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Abstract:  The objective of our study is to predict the clinical outcome of ischemic stroke patients after 90 days of 
stroke using the modified Rankin Scale (mRS) score. After experimentation with various regression 
techniques, we discovered that using M5 model trees to predict the score and then using bootstrap 
aggregating as a meta-learning technique produces the best prediction results. The same regression when 
followed by classification also performs better than regular multi-class classification. In this paper, we 
present the methodology used, and compare the results with other standard predictive techniques. We also 
analyze the results to provide insights on the factors that affect stroke outcomes. 

1 INTRODUCTION 

Stroke is defined as the rapid loss of brain function 
caused by disturbances in the blood supply to the 
brain. It is one of the leading causes of death 
worldwide (Raffeld et al., 2016). Stroke can be 
broadly classified into two types: Ischemic, which 
occurs due to lack of blood flow; and hemorrhagic, 
which is caused by internal bleeding. In this study 
we deal with data from patients with ischemic stroke 
which is the more common of the two types, 
accounting for around 87% of all strokes 
(Mozaffarian et al., 2016). The data are collected 
retrospectively from the University of Massachusetts 
Medical School, Worcester, Massachusetts, USA 
and comprise demographic information, medical 
history and treatment records of 439 patients.  

The objective of this study is to predict the 
outcome of a stroke patient in terms of the modified 
Rankin Scale (mRS) score, an integer value between 
0 and 6 measuring the degree of disability or 
dependence in daily activities of people who have 
suffered a stroke (Rankin, 1957). There are two 
approaches one may use to solve this problem. One 
is to treat the target as a numeric attribute and apply 
some form of regression. The other approach would 
be to think of the several different mRS scores as 
different categories, in which case the problem 

becomes that of multi-class classification. We have 
addressed the prediction task from both perspectives. 

1.1 Scope of this Paper 

In this paper, we aim to predict the mRS score of a 
patient after 90 days of an ischemic stroke based on 
the data we have about the patient at the time of 
discharge. Knowledge gained from this prediction 
task may help medical practitioners manage stroke 
more effectively and allocate resources more 
efficiently. The predictive (or independent) attribu-
tes in our study consist of demographic information, 
medical history and treatment records. The target 
attribute is mRS-90, the mRS score at 90 days 
following stroke onset (described in Table 1). We 
treat the target as a numeric attribute first and apply 
different regression techniques for prediction. Our 
studies show that M5 model trees used in tandem 
with bootstrap aggregating (bagging) significantly 
outperforms other common regression methods such 
as linear regression. We then treat the target as a 
multiclass categorical attribute and apply several 
classification techniques. Classification using the 
aforementioned regression technique followed by 
translation of the target to a discrete value performs 
better than well-known classification methods such 
as logistic regression and C4.5 decision trees.  
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1.2 Modified Rankin Scale 

The modified Rankin Scale (mRS) measure is the 
most widely used clinical outcome measure for 
stroke. It was first introduced by Dr. John Rankin 
(Rankin, 1957) and later modified to its current form 
by a group of researchers during the late 1980s (Van 
Swieten et al., 1988). The mRS score is an integer 
between 0 and 6 signifying the various degrees of 
impairment caused by stroke, with 0 being the least 
amount of impairment and 6 being death. Table 1 
presents a summary description of the different mRS 
scores. The mRS score can be calculated at various 
stages of stroke. In this study, the mRS scores are 
recorded in three different stages. The first, mRS 
before admission, presents the degree of disability 
the patient had before the onset of stroke. The next is 
mRS at discharge, which gives the mRS score at the 
time the patient is discharged from the hospital after 
initial treatment of stroke. The last one is mRS at 90 
days after stroke (mRS-90), the score this study 
attempts to predict. 

Table 1: Different mRS scores and their description 
(Banks and Marotta, 2007). 

Score Description 

0 No symptoms 

1 No significant disability 

2 Slight disability 

3 Moderate disability: requires assistance 

4 Moderately severe disability 

5 Severe disability: patient bedridden 

6 Death 

1.3 Related Work 

The mRS-90 score has been used as a measure of 
stroke outcome in numerous studies. Most of these 
studies focus on a particular treatment or condition, 
the efficacy of which is examined by how it affects 
the mRS-90 score.  In most cases, the mRS-90 score 
has been dichotomized to convert the task of 
prediction to that of binary classification. The 
classification task is performed usually by 
multivariate logistic regression which allows the 
authors to comment on the influence of one or more 
variables on stroke outcome based on the odds ratios 
computed from the logistic regression model. For 
example, (Moonis et al., 2005) reported that using 
statins for treatment of ischemic stroke improved 
stroke outcome since the statins obtained an odds 

ratio of 1.57 in a logistic regression model predicting 
mRS-90 ≤ 2. This means that the patients who are 
administered statins have 1.57 times the probability 
of attaining mRS-90 ≤ 2 than those who are not 
treated with statins. (Marini et al., 2005) studied the 
effects of atrial fibrillation in stroke outcome. In 
(Yong and Kaste, 2008), hyperglycemia is 
associated with poor outcome, while in (Nogueira et 
al., 2009) successful revascularization is associated 
with good outcome. (Henninger et al., 2012) 
reported that leukoaraiosis is a factor in poor 90-day 
outcome of stroke. These are only a handful of the 
studies using mRS-90 prediction as a means of 
discovering effects of factors in stroke outcome. All 
of the above studies dichotomized the mRS score to 
two levels – one consisting of mRS-90 ≤ 2 and the 
other of mRS > 2.   

In contrast, there have not been many studies that 
focused solely on predicting the stroke outcome and 
employing machine learning models to assist in the 
prediction task. (Gialanella et al., 2013) aimed to 
predict stroke outcome using linear regression, but 
used the functional independence measure (FIM) 
which is a scale that measures stroke recovery in 
terms of activities of daily living (Keith et al., 1987). 
A similar effort was made by (Brown et al., 2015), 
again focusing on FIM. Neither of these papers 
considered regression techniques other than linear 
regression. To the best of our knowledge, there is no 
study that has methodically explored regression 
analysis methods to predict the mRS-90 score as a 
measure of stroke outcome.  

1.4 Plan of the Paper 

In Section 2 of this paper, we present the 
methodology of our research. That section deals 
with the steps that are taken to prepare and 
preprocess the data, and also describes in full details 
our prediction techniques. Section 3 presents a 
comparison of different prediction methods, and 
analyzes the results to gain more insights about the 
models discovered. Section 4 concludes with a 
summary of findings and directions for future work. 

2 METHODOLOGY 

2.1 Data Collection and Preparation 

Our study is conducted on retrospective data 
obtained from medical records of 439 ischemic 
stroke patients admitted at the University of 
Massachusetts Medical School, Worcester, MA, 
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USA between 2012 and 2015. Information relevant 
for stroke outcome prediction is extracted into a 
dataset. Patients who died within 90 days of stroke, 
therefore having a mRS score of 6, are excluded 
from this analysis. The reason for this exclusion is 
that patient death can occur for a combination of 
several reasons apart from stroke, such as advanced 
age or other comorbid conditions. Therefore, for 
stroke outcome prediction, we decide to work only 
with the patients who survived the stroke after 90 
days. Prominent works on this area such as the 
Copenhagen Stroke Study (Nakayama et al., 1994) 
have also excluded dead patients in some of their 
models.   

The process of selecting relevant predictive 
attributes is a combination of domain expertise and 
empirical knowledge of machine learning procedu-
res. In the first step, one of the authors of this paper, 
a clinical neurologist and expert on stroke, has 
helped select a large set of attributes for extraction 
from the patients’ medical records. We then inspect 
each attribute to see whether they are conducive for 
machine learning. Attributes with a large amount of 
missing values, or with almost all instances having 
the same value are removed. In the end, the chosen 
set of attributes include demographic information 
(such as age and gender), medical history (such as 
diabetes and hypertension), habits history (such as 
smoking and drinking), subtype of stroke (such as 
large vessel and cardioembolic) (Adams et al., 
1993), prescribed medication (such as anticoagu-
lants), and mRS scores at different stages (before 
admission, at discharge and at 90 days). A measure 
of stroke severity determined by the National 
Institutes of Health Stroke Scale (NIHSS) score 
(Brott et al., 1989) is also included.  Table 2 presents 
summary statistics of all the attributes of the stroke 
dataset used in this study.  

For the multivalued attribute stroke subtype, five 
binary attributes for the five possible values are 
created, with each attribute value specifying whether 
(1) or not (0) the patient has that particular subtype 
of stroke. This is done since there is no ordinal 
relationship among the different stroke types; so 
giving them numeric scores would make the model 
incorrect. 

2.2 Regression 

In statistics and machine learning, regression is the 
process of analyzing how a numeric dependent 
variable changes with regards to changes in one or 
more independent variables. In this study the 
regression task is performed by a meta-learning 

technique called bootstrap aggregating where the 
base learner is a model tree generated using the M5 
algorithm. The machine learning tool Weka (Hall et 
al., 2009) is used for the experiments.  

Table 2: Summary statistics of the attributes of the stroke 
dataset. The total number of patients is 439. For 
continuous attributes, the mean and standard deviation are 
shown in a Mean ± Std. Dev. format. For categorical 
attributes the percentages of different values are given. For 
binary attributes, only the percentages of TRUE values are 
shown. For mRS scores at different stages, we summarize 
the overall mean and standard deviation along with the 
distribution of individual scores. 

Attribute Distribution of values 

Stroke subtype  

Small vessel: 12.3%,  
Large vessel: 23.7%,  
Cardioembolic: 31.4%  
Cryptogenic: 23.7%,  
Others: 8.9% 

Gender 
Male: 57.4%,  
Female: 42.6% 

Age 
67.2 ± 14.6 
Range: 19 - 97 

NIHSS score at admission 
7.2 ± 7.1 
Range: 0 - 32 

Hypertension 74.7% 
Hyperlipidemia 58.8% 
Diabetes 29.8% 
Smoking 29.4% 
Alcohol problem 14.6% 
Previous history of stroke 19.4% 
Atrial Fibrilation 27.7% 
Carotid Artery Disease 21.0% 
Congestive Heart Failure 8.7% 
Peripheral Artery Disease 6.4% 
Hemorrhagic conversion 11.2% 
tPA 20.5% 
Statins 47.4% 
Antihypertensives 62.9% 
Antidiabetics 20.5% 
Antiplatelets 45.3% 
Anticoagulants 10.3% 
Perfusion 8.7% 
Neurointervention 18.7% 

mRS before admission 

     0.41 ± 0.86 
0: 74.0%,  1: 15.0% 
2: 5.9%,   3: 2.1% 
4: 1.4%,   5: 0.5% 

mRS at discharge 

    1.60 ± 1.63 
0: 35.3%,  1: 13.7% 
2: 15.3%,   3: 9.8% 
4: 11.6%,   5: 5.0% 

mRS at 90 days 

    1.28 ± 1.46 
0: 46.9%,  1: 17.5% 
2: 14.4%,   3: 11.6% 
4: 6.2%,   5: 3.4% 
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2.2.1 M5 Model Trees  

A decision tree is a tree where each node represents 
a choice among a number of alternatives, and each 
leaf represents a decision that can be reached by 
following a series of choices starting from the root 
of the tree. Specifically in terms of machine 
learning, each node of a decision tree specifies a test 
of some attribute in the dataset while branches 
emanating from the node correspond to possible 
values or outputs of the test in the node (Tan et al., 
2005). In the more common case, decision trees 
perform classification where the leaf represents one 
of the classes the instance is to be categorized to. 
But a decision tree can be used to perform regression 
too, in which case the leaf outputs a numeric value 
of the target attribute instead of a class (Breiman et 
al., 1984). This type of tree is called a regression 
tree. A model tree is a special form of regression 
tree where the decision in each leaf is a not a value, 
but is itself a multivariate linear model. The numeric 
value predicted by the tree for a given test data 
instance is obtained by evaluating the linear equation 
in the leaf of the branch where the data instance 
belongs. (Quinlan, 1992) describes an algorithm, 
called M5, that is used to construct such a tree. Some 
improvements to the algorithm were made by (Wang 
and Witten, 1996). 

The construction of the model tree is a two-stage 
process. In the first stage, a decision tree induction 
algorithm is used which employs a splitting criterion 
that minimizes the intra-subset variability in the 
values down from the root through the branch to the 
node. The variability is measured by the standard 
deviation of the target values that reach that node. 
Taking the standard deviation of the values as a 
measure of error, M5 examines all attributes and 
possible split points to choose one that maximizes 
the expected reduction in error. The splitting process 
stops when the instances reaching a leaf have low 
variability or when few instances remain (Etemad-
Shahidi and Mahjoobi, 2009). In the second stage, 
the tree is pruned starting from the leaves upward.  
A linear regression model is computed for every 
interior node, including only the attributes tested in 
the sub-tree rooted at that node. As the final model 
for this node, M5 selects either this linear model or 
the model subtree built in the first stage, depending 
on which has the lower estimated error. If the linear 
model is chosen, pruning takes place and the subtree 
at this node is converted to a leaf containing this 
linear model (Quinlan, 1992). 

M5 model tree essentially builds a piecewise 
linear model. The problem space is divided into 

several subspaces based on the branching decisions 
of the tree, and separate linear models to fit the data 
points in each subspace are generated. Figure 1 
illustrates this concept. 

 

Figure 1: a) An example model tree built with the M5 
algorithm with input attributes X and Y. Linear models 
LM 1 to LM 4 are built in the leaves. b) The corresponding 
problem space showing separate subspaces defined by the 
tree and how each linear model fits points in the subspace. 

2.2.2 Bootstrap Aggregating 

Bootstrap aggregating, commonly known as 
“bagging”, is a meta-learning technique where 
multiple versions of a predictor are generated and 
later used to get an aggregated predictor. Each 
version of the predictor is learned from a bootstrap, 
which is a sample with replacements of the data 
instances drawn according to a uniform probability 
distribution. For the task of predicting a numerical 
outcome, the aggregation averages over the predictor 
versions (Breiman, 1996). Bagging improves 
generalization error by reducing the variance of the 
individual predictive models. If a base predictor is 
unstable - if it is not robust to fluctuations - the 
bagging process helps to stabilize it (Tan et al., 
2005). 

In the most common case, the size of each 
bootstrap Bi is n, the same as that of the entire 
dataset. In this case, on average Bi contains 
approximately 63% of the original training data 
since each sample has a probability of 1 – (1 – 1/n)n 

of being picked, which converges to about 0.63 for 
sufficiently large n (Aslam et al., 2007). This is, of 
course, because of the fact that sampling is done 
with replacement, resulting in duplicate instances in 
each bootstrap. Once k bootstraps B1, …, Bk are 
created, one predictor is trained on each of the 
bootstraps, thus producing k predictors. In the 
prediction step, a given test data instance is fed to 
the k predictors and the final prediction is the 
average of the values output by the k predictors. 
Figure 2 summarizes the bagging process. For the 
bagging models reported in this study, the value of k 
is 10. 
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Figure 2: Summary of the process of bagging. From the 
training set, k bootstraps are created. Each bootstrap B1, 
…, Bk is used to build predictor versions V1, …, Vk which 
make separate predictions P1, …, Pk. The final prediction 
Pf is a combination (average for regression, majority 
voting for classification) of all the predictions. 

2.2.3 Evaluation Criteria 

To evaluate the performance of the regression 
models, we examine the degree of similarity 
between the actual values of the target attribute, and 
the predicted values returned by the models. To 
assess how well the models will generalize to an 
independent dataset, 10-fold cross validation is used 
(Kohavi, 1995). The degree of similarity between 
the actual and predicted values is checked via three 
criteria: the Pearson correlation coefficient, mean 
absolute error and root mean squared error.  

The Pearson correlation coefficient, R, is a 
measure of the linear dependence between X = 
{X1,…,Xn} and Z = {Z1,…,Zn}. It gives a value 
between -1 and +1 where -1 stands for total negative 
correlation, 0 for no correlation and +1 for total 
positive correlation. It can be defined as follows 
(Rodgers and Nicewander, 1988): ܴ =	 ∑ሺ ܺ − തܺሻ ሺܼ − ܼ̅ሻඥ∑ሺ ܺ − തܺሻଶ ∑ሺܼ − ܼ̅ሻଶ (1)

where തܺ and ܼ̅ are means of ܺ and ܼ respectively. 
Mean absolute error (MAE) and root mean 

squared error (RMSE) are both widely used in 
prediction tasks to measure the amount of deviation 
of the predicted values from the actual values. The 
two are defined in the following way: 

ܧܣܯ =	 1݊|ݖ − పෝ|ݖ
ୀଵ  (2)

ܧܵܯܴ = ඩ1݊ሺ|ݖ − పෝ|ሻଶݖ
ୀଵ  (3)

Where n is the number of predictions, ݖଵ, …, ݖ are 
the actual and ݖଵෝ  ෞ are the predicted valuesݖ	,… ,
respectively (Moore, 2007). 

2.3 Classification 

The different levels of mRS scores can be viewed as 
different categories and hence predicting the mRS 
score can be viewed as a multi-class classification 
problem. We consider three classifiers in this study. 
Two of them are widely used classification 
algorithms: logistic regression (McCullagh, 1980) 
and C4.5 decision tree (Quinlan, 1993). The choice 
of logistic regression is motivated by the fact that it 
is the standard classification method used in clinical 
trial studies. As for decision tree, it gives a good 
diagrammatic representation of the prediction 
process as well as proving to be empirically 
successful in classification tasks.  

The other classification method in this study is 
actually one that uses the results of the regression 
method involving bagging and model trees. Once a 
numeric prediction is obtained from the regression 
method, we round it to the nearest integer and assign 
the instance to the class corresponding to that 
integer. We denote this approach here as 
classification via regression. 

The evaluation criterion for the classification 
algorithms used in this study is accuracy – the 
percentage of cases where the actual and the 
predicted classes are the same. For the prediction of 
mRS-90 score, however, we may consider a 
predicted score which is close enough to the actual 
score to be fairly accurate as well. We therefore 
define “near-accuracy” to be the percentage of cases 
where the prediction is either fully correct or is 
incorrect by a margin of just one score, and use it as 
an additional evaluation metric.  

3 RESULTS 

3.1 Regression Models to Predict 
mRS-90 

Supervised regression is performed on the stroke 
data to predict the patient outcome after 90 days of 
stroke onset. The target attribute is mRS-90, the 
mRS score after 90 days, and the predictive 
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attributes are all the other attributes described in 
Table 2. We construct an M5 model tree and 
compare its results with linear regression, the most 
commonly used method for regression analysis. We 
then apply bootstrap aggregating (bagging) using 
M5 model trees and separately linear regression 
models as respective base predictors. For 
comparison purposes, we construct also the simple 
regression model whose prediction is always the 
average of the values of the dependent variable in 
the training set.  

Parameter optimization is done for both model 
tree and bagging. For M5 model trees, we 
experiment with the minimum number of instances 
to allow in a leaf. It is found that having a minimum 
of 10 instances in the leaf produces the best 
performing tree. Increasing this number creates 
shorter trees that underfit the data while reducing 
this number creates larger trees that are prone to 
overfitting. For bagging, we experiment with 
different number of iterations for bootstrapping 
(number of bags) and different bootstrap sizes. Our 
conclusion is that 10 iterations with each bootstrap 
containing the same number of instances as the 
training set produces the best results. 

Table 3 compares the results of these five 
methods in terms of correlation coefficient (R), 
mean absolute error (MAE) and root mean squared 
error (RMSE). We can observe from the table that 
bagging used in tandem with M5 model trees 
performs much better than all the other techniques. 
An interesting observation is that M5 model tree 
(without bagging) shows an impressive improve-
ment over linear regression in terms of mean 
absolute error, but performs only slightly better in 
terms of root mean squared error. Large errors have 
a relatively greater influence when the errors are 
squared. So as the variance associated with the  
 

Table 3: Comparison of different regression methods on 
stroke data in terms of R, MAE and RMSE. For R, higher 
values indicate better model fit, whereas for the MAE and 
RMSE metrics lower values are better. 

Method R MAE RMSE 

Average Prediction -0.136 1.235 1.461 

Linear regression 0.779 0.654 0.916 

M5 model tree 0.785 0.577 0.905 

Bagging with Linear 
Regression 

0.783 0.649 0.908 

Bagging with M5 model 
trees 

0.822 0.537 0.832 

frequency distribution of the error magnitude 
increases, the difference between MAE and RMSE 
also increases (Willmott and Matsuura, 2005). It 
therefore makes sense that a variance-reducing 
procedure like bagging should reduce RMSE when 
applied to model trees, as observed in Table 3. Note 
also that bagging does not have the same kind of 
effect in improving the performance of linear 
regression. 

To see if the improvement is statistically 
significant, we perform paired t-tests in terms of 
correlation coefficient on each pair of the four 
methods considered. The difference between means 
for each pair are examined at a p-value of 0.05. The 
results of the tests are presented in Table 4, showing 
that the bagging method with M5 model trees 
performs significantly better than the other four 
methods on the stroke dataset. 

Table 4: Results of statistical significance analysis on 
correlation coefficient with p-value of 0.05. Each cell 
represents the result of the paired t-test between a pair of 
algorithms. If the algorithm in the row is significantly 
better than the one in the column, a ‘>>’ is shown. If it is 
significantly worse, a ‘<<’ is shown. A ‘<->’ indicates that 
there is no statistically significant difference. 

 Avg 
Pred 

Lin 
Reg 

M5 
tree 

Bagging 
Lin 
Reg 

Bagging
M5 
trees 

Avg Pred - << << << << 

Lin Reg >> - <-> <-> << 

M5 tree >> <-> - <-> << 

Bagging 
Lin 
Reg 

>> <-> <-> - << 

Bagging 
M5 

trees 
>> >> >> >> - 

3.1.1 Observations from the M5 Model Tree 

We investigate the model returned by the M5 model 
tree algorithm to find insights about stroke outcome. 
Figure 3 shows the model tree where each leaf is a 
linear equation. The equations appear below. The 
sign and magnitude of coefficients of each predictive 
attribute in the equations give an indication of how 
the output attribute responds to changes in the given 
input attribute. The continuous variables age and 
NIHSS at admission are scaled to the range between 
0 and 1, so that the magnitudes of all attributes are 
within the [0,1] range. 
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Figure 3: The M5 model tree built on the stroke dataset 
with minimum 10 instances in each leaf. Each leaf is a 
linear model predicting the target attribute mRS-90. The 
numbers under the leaves indicate how many instances are 
covered under that particular linear model. 

LM 1 (here the value of mRS at discharge is 0) 
mRS 90 days =  
 - 0.1309 * Subtype - Large Vessel  
 - 0.1472 * Subtype - Small Vessel  
 - 0.1552 * Subtype - Cardio  
 - 0.0532 * Subtype - Crypto  
 - 0.1454 * Subtype - other  
 + 0.064 * NIHSS at admission  
 + 0.0189 * MRS before admission  
 + 0.0996 * Age  
 + 0.0155 * Diabetes 
 -  0.0472 * Antiplatelets  
 + 0.0534 * mRS at discharge  
 + 0.1285 

LM 2 (here the value of mRS at discharge is 1) 
mRS 90 days =  
 0.0446 * Subtype - Large vessel  
 - 0.0837 * Subtype - Small vessel  
 - 0.4857 * Subtype - Cardio  
 - 0.6028 * Subtype - Crypto  
 - 0.0827 * Subtype - other  
 + 0.3298 * NIHSS at admission  
 + 0.084 * MRS before admission  
 + 0.4344 * Age  
 + 0.0959 * Diabetes 
 - 0.0137 * Tobacco  
 + 0.2618 * Antihypertensives  
 - 0.0057 * Antiplatelets  
 + 0.1265 * mRS at discharge  
 + 0.3596 

LM 3 (here the value of mRS at discharge is 2 or 3) 
mRS 90 days =  
 0.3911 * Subtype - Large vessel  
 - 0.0837 * Subtype - Small vessel  
 - 0.0882 * Subtype - Cardio  
 - 0.0832 * Subtype - Crypto  
 - 0.807 * Subtype - other  
 + 1.5475 * NIHSS at admission  
 + 0.3333 * MRS before admission  
 + 1.5486 * Age  

 + 0.4281 * Diabetes 
 - 0.0137 * Tobacco  
 - 0.0057 * Antiplatelets  
 + 0.0951 * mRS at discharge  
 - 0.3414 

LM 4 (here the value of mRS at discharge is 4 or 5) 
mRS 90 days =  
 - 0.0119 * Subtype - Large vessel  
 - 0.0837 * Subtype - Small vessel  
 - 0.0882 * Subtype - Cardio  
 - 0.0832 * Subtype - Crypto  
 - 0.0827 * Subtype - other  
 + 0.1919 * NIHSS at admission  
 + 0.0438 * MRS before admission  
 + 0.2979 * Age  
 + 0.0567 * Diabetes 
 - 0.0351 * Tobacco  
 - 0.0057 * Antiplatelets  
 - 0.4463 * Neurointervention  
 + 1.4419 * mRS discharge  
 - 3.0914 

From the model tree of Figure 3, it is clear that mRS 
at discharge plays the major role in deciding the 
mRS score at 90 days. The tree simply first decides 
what the mRS discharge score is, and then builds 
linear models to predict mRS-90 for the patients 
with that score. By following the decision branches 
of the tree, we can see that the linear models LM 1 
and LM 2 corresponds to mRS discharge scores of 0 
and 1 respectively. Similarly LM 3 is associated 
with mRS discharge scores of 2 and 3, and LM 4 
with scores of 4 and 5.  

Looking at LM 1, we find that the y-intercept is a 
very small value and there is no other attribute that 
has a large coefficient that could change the 
prediction substantially. This means that the 
prediction for almost all patients reaching this point 
of the tree will be close to 0. At LM 2, since the 
mRS discharge score is 1 with a coefficient of 
0.1265 and the y-intercept is 0.3596, the baseline 
prediction for this leaf (if all other conditions are not 
present) is 0.4861. Older age, higher NIHSS at 
admission and presence of antihypertensives 
contribute towards increasing the mRS-90 score. On 
the other hand, cardioembolic and cryptogenic 
strokes contribute significantly towards lowering the 
mRS-90 score. At LM 3, if the mRS discharge score 
is 2, then the baseline prediction is 2*0.0951 – 
0.3414 = - 0.1512. If the mRS discharge = 3, it is 
3*0.0951 – 0.3414 = - 0.0561. However, there are 
some attributes in this model that may have a major 
impact on the final prediction, notably age, NIHSS 
at admission, diabetes, large vessel stroke subtype 
and mRS before admission. Higher values for some 
or all of the above attributes will result in increased 
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mRS-90 score. For LM 4, the baseline prediction is 
either 2.6762 (for mRS discharge = 4) or 4.1181 (for 
mRS discharge = 5). If a patient reaches this leaf, the 
output is likely to be quite high, since only 
neurointervention has a major effect of lowering the 
mRS-90 score. 

3.2 Classification Models to Predict 
mRS-90 

We now consider the mRS-90 attribute as discrete 
(i.e., consisting of individual classes 0, 1, …, 5) 
instead of a continuous numeric attribute, and 
construct classification models to predict this 
discrete attribute. We explore two main approaches 
to constructing classification models: One is to apply 
traditional multi-class classification techniques; 
another one is to use regression followed by 
classification (i.e., classification via regression). For 
this experiment we choose two well-known and 
empirically successful classification algorithms, 
namely logistic regression and C4.5 decision tree. 
For classification via regression we use the bagging 
with M5 model tree method discussed in section 3.1, 
and convert the predicted mRS-90 numeric value to 
a discrete class by rounding this value to the nearest 
integer between 0 and 5. 

As a first evaluation metric, we use classification 
accuracy (the percentage of correct predictions). But 
since there are six different classes with subtle 
variations between two adjacent mRS scores, we 
also consider the case when the classifier makes an 
error, but by only one mRS score. We define the 
metric “near-accuracy” to refer to the percentage of 
cases in which the classifier either makes an 
accurate prediction or makes a wrong prediction 
which is either one more or one less than the correct 
mRS score.  

Table 5 shows a comparison of the performance 
of classification via regression with those of multi-
class classification using Logistic regression and 
C4.5 decision trees. For comparison purposes, we 
include also that majority class classifier which 
classifies any test instance with the mRS-90 value 
that appears most frequently in the training set.  

For C4.5 decision trees, the result of the best 
model after experimentation with pruning is shown. 
The classification via regression method performs 
better in terms of both accuracy and near-accuracy. 
Table 6 shows the confusion matrix obtained by this 
method. Paired t-tests are performed on the 
classification accuracy for the three algorithms. The 
results, given in Table 7, show that classification via 
regression performs significantly better than logistic 

regression, but not significantly better than the C4.5 
decision tree at a level of p = 0.05. 

Table 5: Comparison of logistic regression, C4.5 and 
classification via regression (bagging with M5 model 
trees) on the stroke dataset in terms of accuracy and near-
accuracy. 

Method Accuracy Near-
accuracy 

Majority class 46.9% 64.4% 

Logistic Regression 54.2% 83.6% 

C4.5 (with pruning) 56.7% 86.8% 

Classification via regression 59.7% 90.0% 

Table 6: Confusion matrix for the method of supervised 
classification via regression using bagging with M5 model 
trees. The rows show the actual mRS scores while the 
columns show the ones predicted by the model. The 
diagonals (in bold) are the correct predictions. The cells 
adjacent to the diagonals (in bold and italic) are near-
correct predictions missing the actual score by 1. 

Actual 
Predicted 

0 1 2 3 4 5 

0 159 36 11 0 0 0 

1 10 40 19 8 0 0 

2 2 15 31 14 1 0 

3 0 8 19 21 3 0 

4 0 3 5 8 10 1 
5 0 3 1 2 8 1 

Table 7: Results of statistical significance analysis on 
classification accuracy with p-value of 0.05. Each cell 
represents the result of the paired t-test between a pair of 
algorithms. If the algorithm in the row is significantly 
better than the one in the column, a ‘>>’ is shown. If it is 
significantly worse, a ‘<<’ is shown. A ‘<->’ indicates that 
there is no statistically significant difference. 

 Majority 
class 

Logistic 
Regression 

C4.5 
tree 

Classif via 
regression

Majority 
class - << << << 

Logistic 
Regression >> - <-> << 

C4.5 tree >> <-> - <-> 

Classif via 
regression >> >> <-> - 
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4 CONCLUSIONS 

This paper has presented the results of predicting the 
90-day outcome of stroke patients based on the data 
consisting of demographics, medical history and 
treatment records of ischemic stroke patients. The 
problem of prediction is treated first as the 
regression task of predicting the numeric score 
according to the modified Rankin Scale which 
measures the degree of disability in patients who 
have suffered a stroke. A meta-learning approach of 
bootstrap aggregating (bagging) using M5 model 
trees as the base learner proved to be a very effective 
regression technique in this case, significantly 
outperforming other more commonly used 
regression methods. The same method, after 
translation of the target output from numeric to 
nominal, performs better as a multi-class 
classification scheme than other commonly used 
classifiers. 

The high performance of the M5 model tree can 
be attributed to the fact that the mRS score at 90 
days is highly dependent on one of the attributes - 
the mRS score at discharge from the hospital. 
Therefore, a model predicting mRS-90 would do 
well by dividing the input space into a number of 
subspaces defined around the value of mRS at 
discharge, building a separate specialized model for 
each of the subspaces. A model tree does exactly 
that. Examination of the M5 model tree that is 
constructed on the stroke dataset reveals that the tree 
simply directs the prediction task towards different 
ranges of values for the mRS score at discharge. A 
multivariate linear regression model is then built for 
each of the leaves, which are more specialized for 
predicting the outcome of those particular patients. 
The superior performance of bagging in enhancing 
the prediction results can be explained by the 
variance in error of the base M5 model trees. By 
examining the model tree prediction errors for the 
stroke dataset considered, it is found that the 
variability of errors is much higher for model trees 
than for other regression methods such as logistic 
regression. Since bagging is empirically known to 
reduce the instability and error variance of its base 
learners, it shows good performance for this 
particular dataset. 

Further examination of the models reveals 
interesting insights into how different factors affect 
stroke outcome. It is found, rather unsurprisingly, 
that patients who have a low mRS score (≤ 1) at 
discharge tend to maintain a low mRS score at 90 
days as well. However, patients who have some 
minor disability (mRS = 1) at discharge tend to have 

poorer outcome if they have older age, more severe 
initial stroke and hypertension, while patients 
suffering from cardioembolic or cryptogenic types 
of stroke actually make a better recovery. The 
patients who have slight or moderate disability at the 
time of discharge (mRS 2 or 3) may end up in a 
wide spectrum of outcomes at 90 days based on 
several factors; older age, more severe initial stroke, 
presence of diabetes, preexisting disability before 
stroke and large vessel thrombosis are associated 
with poorer outcome. For patients who have fairly 
severe disability at the time of discharge (mRS 4 or 
5), only neurointervention performed during the 
hospital stay has the effect of improving the 
recovery rate after discharge and within 90 days of 
stroke. 

One limitation of the study is the exclusion of the 
patients who died within 90 days of stroke. As 
mentioned before, this is in line with other work in 
the literature (e.g., the Copenhagen Stroke Study 
(Nakayama et al., 1994)), but it would be interesting 
in future work to extend our approach to include 
these patients. We are also limited by a large amount 
of missing values in attributes that are not included 
in this study but which may have been instrumental 
in stroke outcome prediction. In the future we would 
like to address these shortcomings to develop better 
models for prediction. Another future goal is to 
improve the process of classification via regression 
by discovering better ways to translate the numeric 
predictions to discrete classes. 
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