some cases where the
ECG complexes are usually difficult to distinguish. a) the
ECG has got a law SNR ratio. We see that the algorithm
is able to discriminate each wave without filtering. b) the
T waves are higher than the QRS waves. These two waves
could be mix up if we use a thresholding technique directly
on the ECG signal. However, in our case the thresholding is
done in the wavelet domain. c) The baseline of the ECG is
not stable. Despite that, the algorithm share correctly each
wave. d) All waves are in the same range of amplitude and
the results are not affected. QRS (black lines), T (dark gray
lines) and P (pale gray lines).

lead from the twelve leads and determines for each
QRS complex, P and T wave of this lead the begin-
ning and the end times. These data are then used as
correct result of ECG delineation. From the algorithm
and the physician, two results by ECG are obtained:
the real moments of QRS, T and P in the ECG tagged
by the doctor, and the results given by the algorithm.
Thanks to our algorithm and the physician, two re-
sults for 12 ECG leads are obtained: the real mo-
ments Dw(n) of QRS, T and P in the ECG tagged by
the physician and the results Aw(n) given by our algo-
rithm. Aw(n) and Dw(n) are equal to 1 if the QRS, T
or P wave is detected and 0 (noted Aw(n) and Dw(n))
if is not, they are therefore logical vectors. For each
Aw(n) and Dw(n) pair, the coverage rate Sew is com-
puted (w denotes QRS, T and P waves.). This cov-
erage is determined as a logical AND between Aw(n)
and Dw(n) divided by Dw(n) as shown in the eq.(10).
The coverage gives the common result between the
algorithm and the physician determination. This cov-
erage is well known as the sensitivity which is com-
puted thanks to TP (True Positive), TN (True Neg-
ative), FP (False Positive) and FN (False Negative)
where

T Pw =
N

∑
n=0

Aw(n) ·Dw(n), (6)

T Nw =
N

∑
n=0

Aw(n) ·Dw(n), (7)

FPw =
N

∑
n=0

Aw(n) ·Dw(n), (8)
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FNw =
N

∑
n=0

Aw(n) ·Dw(n). (9)

Those values are then scalars. Therefore, the sensitiv-
ity Sew is computed as:

Sew =
T Pw

T Pw +FNw
. (10)

Sew shows the ability of our algorithm to give the
same results as the physician. For each ECG, the
specificity has been determined.

Spw =
T Nw

T Nw +FPw
. (11)

From the equations (6) to (11), the Youden Yw and the
accuracy Accw indexes can be defined:

Yw = Sew +Spw−1, (12)

Accw =
T Pw +T Nw

T Pw +T Nw +FPw +FNw
. (13)

The reliability indexes introduced above, have been
calculated on the results of the fifty ECG samples and
their mean values are given in Table 1. These in-

Table 1: Mean values of sensitivity, specificity, Youden in-
dex and accuracy from the fifty ECG samples.

Waves Se(%) Sp(%) Y (%) Acc(%)
QRS 99.87 98.42 98.29 98.64

T 99.17 93.21 91.38 94.83
P 99.06 91.21 90.27 92.44

dexes show a good ability of the algorithm to local-
ize ECG complexes since indexes are close to one.
The specificity for T and P complexes are a little bit
lower because our algorithm detects a larger area than
the doctor which induces higher TN values. Our al-
gorithm is able to well determine the duration of the
QRS complexes in the ECGs. However, the durations
for the T and P waves are longer than for the doc-
tor delineation. Nevertheless, the coverage shows that
our algorithm contains the entire parts determined by
the doctor. Therefore, some other treatments could be
done to improve the localization of T and P complexes
or to find other characteristics such as amplitudes and
interspike durations for instance.
In addition, to better quantify the quality of the re-
sults, Table 2 presents the sensitivity index for the use
of different number of leads. As we can see, the algo-
rithm gives better results if a high number of leads is
used. It is particularly the case for the P wave.

Table 2: Improvement of wave detection with the increase
of leads.

Leads/Wave QRS T P
1 0.9134 0.3420 0.1643
2 0.9059 0.5103 0.5371
3 0.9752 0.7082 0.6396
4 0.9851 0.9939 0.9611
5 0.9802 0.9963 0.9717
6 0.9752 0.9988 0.9806
7 0.9802 1 0.9788
8 0.9823 1 0.9851
9 0.9876 1 0.9851

10 0.9912 1 0.9851
11 0.9929 1 0.9851
12 0.9951 1 0.9912

5 CONCLUSIONS

The algorithm proposed here to delineate QRS, T
and P waves in ECG signal uses a wavelet domain
transform with CWT. It can simultaneously detect
the QRS, T and P patterns on each ECG lead. A
thresholding method separates the complexes in the
wavelet domain instead of in the temporal domain.
Indeed, the amplitudes among waves are more differ-
ent in wavelet domain than in the temporal domain,
which helps the detection. To improve QRS, T and P
wave localizations in ECG signal, results from several
leads are combined with a fusion method. A compar-
ison with doctor tags thanks to sensitivity, specificity,
Youden and accuracy indexes shows the efficiency of
this method. In addition, the utility of using several
leads instead of only one has been proven, in par-
ticular when some leads are disturbed. We plan to
improve this method by detecting also fiducial mark-
ers which are useful for pathologic diagnosis. This
method could be implemented in a hardware setup
in order to help physicians and to facilitate the ECG
analysis.
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