
The Day After Mirai: A Survey on MQTT Security Solutions After the
Largest Cyber-attack Carried Out through an Army of IoT Devices

Giovanni Perrone1, Massimo Vecchio1, Riccardo Pecori1 and Raffaele Giaffreda2

1SMARTEST Research Centre, eCampus University, Via Isimbardi 10, 22060, Novedrate (CO), Italy
2OpenIoT Research Area, FBK CREATE-NET, Via alla Cascata 56/D Povo, 38123, Trento (TN), Italy

Keywords: Internet of Things, Security, Access Control, Publish-subscribe, Open Source MQTT Broker.

Abstract: Recent news of massive Distributed Denial of Service (DDoS) attacks being carried out using thousands of
Internet of Things (IoT) devices transformed into attack bots are nothing else than a wake-up call for all
the actors having a role on the IoT stage. The need to define and establish, as quickly as possible, viable
security standards able to cope with the heterogeneous requirements arising from the IoT world is urgent, now
more than ever. Maybe even before that, the dissemination of basic knowledge connected with the culture
of IT security seems to play a major role in the overall security balance for IoT. Since it is more likely that
systems using lightweight devices can be more vulnerable to security attacks, in this paper we start with
analyzing MQTT, a message-based communication protocol explicitly designed having low-end devices in
mind. After that, we move on to describe some of the security solutions and improvements typically suggested
and implemented in real-life deployments of MQTT. Finally, we conclude this paper with a concise, though
not exhaustive, survey on some of the most promising research topics in the IoT security area.

1 INTRODUCTION

Analysts around the world all agree on the fact that the
next few years will see a massive increase in the In-
ternet of Things (IoT) penetration and, consequently,
in the number of devices active and connected to the
Internet. The Ericsson Mobility Report 2016, in its
IoT chapter, presents data stating that, by 2021, there
will be a total of 28 billion IoT devices active and in-
terconnected (Ericsson, 2016). Even if different ana-
lysts and reports provide many forecasts, all of them
agree on large growth rates for the IoT by the next 5
years.

At the same time, the month of October 2016 has
seen the largest Distributed Denial of Service (DDoS)
attack taking place, with unprecedented volumes of
data used to knock-down various Internet services in
the United States and in Europe (US-CERT, 2016).
At the time of writing this paper, it has been ascertai-
ned that the attack has been carried out using a mal-
ware named Mirai, being specifically designed to at-
tack and hijack IoT devices, transforming them into
bots that can be later used to carry out coordinated
attacks. The source code of Mirai has been publicly
released on the open source community at the end of
September 2016; an analysis of its structure reveals

that Mirai is designed to carry out a scan of the Inter-
net, looking for devices responding on standard ports.
Once a device is found, the malware tries 66 hard-
coded combinations of user IDs and passwords to gain
access as administrator. If one of these combinations
works, the device is infected, normal administration
services (e.g., telnet and http-based consoles) are di-
sabled and the unit waits for further instructions from
the command and control (C&C) center.

The dangers related to what happened are not only
connected with the immediate effects of the attack,
which have been large and lasted for several hours,
but mainly to its very nature: a large number of IoT
devices has been transformed into an army of malevo-
lent agents. The root causes that allowed this situation
can be summarized in the following:

1. the lack of clear and widely adopted security stan-
dards for IoT devices, which are rarely released
with out-of-the-box security features;

2. the fact that the vast majority of IoT platforms are
deployed and configured (sometimes even desig-
ned) without bearing security in mind.

The last statement is also supported by a recent ana-
lysis carried out and presented as a session during
the 24th DEFCON hackers forum held in Las Vegas

246
Perrone, G., Vecchio, M., Pecori, R. and Giaffreda, R.
The Day After Mirai: A Survey on MQTT Security Solutions After the Largest Cyber-attack Carried Out through an Army of IoT Devices.
DOI: 10.5220/0006287302460253
In Proceedings of the 2nd International Conference on Internet of Things, Big Data and Security (IoTBDS 2017), pages 246-253
ISBN: 978-989-758-245-5
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



in August 2016, (DC24, 2016). While the whole fo-
rum was dedicated to security in the IoT/M2M area,
one of the sessions explicitly targeted the security of
MQTT-based systems. The analysis used Internet-
wide scans made with both Shodan1 and Masscan2

(two scanning tools designed to analyze all Internet
addresses and to look for specific ports/services left
open). The ultimate goal of the analysis was to disco-
ver MQTT-based systems exposed to the Internet and
to evaluate the protection status of the systems and of
the data stored into them. Unfortunately the results
are quite discomforting: thousands of MQTT brokers
have been found with little or no authentication or
access control mechanisms in place. Even worse, in
several cases it was possible to obtain full access to
the data transmitted.

The scenarios depicted by these analysis are cor-
roborated by the easiness Mirai has been able to
spread with and are definitely concerning, especially
in the light of the above mentioned IoT growth ra-
tes; the combination of these two factors should raise
the importance of security and protection in the IoT
world to a top-priority position. Yet, in many propo-
sed architectures, security is not taken into account at
all, focusing only on functionalities, ease of use and
low costs. The IoT dream foresees a world where pe-
ople are connected in a seamless way to every-day ob-
jects; this also implies easiness of setup, installation
and maintenance in order to allow everyone to be able
to, for instance, setup and operate an array of devices
in a smart house scenario. In our opinion, this means
that the burden of securing the systems should be mo-
ved away from the end-user, who will look more and
more for a plug-and-play device, to the system itself
and it should be implemented by design.

In this scenario, an IoT ecosystem should come
with a set of security functionalities that have to be
the result of a careful balance and trade-off among:
• guaranteeing a “good enough” level of security,

possibly upgradable with future releases;

• maintaining “simplicity of use and installation”
for end users;

• having all of this (plus the product features to be
provided to the users) deployed in small, constrai-
ned, battery-powered devices.

To approach the IoT security chapter as a whole
would be a titanic job, while recent papers surveying
several works lying under this research and develop-
ment umbrella are already available in the literature
(Sicari et al., 2015). Therefore, we narrow our focus
on MQTT, a lightweight publish-subscribe messaging

1http://www.shodan.io/
2http://github.com/robertdavidgraham/masscan

protocol that is rapidly becoming a de facto standard
in the IoT world. Thus, we will first provide an over-
view of the MQTT protocol in Section 2, where we
will highlight its main security weaknesses as well.
Then we will present a summary of the standard secu-
rity measures typically found in real-life applications
in Section 3, while in Sec. 4 we will discuss the secu-
rity functionalities provided by some of the cutting-
edge open-source MQTT implementations available,
together with an overview on some of the most promi-
sing solutions described in other researches. Finally,
we will draw some useful conclusions in Section 5.

2 MQTT

MQTT (Message Queue Telemetry Transport) is a lig-
htweight message-based communication protocol ba-
sed on a publish-subscribe paradigm. This section fo-
cuses on the basic concepts of the protocol and its spe-
cific aspects relevant to security.

2.1 General Features

MQTT has been designed to use as little bandwidth
as possible: specifically, the primary requirement for
this protocol was to use less bandwidth than that re-
quired to carry out the same actions using HTTP or
similar protocols. It has been successfully used in
several areas where the communication links provi-
ded low throughput, e.g., automation, SCADA mo-
nitoring, etc., or suffered from low availability, e.g.,
satellite links. Starting from version 3.1, MQTT has
become an OASIS standard and the latest release of
the specifications refers to version 3.1.1 of the proto-
col (Oasis, 2014). From a protocol viewpoint, MQTT
stands on top of TCP, therefore delegating flow and
error control for the single packets to the lower layers
of the protocol stack.

As mentioned above, MQTT is based on a
publish-subscribe paradigm; this means that:

• information is classified in topics: there is no rule
nor recommendation for topic structures, but hier-
archies are allowed through separators (like a path
in a file system);

• nodes (or clients) can obtain access (reading
action) to the information published in a specific
topic by subscribing to that topic: the subscribe
action is carried out sending a SUBSCRIBE mes-
sage to the MQTT broker (or server) that will add
the requesting node (if allowed by the possibly
enacted access control rules) to the distribution
list of those nodes having access to that topic;

The Day After Mirai: A Survey on MQTT Security Solutions After the Largest Cyber-attack Carried Out through an Army of IoT Devices

247



• nodes can create contents (writing action) by pu-
blishing information to a specific topic: the pu-
blish action is carried out by sending a PUBLISH
message to the broker; the broker does not carry
out any processing on the message transmitted
and relays the payload to all nodes that previously
subscribed to the topic.

This model allows to decouple clients (nodes) and ser-
ver (broker), both from a spatial and a temporal stand-
point. In fact, the only entity in an MQTT network
who has full knowledge of the composition of the
network itself is the broker (no client-to-client con-
nection is possible). Moreover, the reception and dis-
patching of messages take place in two separate mo-
ments; dispatching can also be delayed in order to
wait, for instance, for a node to become available.

2.2 Security Aspects in MQTT
Standard

The official MQTT specifications include no manda-
tory requirements for any of the typical security rela-
ted aspects such as authentication, authorization, data
integrity, confidentiality and the like. The lack of
security-related functionalities in the standard are re-
lated to:

• the fact that MQTT focuses only on message dis-
patching;

• the willingness to keep the protocol as light as
possible, therefore reducing the overhead related
to security features;

• the fact that the historical implementations of
MQTT for telemetry were based, at least initially,
on private networks;

• the fact that MQTT is used in a very heterogene-
ous range of scenarios, from IoT devices to Face-
book messenger mobile application, that of course
require significantly different security functionali-
ties to be rendered secure.

The only authentication-related requirement is the
(optional) possibility to specify a user-name and pas-
sword during the initial connection phase between a
node and the broker. As said, the presence of these
fields is considered optional and has to be notified to
the broker by setting the relevant option flags in the
CONNECT packet header. Moreover, both the user-
ID and password fields are transmitted in plain text,
making possible the eavesdropping of the credenti-
als by using a simple protocol sniffer. Some imple-
mentations favour even more simplicity against se-
curity and use the client-ID field to authenticate the

device. Since all nodes must possess a unique client-
id that is communicated to the broker in the CON-
NECT message, it is possible to use this field alone
for authentication of the node. In some implemen-
tations the client-id is the MAC address of the net-
work card used to connect the node, therefore pro-
viding uniqueness of the field. While this can ease
the authentication process in some simple applicati-
ons, since the client-id (just like the user-ID and pas-
sword) is transmitted as plain text, once again there
is no protection against eavesdropping, sniffing, man-
in-the-middle attacks and the like.

At the same time, the protocol standard high-
lights that “MQTT solutions are often deployed in
hostile communication environments”, thus, authen-
tication, authorization, packet integrity and privacy
are, if not required, at least strongly recommended.
A dedicated OASIS sub-committee is currently wor-
king on recommendations for security specifications
to be added to the basic MQTT protocol, but appro-
aching and solving the different security issues re-
lated to the utilization of MQTT remains a project
(or implementation)-specific matter, with no real stan-
dard solution.

On top of what a “normal” implementation of
MQTT entails, another interesting aspect, which may
affect security and is completely not covered by
MQTT standard, is brokers’ interconnection, whe-
rein two or more brokers are connected to each other
through a “bridge” or by forming a cluster. Typically,
a bridge is a connection based on topic exchange be-
tween two brokers, where one of them behaves as
a user node, subscribing and publishing to a given
set of topics. Clusters typically offer more advanced
functionalities like data propagation management and
workload balancing. These forms of broker aggre-
gation could be useful, from a security viewpoint, to
enact single sign-on and fail-over procedures, anyway
they are implementation-specific features as the most
of the security capabilities currently put in place. In
the next section we will cover in more detail some
security features offered by some of the open-source
MQTT implementations currently available.

3 SECURITY REQUIREMENTS
AND SOLUTIONS FOR MQTT
IMPLEMENTATIONS

The security requirements being specific for MQTT
can be categorized in the following areas:

• authentication: warranting the identity of the no-
des belonging to the MQTT network, in order to

IoTBDS 2017 - 2nd International Conference on Internet of Things, Big Data and Security

248



prevent unauthorized accesses (both as subscri-
bers or publishers);

• access control: guaranteeing access to informa-
tion only to the nodes allowed to get to that infor-
mation;

• data integrity: guaranteeing that the data being
received are actually what has been transmitted
by the source (e.g., no tampering during transmis-
sion);

• confidentiality: prevention of data sniffing and,
more in general, protection of data secrecy and
privacy.

The aforementioned categories can surely make up
the basis for security-related assessments of any IT
environment but, when applied to MQTT implemen-
tations, additional considerations have to be made.

First of all, it has to be considered that the main
goal of MQTT is to minimize bandwidth occupa-
tion in order to reduce communication channel uti-
lization and, most importantly, power consumption.
Even though nothing prevents using MQTT in sce-
narios where power and bandwidth consumptions do
not represent a major concern, we will consider a typi-
cal MQTT deployment as constituted of a number of
small, battery-powered devices using wireless com-
munication links. In such a situation, computatio-
nal resources and overall power consumptions have
to be considered limited. Moreover, active devices
will be often deployed in a dispersed (i.e., not concen-
trated) geographical region, meaning that reaching all
the units may be difficult to realize, if not unfeasible.
Similar considerations can be drawn for remote admi-
nistration of the devices: not only for security reasons,
but also to limit bandwidth and power, it may be not
practical to rely on frequent massive update operati-
ons of the firmware.

In this section we list some of the solutions that
can be typically found in MQTT systems to imple-
ment different levels of protection from various se-
curity threats. More in detail, we introduce pro-
tection mechanisms based on standard or widely
spread technologies and/or solutions that can be found
in real-life applications.

3.1 Network Layer Security

At network layer IPSec is surely the best solution to
provide authentication and confidentiality. It could
be employed in end-to-end communications and in
device-to-broker transmissions and implemented di-
rectly in the stack of tiny devices even if giving up key
exchange protocols. However, some problems may
regard the overhead due to extra headers, issue partly

solved by employing 6LowPAN compression, and the
usage of computationally intensive cryptographic al-
gorithms, theme discussed in the following.

Another viable solution at network level could be
Host Identity Protocol (HIP) where locators of nodes
and broker could be decoupled from their own identi-
fiers. In this case as well, the problem could be in the
cryptographic algorithms to be employed as well as
in the pubic key distribution, but the advantages may
relay into multihoming and host mobility.

3.2 Transport Layer Security

As regards security at transport layer, OASIS expli-
citly recommends the utilization of TLS and certifica-
tes, whenever possible, in order to have a viable so-
lution for authentication, data integrity and confiden-
tiality. However, due to the computational and power
consumption limitations typically present in MQTT-
operated devices, the introduction of TLS can be pro-
blematic, due to the additional workload required to
setup the secured connections and to cipher all traf-
fic. TLS Session Resumption capability can be used
in all these situations, significantly reducing the fre-
quency of the complete TLS Handshake procedure
(and of its associated computational load). TLS im-
plementations in hardware are also analyzed in the
literature, in order to alleviate the problems related
to the computational load due to the ciphering me-
chanisms implemented (Lesjak et al., 2015). Using
an hardware-based TLS implementation could repre-
sent a solution to move away this additional workload
from the processing device, but certainly requires an
additional component that has to be deployed and that
will increase the overall device cost and power con-
sumption.

Notwithstanding its widespread use, some scien-
tists, like Singh et al. (2015), raise concerns in the
very first place about the utilization of TLS at all for
IoT applications. Those concerns are mainly related
to:

• Configuration: improper configuration of the
TLS layer or even just the utilization of weaker
or obsolete cipher suites can significantly lower
the security of the protocol exposing it to attacks;

• TLS vulnerabilities: being the most used secu-
rity protocol employed for payments over the In-
ternet, TLS is extensively tested for its security
and, not surprisingly, there are several vulnerabili-
ties known for it. Sheffer et al. (2015) summarize
known attacks that have been exploited against
TLS. Many of these attacks are related to wea-
ker cipher suites supported in previous releases of

The Day After Mirai: A Survey on MQTT Security Solutions After the Largest Cyber-attack Carried Out through an Army of IoT Devices

249



TLS or SSL or supported back-compatibility with
older releases of the protocol;

• Certificates management: several scientists
raise concerns related to the certificates manage-
ment, once the initial deployment is completed:
updating, revoking or managing the certificates
can be a hard task to achieve with dispersed de-
vices.

The problems related to the management of certifica-
tes installed on remote devices is also common to the
first two points. In fact, executing periodic configura-
tion and cipher updates on a large number of devices
over not completely reliable links can be a problema-
tic task to be carried out in an controlled way, and
the additional traffic has to be considered when ana-
lyzing throughput and battery consumption factors.
All of the above notwithstanding, virtually all MQTT
broker implementations, both open-source and com-
mercial solutions, fully support TLS utilization, both
for ensuring data confidentiality and authentication of
the nodes through the certificates presented at the mo-
ment of the TLS handshake.

3.3 Application Layer Security

Within the application layer, systems that have to deal
with multiple items connecting, and therefore sub-
ject to the authentication process, may decide to use a
centralized authentication system, external to the bro-
ker itself. For these applications, the MQTT standard
explicitly mentions the possibility of using LDAP or
OAuth authentication systems. In both cases, an ex-
ternal system is responsible for authentication and
granting of access tokens based on the credentials pro-
vided. The implementation of such systems intro-
duces necessarily an additional layer of complexity,
both in terms of configuration and management, and
the pros and cons have to be accurately weighted du-
ring the design phase. Moreover, it has to be conside-
red that both LDAP and OAuth are normally imple-
mented on top of a TLS connection, bringing up the
potential issues highlighted in the previous section.
Notwithstanding all these considerations, as we will
see in Section 4, LDAP is often directly supported by
MQTT implementations, while the support for OAuth
is still somehow less common.

3.4 Ciphering

It is possible to use symmetric ciphering to protect
the credentials and/or the payloads. While symmetric
ciphering algorithms use less computational resources
than public key ciphering, it is clear that the key has
to be known to all involved parties and once again we

are faced with the same challenges mentioned above
and related to perform system-wide updates of keys.
Moreover, a compromised key would automatically
render the whole system non-secure. Nevertheless va-
rious implementations allow different security scena-
rios based on symmetric encryption.

Some deployments implement an end-to-end cip-
hering mechanism: in these cases, the nodes cip-
her transmitted payloads using a chosen cipher suite
unknown to the broker, but known only to the nodes
that are supposed to receive the information. In this
situation the broker, which could represent a security
single point of failure, becomes less critical, as an at-
tacker that gains access to its message queues cannot
achieve access to the information shared on the net-
work.

Conversely, other scenarios provide the broker
with ciphering and deciphering capabilities and the-
refore with the ability to decide whether to deliver
encrypted received packets as a plain text or again
as a cipher text. In such environments, the broker
could also have the chance to change the cipher suite,
thus differentiating both sides of the communication.
In such cases, the broker represents a critical single
point of failure and effective security mechanisms for
its storage system should be enacted.

Some important lightweight symmetric cipher-
ing solutions, usable within MQTT, may entail Tiny
Encryption Algorithm (TEA) family (TEA, XTEA,
TinyXTEA, etc.), based on XOR and shift operations,
Scalable Encryption Algorithm (SEA), suitable for
different platforms and implementations, PRESENT,
HIGHT and the like.

All in all, as said, all solutions relying on public
cryptography need opportune asymmetric algorithms
that are not so computationally intensive as the most
traditional ones. For MQTT implementations a pro-
mising solution could surely be Elliptic Curve Cryp-
tography (ECC) with its own shorter keys, together
with a web-of-trust or group-based key distribution
strategy for certificate or ID management.

3.5 Physical Layer Security

In the first industrial applications of the predecessors
of MQTT, an inherent level of security was introdu-
ced by operating the systems on private networks.
The same concepts can be applied nowadays to a nor-
mal MQTT deployment, therefore delegating the pro-
tection confidence from the components of the MQTT
system to the network connecting them. Some scien-
tists suggest the use of an onion or peer-to-peer struc-
tured network on top of other solutions (Weber, 2010),
while others propose architectures based on devices

IoTBDS 2017 - 2nd International Conference on Internet of Things, Big Data and Security

250



creating a point-to-point network, thus limiting those
risks connected to shared communication channels
(Espinosa-Aranda et al., 2015). In all these cases, se-
curity is achieved by physical segregation of the units,
something which may be impossible in some applica-
tions (e.g., sensors installed in wide open areas) or
simply too risky, if the installation environment is not
protected enough.

3.6 Authorization and Access Control

Access control (AC) and authorization refer to pri-
vileges and allowed actions over a certain resource,
and may be subject-based or object-based. Generally,
while in the former the focus is on active entities (i.e.,
the subjects) that own certain access capabilities over
specific passive entities, the latter concentrates on the
resources (i.e., the objects) to be accessed. In this
case, AC is usually described by means of Access
Control Lists (ACLs). A well-known security struc-
ture able to fulfill both subject and object-based AC
approaches is the Access Control Matrix. Other pos-
sible implementation strategies are based on mapping
permissions into attributes and on the the definition
of roles and groups both for subjects and/or objects.
In the case of MQTT, the subjects are the users and
the objects are the topics the users may subscribe to,
while the permissions usually encompass either the
ability to read a certain topic (SUBSCRIBE) or to
write into a certain topic (PUBLISH).

AC, even though strongly related to a prior au-
thentication phase, is not mentioned at all in the
OASIS MQTT standard and the implementation of
any AC mechanism (being it subject or object-based)
is strongly dependent on the specific broker used.
The next section summarizes the core features of the
most commonly employed open-source MQTT bro-
kers, with an emphasis on the security functionalities
they can provide.

4 CURRENT OPEN-SOURCE
MQTT IMPLEMENTATIONS

Mosquitto is one of the most commonly used im-
plementations, mainly for its configuration simplicity
and its light footprint (Mosquitto, 2016). TLS is sup-
ported as well as basic user authentication capabilities
based on user-password (with a credential file stored
on the broker). This implementation allows for single
key ciphering but no single sign on in the bridge inter-
connections. Regarding access control, both generic
(i.e., valid for all users), as well as user-specific ru-
les are allowed; in both cases it is possible to specify

read or write access at topic level, using wildcards for
the inclusion of multiple topics as specified in MQTT
standards. Mosquitto also supports two specific types
of wildcards useful in certain implementations to al-
low controlled access to topics’ trees. Mosquitto has a
plug-in architecture that can be used to expand its ba-
sic features, allowing therefore to add functionalities
such as support for LDAP or OAuth platforms, which
are however not supported directly by the distribution.

eMQTT is another full open-source MQTT bro-
ker (EMQTT, 2016). TLS is fully supported and a
module for LDAP integration is available, however
preshared key ciphering, single sign on and centrali-
zed access control are not implemented. Compared
to Mosquitto, available access control rules follow a
different syntax, but provide similar granularity, al-
lowing therefore to create regulations that are user
and/or topic-based. It is also possible to use one of
the existing database plug-ins to connect to MySQL,
PostgreSQL or Redis data structures to store and re-
trieve users-related information. LDAP is supported
natively through one of the plug-ins available ‘out of
the box’ in the distribution, while there is no direct
support for OAuth.

Apollo is a broker implementation based on Acti-
veMQ, a larger project on message based protocols
from the Apache foundation (Apollo, 2016). It in-
herits many of the functionalities available for Acti-
veMQ, introducing at the same time a number of fea-
tures designed for MQTT and for the other supported
protocols. Since ActiveMQ is equipped with JAAS
modules for authentication, this functionality is pre-
sent in Apollo as well, furnishing therefore the pos-
sibility of using the different login modules present
in the JAAS framework (including native support for
connection to an LDAP server). Apollo does also sup-
port the usage of TLS and of preshared key ciphering,
while no clustering or bridging are allowed and there-
fore no single sign on or centralized access control po-
licies may be enacted. The access control engine al-
lows to create rules with several actions, including ad-
ministrative ones, such as the creation or destruction
of queues, and consumption of data in the queues wit-
hout removing the data read. Rules are activated on
the basis of the identity of the user accessing the sy-
stem, upon authentication. Plug-ins to add support for
OAuth are available but are not included in the official
distribution.

Artemis is another implementation arising from
ActiveMQ (Artemis, 2016), from which it inherits
the use of JAAS for authentication, support for TLS

The Day After Mirai: A Survey on MQTT Security Solutions After the Largest Cyber-attack Carried Out through an Army of IoT Devices

251



and single key ciphering. The creation of role-based
access control rules is allowed, pretty much like what
happens with Apollo. One of the main differences be-
tween Apollo and Artemis is that the latter provides
advanced features for bridging and clustering, ena-
bling the creation of high-availability entities based
on the auto-discovery of the nodes, as well as single
sign on and load balancing capabilities. OAuth sup-
port is not directly included but can be added through
additional modules.

4.1 Other Solutions and Ongoing
Researches

Several EU-funded projects are related to IoT se-
curity, such as: FP7 IoT-A, COMPOSE, iCORE,
IoT.EST, Ebbits, uTRUSTit, Butler (CORDIS, 2016).
Within the framework provided by these research pro-
jects and in parallel to them, a large number of rese-
arch initiatives are currently running to identify and
present innovative solutions in the IoT security area.
The already mentioned (Sicari et al., 2015) provides
an excellent overview on some of the activities going
on in that area. In this paper we limit our explora-
tion, deliberately not exhaustive, to the MQTT refe-
rence application scenario we have detailed at the be-
ginning. In this domain, a consistent amount of rese-
arch activity is focusing onto analyzing and proposing
extensions to a typical MQTT platform to implement
additional security functionalities not present in the
standard protocol specification. These extensions can
take the form of plug-ins (or modules) connecting to
existing broker implementations or middleware mo-
dules that are placed between nodes and brokers and
control resources utilization based on security poli-
cies.

Rizzardi et al. (2016) present a middleware-based
solution called AUPS based on NOSs (Networked
Smart Objects), a concept already presented in pre-
vious works by the same authors. AUPS supports
keys management and security policies. All the se-
curity aspects are delegated to a network of multiple
NOSs currently implemented in Java, that act as in-
termediate layer between different data sources and
the MQTT broker. In this scenario, data sources do
not use native MQTT pub-sub primitives to publish
data, rather they employ HTTP protocol to communi-
cate data to the NOSs. After processing the applica-
ble security policies, data are then posted by the NOS
core to the broker, which remains external. This so-
lution is independent from the broker implementation
and does not add any computational load on the bro-
ker itself, but the introduction of the middleware layer
represents a deviation from a standard MQTT deploy-

ment and its compatibility should be evaluated.
Neisse et al. (2015) describe and assess the im-

plementation of SecKit, a security solution presen-
ted as a model-based security toolkit for IoT. SecKit
is a module that enforces access control rules based
on security policies with the ultimate goal of provi-
ding access control tools, as well as policy protection.
Specifically, their work describe the implementation
of SecKit as a Mosquitto plug-in, thus preserving the
fundamental architecture of a typical MQTT system.
At the same time, the additional workload required
to process security policies is imposed on the broker,
and the possible impacts in terms of scalability for
large applications have to be evaluated properly.

Chase (2007) elaborates on a concept originally
proposed in (Sahai and Waters, 2005) and related to
attributes based encryption (ABE), i.e., an encryption
method applicable to scenarios with different reci-
pients (like in MQTT) receiving broadcast messages.
In such a scenario, the recipients will be able to decip-
her the messages based on the possession of a given
number of attributes related to their identity. In other
words, each recipient has a set of attributes (e.g., type
of node, clearance level, etc.) and the messages are
encrypted using methods that allow decryption only
to recipients that possess a minimum number of those
attributes. An implementation of this concept is pro-
vided in (Bethencourt et al., 2007), where the perfor-
mances of the model are discussed as well. However,
we have not been able to retrieve information on the
results of the application of the model on a real-life
MQTT system.

5 CONCLUSIONS

The security related aspects appear still to be an open
field of research and discussion for the IoT world. The
large number of possible solutions and the lack of (at
least) a de facto standard represents a security threat
itself. The recent release of the special publication
from NIST (Ross et al., 2016) on Systems Security
Engineering may represent a significant step in the
right direction, though still confined to a series of vo-
luntary recommendations, far from being able to fix
the fundamental issues at hand.

Recent events (and in particular the Mirai attack
that took place in October 2016) highlight the neces-
sity and the importance of making sure that at least
basic protection measures (such as changing the de-
fault admin credentials for the central nodes of the
networks) are used in order to limit exposure to mas-
sive and global attacks. The implementation of such
a basic protection should happen by design in all sy-

IoTBDS 2017 - 2nd International Conference on Internet of Things, Big Data and Security

252



stems and should be enforced by all the actors invol-
ved in production and manufacturing of components
that can be used to create an IoT ecosystem. Conside-
ring the projected growth rate of these devices and the
open nature of the hardware and software components
that are typically used, it would appear that this shift
in mentality should have highest importance and prio-
rity in everyone who is involved in the IoT arena. Ba-
sed on the status quo and on the fact that Moore’s law
certainly applies also to small-size devices, the aut-
hors are inclined to believe that a good mid-term so-
lution to large-scale MQTT security problems could
be represented by implementation of TLS. Strength
points of this approach would be the utilization of a
standard technology, continually tested for weaknes-
ses by the global IT security community; this would
allow easier implementation and interconnection of
different systems. At the same time, certificates ma-
nagement may remain an obstacle to a wide-spread
adoption of TLS, especially in all cases where low-
throughput networks (e.g., LPWANs) are used. For
these situations, single key ciphering or network se-
gregation could represent a more viable solution.

REFERENCES
Apollo (2016). Apache ActiveMQ Apollo homepage. avai-

lable: http://activemq.apache.org/apollo/. accessed:
March 21, 2017.

Artemis (2016). Apache ActiveMQ Artemis homepage.
available: http://activemq.apache.org/artemis/. acces-
sed: March 21, 2017.

Bethencourt, J., Sahai, A., and Waters, B. (2007).
Ciphertext-policy attribute-based encryption. In 2007
IEEE symposium on security and privacy (SP’07), pa-
ges 321–334. IEEE.

Chase, M. (2007). Multi-authority Attribute Based Encryp-
tion. In Proceedings of the 4th Conference on The-
ory of Cryptography, TCC’07, pages 515–534, Berlin,
Heidelberg. Springer-Verlag.

CORDIS (2016). CORDIS: Community Research
and Development Information Service. available:
http://cordis.europa.eu/. accessed: March 21, 2017.

DC24 (2016). The DEFCON homepage. available:
http://www.defcon.org/.

EMQTT (2016). EMQTT homepage. available:
http://emqtt.io/. accessed: March 21, 2017.

Ericsson (2016). Ericsson Mobility Report. available:
http://www.ericsson.com/res/docs/2016/ericsson-
mobility-report-2016.pdf. accessed: March 21,
2017.

Espinosa-Aranda, J. L., Vallez, N., Sanchez-Bueno, C.,
Aguado-Araujo, D., Bueno, G., and Deniz, O. (2015).
Pulga, a tiny open-source MQTT broker for flexible
and secure IoT deployments. In 2015 IEEE Con-
ference on Communications and Network Security
(CNS), pages 690–694.

Lesjak, C., Hein, D., Hofmann, M., Maritsch, M., Aldrian,
A., Priller, P., Ebner, T., Ruprechter, T., and Pregart-
ner, G. (2015). Securing smart maintenance services:
Hardware-security and TLS for MQTT. In 2015 IEEE
13th International Conference on Industrial Informa-
tics (INDIN), pages 1243–1250.

Mosquitto (2016). Mosquitto homepage. available:
http://mosquitto.org/. accessed: March 21, 2017.

Neisse, R., Steri, G., Fovino, I. N., and Baldini, G. (2015).
SecKit: A Model-based Security Toolkit for the Inter-
net of Things. Computers & Security, 54:60–76.

Oasis (2014). MQTT Version 3.1.1 Speci-
fications. available: http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html.
accessed: March 21, 2017.

Rizzardi, A., Sicari, S., Miorandi, D., and Coen-Porisini,
A. (2016). AUPS: An Open Source AUthenticated
Publish/Subscribe system for the Internet of Things.
Information Systems, 62:29–41.

Ross, R., McEvilley, M., and Carrier Oren, J. (2016).
NIST Special Publication 800-160: Systems
Security Engineering Considerations for a
Multidisciplinary Approach in the Engineer-
ing of Trustworthy Secure Systems. available:
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-160.pdf. accessed: March 21, 2017.

Sahai, A. and Waters, B. (2005). Fuzzy identity-based
encryption. In Annual International Conference on
the Theory and Applications of Cryptographic Techni-
ques, pages 457–473.

Sheffer, Y., Holz, R., and Saint-Andre, P. (2015). Sum-
marizing Known Attacks on Transport Layer Security
(TLS) and Datagram TLS (DTLS). Internet Engineer-
ing Task Force (IETF), Request for Comments: 7457.

Sicari, S., Rizzardi, A., Grieco, L., and Coen-Porisini,
A. (2015). Security, privacy and trust in Internet
of Things: The road ahead. Computer Networks,
76:146–164.

Singh, M., Rajan, M., Shivraj, V., and Balamuralidhar, P.
(2015). Secure MQTT for Internet of Things (IoT). In
2015 5th International Conference on Communication
Systems and Network Technologies, pages 746–751.

US-CERT (2016). Alert (TA16-288A): Heightened DDoS
Threat Posed by Mirai and Other Botnets. availa-
ble: http://www.us-cert.gov/ncas/alerts/TA16-288A.
accessed: March 21, 2017.

Weber, R. (2010). Internet of Things–New security and pri-
vacy challenges. Computer Law & Security Review,
26(1):23–30.

The Day After Mirai: A Survey on MQTT Security Solutions After the Largest Cyber-attack Carried Out through an Army of IoT Devices

253


