
User-based Load Balancer in HBase

Ahmad Ghandour1, Mariam Moukalled1, Mohamad Jaber1 and Yliès Falcone2

1American University of Beirut, Computer Science Department, Beirut, Lebanon
2Univ. Grenoble Alpes, Inria, Laboratoire d’Informatique de Grenoble, F-38000 Grenoble, France

Keywords: Big Data, NoSQL, HBase, Load Balancer.

Abstract: Latency of read and write operations is an important measure in relational and non-relational databases. Load
balancing is one of the features that manages the distribution of the load between nodes in case of distributed
servers to improve the overall performance. In this paper, we introduce a new load balancer to HBase (a non-
relation database), which monitors the most requested keys and dynamically acts to redistribute the regions by
splitting and moving them. Our load balancer takes into account the average response time of clients’ requests
and the most requested keys. Our method is fully implemented and can be integrated in HBase distribution.
Experimental results show that we get on average an improvement of latency of 15%, and up to 35% in some
scenarios.

1 INTRODUCTION

We live in the big data era. A tremendous amount of
data, petabytes in size, are accessed by users. In stan-
dard relational database management systems, han-
dling a huge amount of data in a reasonable amount
of time became a bottleneck. Standard relational
database management systems suffer from handling
huge volume of data in reasonable amount time. This
is mainly due to its relational structure of data. To
this end, non-relational databases (NoSQL) were pro-
posed to provide a mechanism to efficiently store and
retrieve big data, which is no longer modeled with the
tabular relations used in relational databases.

HBase is a NoSQL database. It is an open source
implementation of Big Table (Chang et al., 2008).
Big Table was proposed by Google to handle big
data using distributed file system storage, Google
File System (Ghemawat et al., 2003), in well-formed
structure. The main goals of NoSQL databases are
wide applicability, scalability, high performance and
high availability. Contrarily to relational databases,
NoSQL uses a simple data model which allows for
dynamic control over data layout and format.

NoSQL databases are built on top of a distributed
file system storage. For instance, HBase stores its data
in Hadoop Distributed File System (HDFS) (Hadoop,
2016). HDFS consists of distributed nodes where data
is stored. However, HDFS only allows for sequential
access to the files which requires reading block of data

to access a single row, while HBase is built on top
of it to allow random file access, and hence efficient
handling of read/write operations.

In HBase a table is a collection of rows, where the
rows are sorted according to keys. The table schema
defines only column families, which are the key-value
pairs. A table may have multiple column families and
each column family can have any number of columns.
Additionally, each cell value of the table has a time-
stamp.

Hbase system is composed of several components
that formulate a hierarchical structure: (1) on the top
level there are Zookeeper and HMaster; (2) in the
middle level there are region servers and regions; and
(3) finally there are the store, store file, HFile and
MemStore. Zookeeper provides coordination services
for distributed applications such as naming, configu-
ration management, synchronization, and group ser-
vices. It consists of several servers. One of the
server acts as the master and the others as replicas.
Zookeeper stores all the META data, which is com-
posed of all region servers and their data start and end
keys. It also coordinates with the HMaster to update
its META data accordingly. Moreover, it handles all
the clients’ requests to locate the region servers given
the requested key. HMaster is a centralized node that
handles the management of its region servers (e.g.,
crash of servers, new servers). It also communicates
with Zookeeper to update META data information,
and it is responsible for the assignment of regions

364
Ghandour, A., Moukalled, M., Jaber, M. and Falcone, Y.
User-based Load Balancer in HBase.
DOI: 10.5220/0006290103920396
In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 364-368
ISBN: 978-989-758-243-1
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

among region servers and re-assignment of regions
due to failure or load balancing. Region servers store
regions. Each region server has a start and an end
key except for the first region has empty start key.
Region server handles all read/write requests for all
its regions. Regions act as the container for one or
more store. Each region has a maximum size of 10GB
and it can be manually configured with smaller sizes.
A store in the region has a minimum size of 64MB
and it can be configured with larger sizes. Store
contains MemStore and HFiles. MemStore acts as a
cache memory, which initially stores any data writ-
ten. When the MemStore is full, it is flushed and the
data is transferred to HFiles.

HBase supports several load balancing techniques
to equally split the work amongst the region servers.
Nonetheless, all the load balancers implemented in
HBase do not take into account the response time of
the users’ requests. Additionally, the existing load
balancers split the regions in the middle and do not
take into account the hot keys (i.e., keys requested so
frequently) by the clients.

In this paper, we introduce a new balancer of
HBase region servers, which takes into account the
response time of the users’ requests and automati-
cally detects regions causing delay in response times.
Then, it splits those regions in order to dispatch the
users’ requests into the new created regions. More-
over, if some region servers have too many (with re-
spect to some threshold) regions, it moves regions
from high-loaded region servers to other less-loaded
region servers.

The remainder of the paper is structured as fol-
lows. In section 2, we present our main method to
load balance the distribution of the regions. Section 3
shows experimental results. In Section 4, we discuss
related work. Finally, Section 5 draws some conclu-
sions and perspectives.

2 ADAPTIVE HBase

In this section, we introduce an efficient user-based
balancing method, which automatically splits and
moves HBase regions to improve response time of
clients’ requests. The method mainly consists of two
phases. First, we integrate a monitoring feature to the
APIs provided by HBase that allow clients to access
data. Second, we implement an algorithm to automat-
ically detect regions causing overhead, and accord-
ingly regions are split or moved to improve the per-
formance of the clients’ request.

2.1 Runtime Monitoring and Profiling

The first step is to detect regions causing overhead.
For this, we intercept the HBase API to monitor the
load of the region servers. The interception allows to
keep track of the keys accessed per regions, the to-
tal number of accesses per key and the average re-
sponse time with respect to each region. The profil-
ing data is stored in the META table. Consequently,
whenever a client requests to get any key using shell-
based or API, the new integrated code allows to mon-
itor and store the required information to the META
table. Note that the META table remains on one of
the region servers and it does not split regardless of
its size. Moreover, the new column family containing
the logs is cleared each time we execute the balancer,
which is defined in the following.

2.2 Runtime User-based Load
Balancing

We implement a user-based load balancer, which dy-
namically distributes the load among the servers ac-
cording to client requests. We define a CronJob, a
time-based scheduler, to periodically run the user-
based balancer at specific time instants (to be speci-
fied by the HBase administrator). The user-based bal-
ancer is split into three phases.

2.2.1 Select Victim Regions

The first phase consists in selecting victim regions ac-
cording to the following:

1. Compute, from the profiled information, the av-
erage response time per region. Let ART =
{(R1,art1), . . . ,(Rn,artn)}, where arti is the aver-
age respond time of region Ri.

2. Select the top k victim regions V Rs with aver-
age response time greater than some threshold,
ART threshold. ART threshold is an input parame-
ter of the algorithm to be specified by the HBase
administrator depending on the clients’ need and
the specification of the cluster. Formally, V Rs ={

Ri | (Ri,arti) ∈ ART ∧ arti ≥ ART threshold
}

.

2.2.2 Split Phase

The second phase consists in splitting victim regions
with respect to some keys. A region has to be split so
that the requests are dispatched over the two new re-
gions. That is, consider the case where there is a mas-
sive number of requests on two keys k1 and k2 in some
region, where the two keys belong to the first part of
the region. Then, it is not desirable to split the region

User-based Load Balancer in HBase

365

in the middle, since it will remain congested. For this,
we split the region with respect to a balance key so
that after the split, the future requests would be even-
tually dispatched between the two new regions. Note
that small regions should not be split to avoid explo-
sion of regions, but they should be moved to another
less loaded region server, which will be discussed in
the next phase. For this, we only split the region if its
size is greater than RSthreshold. For every victim re-
gion vr ∈ V Rs of size is greater than RSthreshold, the
split phase is defined as follows:
1. Let (k1,r1), . . . ,(kα,rα) be the number of re-

quests, sorted with respect to the keys in the vic-
tim region vr.

2. We define the balance key to be equal to one if
α is equal to one (i.e., only one key is requested
by this region). Otherwise, we define the balance
key, bk, so that after the split the requests would
be split into the two new regions. For this, we first
select the first key, kβ, from the requested keys
satisfying the following property. The number of
requests to the keys less than or equal to kβ would
be greater than the number of requests to the keys
greater than kβ. Then, we set the balance key to

be between kβ and kβ+1. Formally, bk =
kβ+kβ+1

2 ,

where β is the index of the key such that ∑i=β
i=1 ri ≤

rav and ∑i=β+1
i=1 ri > rav and rav =

∑i=α
i=1 ri

2 .

2.2.3 Move Phase

After the split phase some region servers may have
many regions. For this, for every region server that
corresponds to some victim regions, we count its
number of regions. If the number of regions is greater
than some threshold, NRthreshold, we move the extra
regions to other region servers with minimum num-
ber of regions and less than NRthreshold. NRthreshold

is an input parameter of our algorithm, which depends
on the capacity of region servers.

2.3 General Algorithm

The general structure of the algorithm of the user-
balancer is depicted in Listing 1. It mainly consists
of three phases:
1. Select victim regions.

2. Splitting of victim regions.

3. Moving of regions from highly-loaded region
servers to less-loaded region servers.

Table 1: Execution Times (Seconds) - 1 client - 2 keys.

Requests RT Before RT After Improvement

100,000 26.61 19.6 26.34%
250,000 52.39 48.85 6.76%
500,000 101.97 93.61 8.20%
750,000 153.64 140.10 8.81%

1,000,000 203.43 183.80 9.65%

Table 2: Execution times (seconds) - 1 client - 4 keys.

Requests RT Before RT After Improvement

100,000 40.71 36.60 10.10%
250,000 97.70 88.86 9.05%
500,000 196.82 162.69 17.34%
750,000 300.52 245.01 18.47%

1,000,000 410.46 326.61 20.43%

Discussion. In case where the average response
time is very high (i.e., greater than ART threshold),
the size of the region is smaller than RSthreshold, and
the other region servers contain more regions than
NRthreshold, the performance of the HBase cluster is
not compatible with respect to user needs, and hence
region servers have to be replaced with more powerful
machines to satisfy the users’ needs.

3 EXPERIMENTAL RESULTS

We evaluate our algorithm on a Hadoop cluster con-
sisting of 8 nodes with 8 cores each. We populate the
HBase with a table consisting of several regions, each
of size 4GB.

We implement several scenarios: (1) one client
requesting two keys; (2) one client requesting four
keys; (3) four clients requesting two keys; and (4)
four clients requesting four keys. For each scenario,
we vary the number of requests from 100,000 to
1,000,000 and we measure the execution times to
handle them.

The threshold parameters were defined according
to the cluster configuration: (1) ARthreshold, i.e., av-
erage response time per request, is set to be 0.2ms;
and (2) RSthreshold to be 1GB. Tables 1, 2, 3 and
4, show the execution times before and after running
our user-based load balancer. Note that, the execu-
tion times of monitoring are included when running
our balancer. In case of requesting two keys by one
clients we get an average improvement of 11.95%. In
case of requesting four different keys we get an aver-
age improvement of 15.08%. In case of four clients,
we get an improvement of 37.59% in case of request-
ing two keys each with 250,000 hits. Moreover, as
average we get an improvement 15.16%. In case of
four clients requesting four different keys, we get an

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

366

Listing 1: User-Based Balancer Algorithm.

/*** Select Victim Regions ***/
ART = averageRTPerRegion();
VRs = filterVitimRegions(ART);

/*** Split Phase ***/
f o r (vr: VRs) {

i f (size(vr) < RS_THRESHOLD) c o n t in u e ;
TopKKeys = getTopKKeys(vr);
i f (size(TokKKeys) == 1) {

balanceKey = middleKey(vr);
} e l s e {

requestAverage = sumRequests(TokKKeys);
betaIndex = computeBetaIndex(TopKKeys);
balanceKey = (TopKKeys[betaIndex] + TopKKeys[betaIndex + 1]) / 2;

}
split(vr, balanceKey);

}

/*** Move Phase ***/
f o r (vr: VRs) {

RS = regionServer(vr);
i f (numberRegions(RS) <= NR_THRESHOLD) c o n t i nu e ;
count = numberRegions(RS) - NR_THRESHOLD;
RM = selectRegionsToMove();
move(count , vr, RM);

}

average improvement of 9.99%.

4 RELATED WORK

4.1 Native HBase Load Balancing

HBase supports several types of load balancing. By
default, it runs the stochastic load balancer periodi-
cally every 5 minutes. Below is the description of
different balancers supported by HBase:

• Simple load balancer (Simple Load Balancer,
2016) computes the average number of regions
and iterates through the most loaded servers to re-
distribute the regions on the less loaded servers
(i.e., less number of regions).

• Favored node load balancer (Favored Node Load
Balancer, 2016) takes into consideration server
failure, so that when a server fails the regions will

Table 3: Execution times (seconds) - 4 clients - 2 keys.

Requests RT Before RT After Improvement

100,000 40.45 35.48 12.29%
250,000 133.23 83.15 37.59%
500,000 178.17 164.58 7.63%
750,000 263.9 244.48 7.36%

1,000,000 365.54 325.56 10.94%

allocate to the less favorable server, which is de-
fined in HDFS.

• Stochastic Load Balancer (Stochastic Load Bal-
ancer, 2016) is based on the cost of region load,
table load, data locality, MemStore sizes, store file
sizes and change the state of the cluster.

• Capacity-aware load balancer unlike other bal-
ancers takes into consideration the capacity and
the characteristics of the nodes and distribute the
load according to the capacities of the machines.

• Table region balancer is based on distributing ta-
ble equally on all region servers. This balancer
results in good performance when clients requests
the data from same table.

To the best of our knowledge none of the above
balancers consider: (1) the average response time of
clients’ requests and; (2) the number of requests per
keys, where we can perform an efficient split based
on balanced keys as presented in our algorithm.

Table 4: Execution times (seconds) - 4 clients - 4 keys.

Requests RT Before RT After Improvement

100,000 67.07 61.13 8.86%
250,000 167.96 151.37 9.88%
500,000 329.74 298.64 9.43%
750,000 511.57 448.59 12.31%

1,000,000 658.01 595.65 9.48%

User-based Load Balancer in HBase

367

4.2 Mixed Load Balancer

In Locality-Aware Load Balancer for HBase (Ke-
wal Panchputre and Garg, 2016), they implemented
an algorithm to combine different types of load bal-
ancers supported by HBase. The locality load bal-
ancer takes into consideration server balance, table
balance and locality. The algorithm was tested on ba-
sics read write operations where it shows a better per-
formance than simple load balancer. The proposed
solution does not take into consideration neither the
balance key to do optimized splits nor the average re-
sponse time of clients’ requests.

4.3 HBase Monitoring

Hannibal (Hannibal, 2016) introduced a monitoring
tool to help HBase administrators to monitor and
maintain HBase clusters that are configured for man-
ual splitting. The proposed tool introduces monitor-
ing technique for the region distribution on the cluster
and region splits per table. Moreover, it displays the
regions of a table ordered by size to help administra-
tors making decision of splitting. Nonetheless, it does
not provide an automatic split or move of the regions
and the administrator has to manually distribute the
regions based on the reported results.

4.4 Latency-based Optimization

The basic motivation of our algorithm was the so-
lution proposed in (Sharov et al., 2015) to dynami-
cally handle leader selection in distributed systems by
monitoring client workload for previous time frames.
Then, based on certain threshold and the location of
the servers, the leader will be selected. The consid-
ered workload is the global load in the cluster and
not the local one. Moreover, the clients are dynami-
cally grouped according to their location and requests
(read/write). The leader election algorithm is parti-
tioned in two phases:

• Leader placement based on averaging latency of
server operations. The latency is calculated based
on the last time interval (1 day) and introducing a
weight decay parameter to compute latency based
on past intervals.

• Leader and Replica roles: in this tier the algorithm
optimizes the voters selection in quorum based on
replica location the selected leader.

5 CONCLUSION AND FUTURE
WORK

We propose an algorithm that enhances client opera-
tion latency by monitoring and dynamically balancing
(by splitting or moving regions) the region servers of
HBase system based on the most requested keys and
the average response time of clients’ requests. The
evaluation shows that our algorithm reduces the la-
tency of client requests in case where some keys are
highly requested.

For future work, we consider several directions.
First, we want to extend our algorithm to take into
account write operations. Second, we consider testing
our algorithm on larger clusters and tables. Third, we
want to introduce an automatic compaction of regions
when the number of regions becomes too small.

REFERENCES

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach,
D. A., Burrows, M., Chandra, T., Fikes, A., and Gru-
ber, R. E. (2008). Bigtable: A distributed storage sys-
tem for structured data. ACM Trans. Comput. Syst.,
26(2).

Favored Node Load Balancer (2016). Favored Node
Load Balancer. https://hbase.apache.org/
devapidocs/org/apache/hadoop/hbase/master/
balancer/FavoredNodeLoadBalancer.html.

Ghemawat, S., Gobioff, H., and Leung, S. (2003). The
google file system. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles 2003,
SOSP 2003, Bolton Landing, NY, USA, October 19-
22, 2003, pages 29–43.

Hadoop (2016). HDFS. https://hadoop.apache.org/
docs/r1.2.1/hdfs_design.html.

Hannibal (2016). Hannibal HBase. https://github.com/
sentric/hannibal.

Kewal Panchputre, P. C. and Garg, R. (2016). Locality-
aware load balancer for hbase. Technical report, Uni-
versity of Minnesota, Twin Cities.

Sharov, A., Shraer, A., Merchant, A., and Stokely, M.
(2015). Take me to your leader! online optimiza-
tion of distributed storage configurations. PVLDB,
8(12):1490–1501.

Simple Load Balancer (2016). Simple Load Bal-
ancer. https://hbase.apache.org/devapidocs/
org/apache/hadoop/hbase/master/balancer/
SimpleLoadBalancer.html.

Stochastic Load Balancer (2016). Stochastic Load Bal-
ancer. https://hbase.apache.org/devapidocs/
org/apache/hadoop/hbase/master/balancer/
StochasticLoadBalancer.html.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

368

