
Reentrancy and Scoping for Multitenant Rule Engines

Kennedy Kambona, Thierry Renaux∗ and Wolfgang De Meuter
Software Languages Lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

Keywords: Rule-based Systems, Multitenancy, Rule Engines, Rete Algorithm, Reentrancy, Scoping, Business Rules.

Abstract: Multitenant web systems can share one application instance across many clients distributed over multiple
devices. These systems need to manage the shared knowledge base reused by the various users and applications
they support. Rather than hard-coding all the shared knowledge and ontologies, developers often encode this
knowledge in the form of rules to program server-side business logic. In such situations, a modern rule
engine can be used to accommodate the knowledge for tenants of a multitenant system. Existing rule engines,
however, were not conceptually designed to support or cope with the knowledge of the rules of multiple
applications and clients at the same time. They are not fit for multitenant setups since one has to manually
hard-code the modularity of the knowledge for the various applications and clients, which quickly becomes
complex and fallible. We present Serena, a rule-based framework for supporting multitenant reactive web
applications. The distinctive feature of Serena is the notion of reentrancy and scoping in its Rete-based rule
engine, which is the key solution in making it multitenant. We validate our work through a simulated case
study and a comparison with a similar common-place approach, showing that our flexible approach improves
computational efficiency in the engine.

1 INTRODUCTION

Traditionally, software systems were conceptually de-
signed to run in isolation. With cheaper network-
ing hardware and the subsequent rise of the Inter-
net, various web technologies have evolved to sup-
port dynamic, data-driven and reactive applications
that handle a massive number of users and client de-
vices. Consequently, modern software systems are in-
creasingly being deployed in the Cloud.

A distinguishing characteristic of Cloud-based
platforms is Utility Computing (Armbrust et al.,
2010) with the pay-as-you-go model that improves
cost reduction through resource sharing. Utility
Computing provides a way in which modern soft-
ware systems can simultaneously support multiple
clients and at the same time share resources through
multitenancy. A multitenant application is installed
on a single instance (rather than separate instances)
and serves all clients, or ‘tenants’ from that in-
stance (Pathirage et al., 2011). They exhibit some
advantages, including reduced maintenance and in-
creased scalability as they pertain to economies of
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scale. However, a large number of providers have lim-
ited support for multitenancy at the application level
(i.e. native multitenancy) – only focusing on process
isolation. Partitioning and securing multitenant appli-
cation behaviour at this level is complex and requires
a huge development effort (Guo et al., 2007).

In this paper, we focus on knowledge-intensive
multitenant applications running over the web, con-
nected to different clients sending massive amounts of
events and data. These systems are required to man-
age the shared knowledge base reused by the various
tenant applications they support. In order to reason
about the data and extract higher-level knowledge it
is vital that the value of the sent data be extracted effi-
ciently, its massive and intermittent nature notwith-
standing. Rather than hard-coding all the shared
knowledge and ontologies, developers often encode
this knowledge in the form of rules to program server-
side logic e.g. as business rules (Hay et al., 2000).

In such situations, a modern rule engine can be
used to accommodate the knowledge for tenants of a
multitenant web system. To this end, we have aug-
mented an event-driven web server with a forward-
chaining rule engine constituting Serena, a rule-based
multitenant framework that receives and reactively
processes data in order to detect complex events to-
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gether with accompanying data relevant to notify
clients. In Serena clients can install logic reactive
rules that define the complex events they are inter-
ested in and dynamically upload data. The rules spec-
ify which data to match, who to notify and what in-
formation is sent with the notification.

Conventionally, rule engines were not conceptu-
ally designed to work in the multitenant environment.
These rule-based systems (such as production sys-
tems (Newell, 1973)) are intrinsically non-reentrant:
they are characterised by a flat design space where
activations could be observed from all asserted facts
without discriminating their sources. Further distinc-
tions between clients and their data sources need to be
hard-coded within the rules, which quickly become
complex and fallible as the number of clients and the
relationships between them increase, or when the re-
lationships become complex to enforce using rule se-
mantics. In a multitenant application, failure to prop-
erly make these distinctions can cause unintended rule
activations in other clients. Rule engines therefore re-
quire orchestration within rules to discriminate or dis-
tinguish between instances of different entities. Ser-
ena provides techniques for users and developers to
specify scoped rules that detect patterns in real-time
data and to realise grouping structures in knowledge-
intensive multitenant applications.

Scoped rules are a custom rule representation
based on a formalised description. They allow defi-
nition of scoped constraints that enable rule creators
to distinguish between events pertaining to different
clients, while keeping this logic cleanly separated
from the application logic. As such, the basic purpose
of the rule is not muddied with the logic required for
distinguishing clients. This leaves the logical intent
of a rule easy to understand for a rule creator. At the
same time, scoping enables us to exploit a number of
performance optimizations in the server’s rule engine
during the matching process. Our approach of encod-
ing the physical, structural or other logical organiza-
tions of multitenant applications eases the computa-
tional workload of the inference algorithm, thereby
decreasing the engine’s overall response time.

In brief, the main contributions in this work are:
• A reactive, rule-based framework for multitenant

architectures supporting knowledge-based applica-
tions (Section 3)

• A meta-extension to the Rete algorithm for infer-
ence engines to improve reentrancy by incorporat-
ing techniques from bit-vector encoding that dis-
criminate data matches as defined in the rules (Sec-
tion 4.2)

• An extension to the rule-based syntax in the frame-
work to support a formalised scope-based reasoning

in multitenant systems (Section 4.3)

We begin by introducing the motivation and pro-
ceed to enumerate some requirements in Section 2.
We then present the Serena framework’s architecture
and scoping mechanism in Sections 3 and 4. We
penultimately evaluate our approach in Section 5 and
finally discuss the related work and conclusions in
Sections 6 and 7.

2 DATA-DRIVEN
MULTITENANCY

In this section we motivate the need for a data-driven
solution in a multitenant rule engine. To highlight
the requirements that such a system should meet, we
present a scenario of a service provider in the Cloud
for monitoring security systems. The service moni-
tors and logs requests in institution-wide security ac-
cess systems, e.g., in universities.

2.1 Motivating Example: University
Services Access Control

Universities in Brussels have passed a resolution that
requires monitoring accesses of students and staff all
over their campuses and report access requests that
deviate from policies in place. The universities have
installed proximity ID-card scanners at most major
access points, and students/staff scan their issued ID
cards to gain access to various locations in the cam-
puses. Some of the security monitoring policies that
the security team design are illustrated below:

1. All students at all levels have access to classrooms
during class times on weekdays

2. Only registered student and staff cars are allowed
entry to underground parking on their campuses

A common university structure consists of differ-
ent students and staff: research, administrative or ex-
ternal/outsourced; physical structures’ hierarchy; and
research department hierarchies. A simplified struc-
ture for a university is shown in Figure 1. As a result,
specific departments and units are allowed to define
custom access policies:

3. Biology department students are allowed access to
all labs in the (sub)departments in the weekends if
accompanied by senior academic staff

4. Only campus bank employees and consultants
have access to the bank back office during work-
ing hours
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Figure 1: Example structures in a university – Client groups
are based on three hierarchical structures: physical location,
department, type of personnel. The hierarchies can be arbi-
trary DAGs and groups can have multiple parents.

For this scenario, we have enumerated around 40
security access policies. The final model contains 3
universities and 61 faculty, administrative and phys-
ical groupings – with students, staff and devices be-
longing to one or multiple groups. Whenever an ac-
cess request is made by a student or staff the security
system of the university sends the data to the moni-
toring service. According to the policies defined, the
service logs the request, computes whether the access
is within the defined security policies and displays the
results on a dashboard. For instance in policy 1, when
a student on a university accesses a classroom during
class times the monitoring dashboard would show a
status to indicate whether the access is acceptable or
otherwise.

2.2 Requirements

The security monitoring service is a representative
example of a reactive multitenant application. We
particularly target the dynamic design of knowledge-
intensive, data-driven applications that continuously
stream data back and forth between clients and the
server. The scenario illustrates some of the require-
ments that such multitenant frameworks should sat-
isfy:

• Data-driven framework for instantaneous process-
ing of intermittent data streams – The framework
should be responsive to new inputs sent by tenants
by processing them in real-time or near real-time
fashion allowing the end-user application to react
to the data. For instance, in the motivating ex-
ample, the monitoring service provider should be
able to process access requests from a large number
of clients and devices promptly according to cus-
tom policies to provide immediate feedback. To
send such feedback it also needs to handle persis-
tent push-based client connections.

• Runtime support for the definition and real-time de-
tection of customisable constraints – The frame-

work should reduce the complexity of writing code
that can efficiently detect real-time events from a
continuous stream given a large number of crite-
ria or constraints. This is a challenge to system
developers because the intent of the developer is
transcended by the accidental complexity (Brooks,
1987) of the implementation. In the example, the
university security should be able to easily express
and upload their own current and future policy con-
straints for detection of access violations using an
expressive syntax.

• Metadata architecture for multitenant partitioning
– The framework should be able to model the struc-
tures of tenants and possible compositions or rela-
tionships between them dynamically through meta-
data definitions that will discriminate or partition
the data residing in the multitenant system. This
implies that the internal structures of tenants should
be reflected in the runtime in order for it to process
the requests within the confines of each client’s con-
figuration: in this case the policies of each univer-
sity. In addition, the internal model should be able
to support other software applications from other
tenants e.g., other institutions or businesses.

3 SERENA: MULTITENANT RBS

We present the Serena Web-based framework which
1) eases the dynamic definition of requirements by
utilizing a rule-based approach, 2) efficiently pro-
cesses intermittent data giving instantaneous feed-
back by incorporating a forward-chaining rule en-
gine, and 3) flexibly supports multitenancy by adopt-
ing concepts from group theory to model tenant struc-
tures. We dissect the inner workings of Serena by first
illustrating its architecture and we later explain its ex-
ecution semantics.

3.1 Serena Architecture

The architecture of Serena is illustrated in Figure 2.
The server is written as a Node.js package that con-
sists of five main components. The fact base main-
tains facts asserted from events and the rule base
manages addition and removal of client rules. The
inference engine is at the heart of the framework and
evaluates received data according to the defined rules.
It contains the graph builder that builds a Rete graph
(Section 3.2.1) augmented with scopes, the matcher
that finds consistent bindings in the fact base, and the
activation scheduler that executes or fires instantiated
rules. The scoping module builds an efficient encod-
ing mechanism for scopes that will affect the match-
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Figure 2: Architecture of the Serena server – The scoping
module builds an efficient scoping mechanism that affects
matching in the inference engine.

ing process. The event manager receives and queues
event data from clients and pushes queued notifica-
tions to their recipients whenever their rules are exe-
cuted.

On the client side Serena provides a library that
initialises and maintains the (re)connections to the
server runtime. It further manages sending of web-
socket messages and reception of notifications pushed
from the server through the event manager.

3.2 Serena Execution Runtime

The Serena runtime is based on one of the most
widely-used models of knowledge representation
known as the production systems model (Newell,
1973). The distinguishing feature of production sys-
tems is the use of data-sensitive rules rather than se-
quenced instructions as the basis of computation.

Rule-based systems usually consist of a number
of unordered rules referencing a global fact base.
Similarly native multitenant architectures serve mul-
tiple clients that share a dedicated instance, accessing
global resources. To support and cope with the knowl-
edge of rules applicable to multiple clients and appli-
cations, rule engines and multitenant architectures re-
quire features for structural decomposition at the ap-
plication level. Both models can benefit from modular
design and structural abstractions as the systems they
support grow in size and complexity.

We outline how the Serena framework embraces
this approach, exemplified using the example sce-
nario. We first begin by explaining the semantics of
rules in Serena.

3.2.1 Rule-based Syntax

The university policies from the scenario in Sec-
tion 2.1 can be easily expressed in a rule-based for-
mat. We illustrate such a rule to be added by a
university security staff using a customised JSON
Rules (Giurca and Pascalau, 2008) syntax in Listing 1
for the classroom policy 1. The rule object can be
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Alpha Network
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Alpha memory
Beta node
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2
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terminal
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Figure 3: The Rete graph for classtime access rule – Once a
token reaches the terminal node the rule is activated.

generated from a web-based graphical UI for intuitive
rule definitions.

Listing 1: Rule for classtime access.
1 {rulename: "classtime-access",
2 conditions:[
3 {type:"student", name: "?name"},
4 {type:"accessdevice", name:"?dev", location:"classroom"},
5 {type:"accessreq", id: "?reqid", person: "?name", time:

↪→ "?t", device: "?dev"},
6 {type:"$test", expr:"(hourBetween(?t, 8, 20) &&

↪→ (isWeekday(?t) == true) )"}
7 ],
8 actions:[
9 {assert: {type: "accessrep", reqid:"?reqid", allowed:

↪→ true}}
10 ]
11 }

A rule consists of a name, the left-hand side (LHS)
with conditions for event detection, and a right-hand
side (RHS) for a reaction after detection. The LHS of
the definition (lines 2-6) captures the access request
from a person on an ID scanning device within the
specified time periods (line 6). In the rule the ‘?’ op-
erator denotes a variable binding (e.g. ?name in lines
3 & 5). When all the conditions specified in the LHS
are satisfied, then the actions defined in the RHS are
activated. Here, we assert that the access request has
been granted (line 9).

In Serena clients can dynamically add rules to the
multitenant server through the framework’s client li-
brary. The rules are appended to the existing inference
engine’s graph and define the real-time detection con-
straints for that client. In general, the inference engine
will process and detect any events that clients are in-
terested in and once activated will notify the relevant
client(s). A client registers a handler that will be in-
voked once the rule has been activated.

3.2.2 The Rete Algorithm

Rules from clients are added to the server inference
engine. Inference engines perform pattern-matching,
a technique that reasons over the data to detect con-
straints that need to be fulfilled. Most current infer-
ence engines are based on the Rete algorithm (Forgy,
1982). Rete compiles rules (such as the one in List-
ing 1) into a data-flow graph that filters facts (data)
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Figure 4: Conceptualizing a multitenant inference engine
showing (a) naïve, (b) module-based and (c) scoped engine
approaches.

as they propagate through nodes performing the ac-
tual matching process in the match-execute cycle. The
matching process searches for consistent bindings be-
tween the facts and the existing rules. Efficient match-
ing is achieved through exploiting 1) structural simi-
larity – sharing of the nodes when building the graph,
and 2) temporal redundancy – caching of intermedi-
ate matched data tokens between cycles of incoming
results, at the price of higher memory usage.

In Figure 3 we show the Rete graph built in Serena
after addition of the classtime-access rule from
Listing 1. Facts enter the graph from the root node.
In the upper alpha network, single-input alpha nodes
perform generated type selection and intra-condition
tests with an alpha memory node holding the results.
The leftmost alpha node student filters facts of that
type and stores them in its alpha memory.

The beta network is built in the lexical order of the
condition elements forming a left-associative binary
tree. Two-input beta nodes perform inter-condition
tests or join operations on their left and right inputs
according to the corresponding conditions. A beta
memory is associated with each beta node and holds
the intermediate join results. The leftmost beta node
in Figure 3 performs joins for a student’s name
and the name of the person performing the access
request, creates a token of both facts in the result
and sends it to the next node. It also serves as left in-
put for successive nodes in the beta network. The sec-
ond beta node receives the token and performs joins
of facts from a scanning device with the device of the
accessrequest. For any beta node the right input is
always an alpha memory node.

The final beta node in a condition sequence repre-
sents the full activation of a rule and is named a ter-
minal node. In this case the rule classtime-access
will be instantiated once a token reaches this node.

The Need for Reentrancy – In Rete rules are
technically shared in their entirety within the network.
Structural similarity promotes sharing of nodes per-
forming the same test but corresponding to different
rules.

As stated previously, clients can add rules dynam-

ically to the Serena Web server. Adding rules in a
multitenant setting is not, however, without its risks
when using the naïve approach of having a single in-
ference engine on the multitenant server (Figure 4 (a))
for all tenants. For example, a separate client in an-
other university can develop a rule similar to the one
in Listing 1. This will cause Rete to reuse the same
graph and as a result, both universities will be re-
ceiving notifications of granted accesses in their dash-
boards whenever a student in either university enters
a classroom: an undesirable result. In general, allow-
ing clients to add rules in such multitenant settings
brings about problems of unintended or spurious acti-
vations. We describe the common ways developers of
rule-based systems attempt to solve this problem.

Rule Modules: One solution provided by a num-
ber of rule engines (as we discuss in Section 6) is
to spawn a separate engine instance or module for
each client or tenant (Figure 4(b)). This resolves
the problems of unintended and spurious activations
but nonetheless comes at a heavy cost: by eliminat-
ing sharing it undermines benefits of utility comput-
ing (Guo et al., 2007) and the strengths of the Rete al-
gorithm resulting in a rapid increase in resource util-
isation. Multiple separate engines make the system
prone to duplication of resources e.g., nodes, work-
ing/intermediate memories and activation queues.

Relation Facts: Another solution is by asserting
facts that indicate a belongs to relation in the univer-
sities, e.g., {belongsTo science vub} relates de-
partment science to the university vub. The entities
would then be assigned the different departments. In
this approach, the relation facts are added to the fact
base a priori. Then, the rule from Listing 1 can be
automatically modified to bind to such facts so that
we can distinguish between institutions. The rule is
modified by appending conditions 6 & 7 to the rule in
Listing 1, resulting in the modified rule in Listing2.

Listing 2: Rule for classtime access w. relation facts.
1 {rulename: "classtime-access-uni",
2 conditions:[
3 {type:"student", name: "?name", dept:"?studept"},
4 {type:"accessdevice", name: "?dev",

↪→ location:"classroom", dept:"?devdept"},
5 {type:"accessreq", id: "?reqid", person: "?name", time:

↪→ "?t", device: "?dev"},
6 {type:"belongsTo" dept:"?devdept", uni:"?uni1"},
7 {type:"belongsTo" dept:"?studept", uni:"?uni1"},
8 /* .. action ... */

9 }

This new rule will create the rete graph shown
in Figure 5. A new alpha node for belongsTo
is added and needs to join with the student and
accessdevice alpha nodes. When an access request
is asserted it joins with the relevant student and device
in nodes 1 and 2. The token reaches the join node 3
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Figure 5: The Rete graph for the modified policy 1 rule –
Additional nodes for performing discrimination are added.

causing a left activation. This will initiate a scan on
the entire belongsTo alpha memory for in its right
input to find compatible departments, which end up
in beta join 4. Here computations are also performed
for compatible departments for the device and to en-
sure that the request came from the same university
as the student and the device. Certainly, the problem
with this approach is that it increases additional nodes
and the costly joins that the inference engine needs to
perform.

Test Expressions: A better but more involved
approach would require that every rule from tenants
have additional discriminatory test conditions. We il-
lustrate with the same example as the original rule in
Listing 1. As with relation facts, we first assign stu-
dents and devices to departments that they are part of.
This time, however, the rule contains additional ex-
pression tests that check if the student and the device
are in the same university. Line 6 of Listing 3 adds a
boolean test that checks if the student and device are
in the same university. This also results in a different
Rete graph with an additional beta test node, shown in
Figure 6. Note that at beta join node 2 the complete
cross-product joins of student and device facts are
still computed.

These last two approaches have similar limita-
tions. First, they increase rule complexity and quickly
become tedious in clients with more complex internal
structures like multiple departmental levels (see next
section). They also impact the underlying Rete graph:
additional nodes are created and more computations
are required. They further pollute the logical intent
of the rule designer by adding conditions that need to
enforce discrimination within the rules of all clients.

Listing 3: Rule for classtime access.
1 {rulename: "classtime-access-uni",
2 conditions:[
3 {$s: {type:"student", name: "?name"}},
4 {$d: {type:"accessdevice", name: "?dev",

↪→ location:"classroom"}},
5 {type:"accessreq", id: "?reqid", person: "?name", time:

↪→ "?t", device: "?dev"},
6 {type:"$test", expr:"( areInSameUni($d.dept,$s.dept) )"}
7 /* .. action ... */

8 }

Beta Network
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r.device d.name

3areInSameUni(d.dept,s.dept)
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Figure 6: Rete graph for policy 1 with test expressions – A
new node is added that checks compatibility of student and
access device.

Support for multiple tenants can be improved by
making the Rete algorithm reentrant such that any
Rete graph can purely handle multiple inference states
simultaneously for different sets of client rules, as il-
lustrated in Figure 4(c).

Reentrant Rete – In order to enforce multite-
nancy during the inference engine’s match cycles, it
is imperative that an efficient representation be used
to represent the hierarchy and to quickly determine
the relationships between the data being processed at
runtime. This is especially significant in a multitenant
setup like the monitoring service where during a join
the node needs to perform an additional “is the to-
ken’s request that we want to match with the access
device originating from the same university?”-check
that is needed to determine compatible facts that ap-
ply to rules that belong to one tenant. This check tries
to find a consistent binding for a device of the same
exact university to avoid unintended activations with
data from other tenants. Remember that the same
check is also performed when facts from a different
university are asserted into the monitoring service.

The numbers of these checks increase markedly
when the multitenant rule engine supports relation-
ships within and between tenants. For instance, pol-
icy 3 from the motivating example specified that stu-
dents from a department in the university can have
special access times to their (sub-)departmental labs.
The rule for the policy is shown in Listing 4. This
time there are two access requests (line 7, 8) from the
student and the senior academic, so we need to check
if they come from the same department and if the de-
partment is biology or bioinformatics (line 9) as
per the policy and the defined structure in Figure 1
(note that the rule is more complex if the student and
academic come from different departments). The re-
sulting Rete graph for policy 3 with test expressions
is shown in Figure 7.

As identified in (Nayak et al., 1993), a major bot-
tleneck in Rete and a number of its variants is such ex-
pensive computations during the match phase. There-
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Figure 7: Rete graph for policy 3 with departmental checks
– To discriminate data from different clients additional tests
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fore any representation needs to be able to perform
these checks in a zealously efficient manner. We next
show the direction that Serena takes to solve this.

Listing 4: Rule for biology dept. weekend lab access.
1 {rulename: "biology_weekend_access",
2 conditions:[
3 {$stu: {type:"student", name: "?stuname"}},
4 {$stf: {type:"staff", name: "?stfname"}},
5 {$d: {type:"accessdevice", name: "?dev",

↪→ location:"labs"}},
6 {type:"accessreq", person: "?stuname", device: "?dev"},
7 {type:"accessreq", person: "?stfname", device: "?dev"},
8 {type:"$test", expr:"(

↪→ areInSameUni($stu.dept,$stf.dept,$d.dept) )"}
9 {type:"$test", expr:"( ($stu.dept == $stf.dept) &&

↪→ ($stf.dept == $d.dept) && ($d.dept == ’biology’ ||
↪→ $d.dept == ’bioinformatics’) )"}

10 /* ... action ... */

11 }

4 SCOPING THE RULE ENGINE

Serena’s approach is to embrace the concepts of
physical or logical groups of tenant clients and
their relationships, common in multitenant applica-
tions (Grund et al., 2008). Examples of groups in-
clude research groups in a university, branches in an
organization, hobby categories in forums, area zones
when monitoring distributed sensor networks or user
lists in Twitter. The framework only requires tenants
to send their group hierarchies as a list of pairs and it
converts and encodes the hierarchies into an efficient
representation.

4.1 Representation of Tenant Structures

Serena models groups internally with the aim of using
these representations to enforce data discrimination in
the rule engine. We describe a structural representa-
tion that uses the notion of a group as a primitive. We
showed in Figure 1 how we can conceptually struc-
ture the tenants and subtenants of the monitoring ser-
vice in groups and subgroups. Serena represents the
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Figure 8: Scopes supported in Serena – The scopes shown
are in relation to the group hierarchy from Figure 1.

group hierarchy as a directed acyclic graph with the
groups as the nodes with the clients connected to dif-
ferent groups at different levels in the graph.

One characteristic is that groups usually have
an aspect of relationships between them – research
groups can belong to (sub)departments, hobbies can
be categorised into hierarchies of interest groups and
sensor area zones can be contained in levels of ad-
ministrative units. We therefore appropriate the term
scopes to represent the common relationships be-
tween groups in the hierarchy and designate that as
a scope hierarchy. Serena adds scopes as (a series
of) edges in the group hierarchy. Serena supports the
following scope operations shown in Figure 8 on the
client groups.

• visibleto: In this scope we only capture data from
clients in groups that share the same ancestor in the
hierarchy. An example is capturing the data that
pertains to senior academic researchers collaborat-
ing with other personnel within the same university
(Figure 8a).

• peerof : Only data items that originate from peers
will be considered in this scope. The peers include
groups that are at the same level in the hierarchy.
For instance a researcher would want to create a
rule with this scope that applies to members in com-
puter science and biology departments, Figure 8b.

• subgroupof : Only the data items added by the
group or any of its subgroups are included in the
scope. This scope is ideal for a departmental rule
for computer science that will only apply to mem-
bers of that department or sub-departments (web
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info systems, software engineering, bioinformat-
ics). See Figure 8c. Its dual is supergroupof .

• private: The private scope will exclusively source
data from the specified group and none else (not
even its subgroups or parent group). This scope is
well suited for data that applies to an exact group,
like in Figure 8d where we can target ID scanning
devices at the campus entrance gates and not those
in its subgroups such as the campus parking.

• public: Here we capture all data from all defined
groups in the hierarchy. The universities could, for
example, collaborate in sharing security informa-
tion between them so they can be interested in data
from the devices/student/staff in all the groups and
their subgroups (Figure 8e).

4.2 Encoding the Group Hierarchy

To enforce reentrancy and to efficiently process the
various scopes within the match-execute cycle of the
inference engine, the Serena framework internally
converts the scopes discussed in Section 4.1 into a
more efficient encoding. Our vision is to use an
encoding method that, rather than performing com-
putationally expensive scope checks such as path
traversals in a hierarchical structure, performs (near)
constant-time operations to entirely determine data
relationships in the structure. This is vital because
during the match-execute cycle, Rete can perform
combinatorial processing in its computations in the
beta network as the dataset increases: therefore ten-
ant group path traversals will dramatically affect the
performance per cycle. The basic idea is that we pre-
compute the scope check, store and maintain them ef-
ficiently as an encoding that will be used to expedi-
tiously process scope constraints.

We base our encoding on the transitive closure,
a significant component modelling most relationships
in knowledge and representation systems as identi-
fied in (Agrawal et al., 1989) that makes our encoding
suitable for querying binary relationships – precisely
the kinds of operations that the inference engine per-
forms when performing a scope check between left
and right inputs. We next outline the encoding pro-
cess.

The Group Hierarchy as a Lattice – Initially,
Serena captures the hierarchy as a partially-ordered
set (poset) (Habib and Nourine, 1994). The example
hierarchy in Figure 1 can be represented as a poset
(P,6) with the binary relation 6 defined as ‘is a part
of ’ (in most cases the general 6 relation ‘is subgroup
of ’ suffices). The poset P has an element (a,b) iff
a is part of b, so elements include (junior, academic
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Figure 9: Hasse diagram of the group hierarchy as a lattice
– The lattice is the basis of encoding the group hierarchies
in a matrix.

staff), (bioinformatics, biology), (internal, personnel)
and (computer science, science dept).

To come up with an encoding, we convert the
groups poset to a lattice L with a > and a ⊥. This
leads to the hierarchy depicted as the hasse diagram
in Figure 9. Other distinct hierarchies can have their
own top-level element same as>. A lattice represents
the group hierarchy in a form that is more efficient to
encode and compute than the earlier poset representa-
tion.

Encoding the Lattice – With L, Serena performs
a customised bit-vector encoding method that is based
on the method by Aït-Kaci (Aït-Kaci et al., 1989).
The result is a binary matrix encoding Mϑ of the
group hierarchy, shown in Figure 10 for our example,
with the following properties:

i) The labels on the rows of Mϑ represent the
groups in L; similarly for columns. The first row
represents > and the last row represents ⊥.

ii) An entry Mϑ(a,b) has a 1 if group a = group b
or if group a is an ancestor of group b in L, and
0 otherwise

iii) An entry Mϑ(b,a) has a 1 if group a = group b
or if group a is an descendant of group b, and 0
otherwise

iv) A is a maximal iff the row Mϑ(a,∗) has a 1 only
at Mϑ(a,a) and at Mϑ(a,>)

v) A is a minimal iff the column Mϑ(∗,a) has a 1
only at Mϑ(a,a) and at Mϑ(⊥,a)

Additionally, the encoding process generates the
level or depth of each group, which we store as an
integer. We also store indexes for all the maximals in
the matrix. We now show how the encoding is used to
perform scoping within the inference engine.

Scoping with Mϑ – The encoding with Mϑ is the
basis of performing scope operations in the inference
engine. To facilitate this Serena adds scope tests at
appropriate nodes when building the Rete network,
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� per res phy int sci mai aca com biol adm lab clas sen soft bioi �

� 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
per 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
res 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
phy 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
int 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
sci 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
mai 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
aca 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
com 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
biol 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0
adm 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
lab 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0
clas 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
sen 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0
soft 1 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0
bioi 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 1 0
� 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 10: The group hierarchy matrix encoding Mϑ – The
groups are labels in the rows and the columns of the matrix.

and performs scoping operations in the beta betwork’s
beta join nodes during matching.

• visibleto: To perform a scope check of a visibleto
b the runtime checks if the result of Mϑ(a,∗) ∧
Mϑ(b,∗) is a maximal in Mϑ as per property (iv).

• peerof: To check if a peerof b it calculates if
Level(a) = Level(b) from the encoding process of
Mϑ.

• subgroupof: A scope check of a subgroupof b is
true if the result of Mϑ(a,∗) ∧Mϑ(b,∗) = Mϑ(b,∗) as
per property (ii). Conversely, b is a supergroupof
a.

• private: To find out a private b it can check if
Mϑ(a,∗) ∧Mϑ(b,∗) = Mϑ(a,∗) as per property (ii) and
(iii).

• public: For a scope check of a public b then we
calculate if Mϑ(a,∗)∧Mϑ(>,∗) = Mϑ(>,∗) as per prop-
erties (ii) and (i).

With these operations, the Serena runtime can per-
form scope operations efficiently. It retrieves the val-
ues in the matrix and performs binary operations from
the encoding in near-constant time.

4.3 Defining Scoped Rules

To expose scoped rule definitions, Serena follows a
similar direction as Allen’s work in (Allen, 1983)
that proposes rule extensions for temporal interval
constraints. Similarly, we present scope-based con-
straints by extending the normal rule syntax with
scope-based definitions that specify structural con-
straints on the groups and the relationships between
them, which we simply call scopes. The scopes sup-
ported are as in Section 4.1.

We illustrate in Listing 5, where we show how to
define policy 3 of biology students lab accesses in the
weekends from Section 2.1 using scope constraints.

Listing 5: Scoped rule for biology dept. weekend lab access.
1 {rulename: "biology_weekend_access",
2 conditions:[
3 {$stu: {type:"student", name: "?stuname"}},
4 {$stf: {type:"staff", name: "?stfname"}},
5 {$d: {type:"accessdevice", name: "?dev",

↪→ location:"labs"}},
6 {type:"accessreq", id: "?reqid1", person: "?stuname",

↪→ time: "?t1", device: "?dev"},
7 {type:"accessreq", id: "?reqid2", person: "?stfname",

↪→ time: "?t2", device: "?dev"},
8 {type:"$test", expr:"(hourBetween(?t, 8, 20) &&

↪→ (isWeekend(?t1, ?t2) == true) && isNear(?t1, ?t2) )"}
9 ],

10 scopes:[ "biology supergroupof ($stu & $stf & $d)", "$stf
↪→ private senior"],

11 actions:[
12 {assert: {type: "accessrep", reqid:"?reqid1", allowed:

↪→ true}}
13 ],
14 notify:[ "subgroupof administrative"]
15 }

The rule is similar to Listing 1, with an ad-
ditional scopes section (line 10) where the bound
condition variables in line 3, 4, and 5 are refer-
enced to check whether the student, staff and device
facts are all tagged to belong to the biology de-
partment or its subdepartments using the scope check
supergroupof. The additional scope check in line 10
enforces the constraint that the staff member has to be
in the senior academic group. The rule will there-
fore detect the constraints of policy 3, which was to
capture lab accesses made in the weekends by a stu-
dent that is accompanied by a senior academic staff
member in the biology department and any of its sub-
departments.

4.4 Scoped Execution and Notifications

Within the inference engine, the rule in Listing 5 will
be built as shown in Figure 11. The main difference is
in the beta node 3 where we now have in place a more
compact and efficient way to discriminate the tokens
for the node to process. The scoping module will use
Mϑ to perform the binary operations from the scope
guards in the figure denoted with angle brackets.

The algorithm is modified as follows: on a left
or right activation, we first perform the encoded
scope check on the fact from the alpha memory or
the token’s fact respectively. If the check passes, we
proceed with the join computation. When a token
reaches beta node 3, for instance, it triggers a left ac-
tivation to find a compatible accessdevice. Serena
will first perform the supergroupof scope check on
the devices as defined in Section 4.2. For example,
if the access request is made from a device dev in
the bioinformatics subgroup, the engine performs
the supergroup check on the alpha memory’s device
fact, which in this case succeeds:
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ficient encoding operations.
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Similar operations are performed for the student
supergroup check and the private scope check for
the senior staff member from the academic person-
nel group using Mϑ. If successful, we have estab-
lished the facts are compatible and proceed to the join
operation for node 3.

To decide who to notify, i.e., which group of which
tenant should receive the notification, Serena rules
expose a notify construct that specifies notifications
once the rule is fired. The notification scopes invoke
similar binary operations as in Section 4.2 to deter-
mine the groups to notify when performing a scope
check during matching. In the case of the rule in List-
ing 5 the notify construct will notify members of
administrative group and its subgroups.

5 EXPERIMENTAL EVALUATION

We evaluate our approach with the University Ser-
vices Access Control scenario detailed in Section 2.1.
We focus on investigating whether the scoping meta-
data architecture has significant computational bene-
fits over traditional techniques in current rule engines.

a) Setup: The example scenario was implemented
as a set of simulations that connect to a multitenant
web server. The final application has a total of
61 groups in hierarchies, 39 access rules, and 73
concurrent clients across 3 sample universities. All
clients are connected to the multitenant server con-
currently through websocket connections managed by
the framework. The server runs Node.js and has an
AMD Opteron Processor 6272 at 2.1Ghz. The max-
imum RAM allocated to the entire experiment was
20GB.

b) Methodology: We categorised the general ex-
periment setup into two categories: one with tradi-
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Figure 12: Results in one simulation session – We compare
the cumulative results of one run of 12 hours.

tional rules using test expressions to enforce data dis-
crimination (unscoped), and another with Serena’s
scoped rules using Serena. We randomly generated
access requests from clients in both categories throt-
tled in ranges of between 1-5 seconds (simulating
real-world access request intervals), with one session
consisting of 12 hours of runtime. The requests model
students and staff from different departments or per-
sonnel levels randomly accessing various university
locations. We ran 35 iterations for each category,
making a total of approximately 70 sessions and 840
hours runtime. During the simulations we logged the
number of beta joins and tests, memory (RSS) used
and activations by the server.

c) Results & Discussion: Figure 12 shows the cu-
mulative number of beta computations performed and
rule activations from a single session of both scoped
and unscoped engines, and in Figure 13 we calculate
and chart box plots showing the distribution of ob-
served results of all the 70 randomised sets of simula-
tions.

From the graphs in Figure 12 we observe that
the traditional unscoped Rete graph built from manu-
ally programming data discrimination within the rules
suffers a marked increase in the number beta com-
putations compared to our scoped graph. The un-
scoped approach spent more time processing the ex-
pensive join operations and beta tests in the engine.
The scoped engine’s scope checks use the encoding,
leading to better performance, and consequently to a
higher number of activations recorded (by approxi-
mately 31%) within the same session.

The aggregated results in Figure 13 show evidence
of a better overall performance of the scoped engine.
Compared to a traditional approach, Serena on aver-
age improves the computation of scope tests and total
memory consumption, increasing the average number
of rule activations of all randomised sessions of the
experiment. The reduced memory consumption is as
a result of space optimisations of scoping metadata
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Figure 13: Aggregated results over all randomised simula-
tions – The results were collected from 70 sessions of ap-
prox. 840hrs.

internally in the framework as opposed to using fact
attributes in the traditional approach.

From the implementation and the results we ob-
serve that introducing metadata-driven reentrancy in
the engine results in simpler rule design and efficient
computation in the framework’s rule engine. This in
effect means that the security monitoring system can
process a larger number of access requests at a faster
rate than the traditional rule engine approach. The
requirement is that the tenants need to specify their
group structures to fully take advantage of the Serena
framework: the groups to be encoded in the university
hierarchy have to be defined and added to the engine
so that the benefits provided by the encoding can be
fully realised.

6 RELATED WORK

We describe similar techniques that support the devel-
opment of multitenant applications focusing on pre-
venting unnecessary duplication of processes and re-
sources at the application level.

Decomposition in Rule-based Systems – Mod-
ern rule engines such as Drools (Proctor, 2012) and
Jess (Hill, 2003) are based on the Rete algorithm as
well and optionally provide Web server extensions.
Techniques that they use to decompose larger rule
bases into groups of rules in other engines all em-
brace the concept of rulebooks that consist of iso-
lated sets of rules with no relationships between them.
Examples are modules in Jess and ruleflows or event
sources in Drools. Essentially these give each ten-
ant their own Rete graphs, making them fundamen-
tally independent. Serena in contrast facilitates and
encodes scoping within a single heterogeneous Rete
graph thus taking full advantage of structural similar-
ity and temporal redundancy.

Schema Sharing in Databases – A common

technique to support multitenancy is by mapping
the context of clients into the existing patterns of
conventional databases and similar systems, since
most have limited out-of-the-box support for handling
the metadata needed for multitenancy (Jacobs et al.,
2007). Advanced schema-based techniques such as
Sparse Columns (Chu et al., 2007), Extension Ta-
bles (Copeland and Khoshafian, 1985) and Multi-
tenant Shared Tables (Grund et al., 2008) exist, but
these have static and complex configurations that de-
grade in performance when ported to reactive rule en-
gines with eager incremental processing as in our ap-
proach.

Multitenant Middleware – Most dedicated mid-
dleware for multitenant architectures aim to sup-
port multiple tenants at the application level using
various techniques. The research in (Yaish et al.,
2011) and (Fiaidhi et al., 2012) achieves this through
variations of the aforementioned schema-based tech-
niques. The SaaSMT approach (Pal et al., 2015)
supports process-based tenant shareability based on
architectural layers, which is limiting when requir-
ing incremental, reactive processing. Support for
application-level middleware through platforms like
the Google App Engine/AppScale (Zahariev, 2009)
and GigaSpaces (Cohen, 2004) use approaches sim-
ilar to namespaces that partition application data
across tenants but do not intrinsically support the flex-
ibility and expressiveness of our formalised scopes.
Nevertheless, with some effort they can be utilised as
foundations of its runtime.

Distributed Event-based Systems – Distributed
Event-based Systems exchange loosely-coupled data
asynchronously between producers and consumers
with notifications. Work in (Lim and Conan, 2014)
and (Fiege et al., 2006) provides custom routing of
event notifications from producers to subscribed con-
sumers. Most of existing research, however, focuses
on the existence of an overlay of brokers that filter no-
tifications before reaching the respective consumers.
In contrast, scoping in Serena is primarily for im-
proving reentrancy in the inference engine during the
matching process. Furthermore, Serena provides fil-
tering of rule notifications at the event source to con-
nected clients, which does not require the use of a bro-
ker architecture.

7 CONCLUSIONS AND FUTURE
WORK

We have described Serena, a framework for reason-
ing in multitenant architectures via a Rete-based rule
engine. Our technique is useful in a number of multi-
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tenant applications to deal with the problem that much
of the heterogeneous knowledge significant when per-
forming reasoning and deductions can be structured
hierarchically within a multitenant setup. The tech-
nique uses groups and common relationships between
them to build an internal representation that captures
the scopes present in many multitenant domains by
using a hierarchy of groups. The model precisely
controls the amount of deduction or computation per-
formed automatically by the framework as informa-
tion from tenants flows into the system in a both ex-
pressive and computationally effective manner.

As future work we would like to measure service
shareability to estimate cost models. We would also
like to investigate support for dynamic scopes that can
be defined by the tenants during execution of the en-
gine, thus affecting the encoding and the state of the
inference engine’s intermediate memories.
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