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Abstract: Deep learning, in particular convolutional neural networks, has increasingly been applied to medical 
images. Advances in hardware coupled with availability of increasingly large data sets have fueled this rise. 
Results have shattered expectations. But it would be premature to cast aside conventional machine learning 
and image processing techniques. All that deep learning comes at a cost, the need for very large datasets. 
We discuss the role of conventional manually tuned features combined with deep learning. This process of 
fusing conventional image processing techniques with deep learning can yield results that are superior to 
those obtained by either learning method in isolation. In this article, we review the rise of deep learning in 
medical image processing and the recent onset of fusion of learning methods. We discuss supervision 
equilibrium point and the factors that favor the role of fusion methods for histopathology and quasi-
histopathology modalities. 

1 INTRODUCTION 

Because deep learning architectures, in particular the 
convolutional neural net (convnet), have attracted 
unprecedented attention in medical image 
processing, there is a tendency to overlook the 
potential contribution of conventional image 
processing techniques. The allure of the new 
convnet architecture is that it will simplify the task 
of image processing. But this convenience comes at 
a cost, primarily in demand for more training 
examples, and a case will be made here that there is 
still a place in image processing for more 
conventional computer vision techniques. This 
article focuses on the rise of deep learning, in 
particular the convnet architecture, the relation 
between image complexity and image processing 
architecture, and discusses the rule of fusion of 
conventional and deep learning architectures. To 
better understand the need for conventional learning 
techniques, we define two new image complexity 
measures. We use these image complexity measures 
to define the learning equilibrium (dataset size at 
which deep learning techniques gain superiority) as 
a function of image complexity. We explore the 
situations where fusion of new and conventional 
image processing techniques offers the best image 
processing solution. Finally, we give examples 

where conventional learning and deep learning 
fusion has already proven successful.  

2 THE RISE OF DEEP LEARNING 
IN IMAGE PROCESSING 

Deep learning (representation learning) computa-
tional models comprise a sequence of processing 
layers operating independently on numeric data to 
independently learn hierarchical data representations 
(LeCun, 2015; Bengio, 2013; Goodfellow, 2016). 
Deep learning can discover intricate structures in 
large data sets by using the backpropagation 
algorithm to indicate how a machine should change 
its internal parameters. Since deep learning 
architecture encompasses layers of nodes updating 
operating parameters in sequence, it is a type of 
neural network. Deep learning models differ from 
other neural networks by using a deep graph with 
multiple processing layers of a small number of 
nodes, as opposed to traditional neural networks, 
comprised of few layers with a larger number of 
nodes (LeCun, 2015; Bengio, 2013; Goodfellow, 
2016). Deep learning, as the term “representation 
learning” implies, seeks to discover knowledge 
representations rather than to use hand-crafted 
knowledge representations. In the past decade, the 
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use of the phrase “deep learning” has exploded. A 
search on IEEE Xplore returns only 36 articles 
published in 2006 vs. 1,017 articles for 2015. The 
increasing use of deep learning in research can be 
attributed to advances in several areas: the 
development of large data sets, also called “big 
data,” a dramatic increase in computational power, 
and the desire to “re-brand” neural networks, 
echoing earlier efforts to rebrand “artificial 
intelligence” and “artificial neural networks” (Allen, 
2017; LeCun 1998). 

 

Figure 1: Left to right: a.) Input layer accepting a 32x32 
RGB image. b.) convolution consisting of 8 7x7 filters. c.) 
2x2 max-pooling layer. d.) Fully connected layer with 
1536 input nodes for each pixel from the previous layer 
and 256 output nodes. e.) Fully connected layer consisting 
of 256 inputs nodes plus a bias node and a single sigmoid 
activated output node. Total number of free parameters: 
525,985. 

One deep learning architecture that has been 
prominently successful in image recognition 
challenges (Goodfellow, 2015) is the convolutional 
neural network (convnet). The basic convnet 
architecture combines two concepts: the 
mathematical convolution operator and a fully 
connected neural network. One or more convolution 
layers are usually prepended to a fully connected 
network. A simple convnet with a single convolution 
layer is presented in Figure 1. The application of the 
2D convolution operator, shown in Equation 1, 
within the convolution layer, enables the network to 
process an input image directly without the need of 
“flattening” the image, preserving any spatial 
relations that may exist in the image. The convnet 
architecture was introduced in 1998 when LeCun 
presented LeNet (LeCun, 1998) designed to identify 
handwritten digits; LeNet yielded a remarkably low 
error rate of 0.7%. Equation (1) summarizes the 
operation of a kernel k(x,y) upon an image I(x,y). 
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The addition of convolution layers to a typical 
neural network and allowing the back-propagation 

training algorithm to update not only the weights of 
the fully connected neural network but also the 
elements of the 2D convolution kernels, allows the 
convnet to directly use images as inputs and 
alleviates the need to manually determine the “best” 
convolution kernel. Throughout the training period, 
the “best” convolutional kernel will be continually 
improved upon. This has enabled investigators to 
focus on optimizing the architecture of the network 
(machine learning) without requiring conventional 
manually-tuned feature extraction (computer vision). 

But this convenience comes at a cost, the number 
of weights (parameters) in the convnet is large and 
presents a computational burden on the 
backpropagation training algorithm. For the simple 
network shown in Figure 1, a total of 525,985 
parameters need tuning! The high computational 
demands to optimize that many parameters is not the 
only concern; because of the parameter count, a 
large number of training samples is required for 
successful training and generalization. 

The high computational requirement to be able to 
use deep learning has been somewhat alleviated by a 
dramatic increase in computational power from the 
now common use of multiple cores (CPUs) in 
current processors and specialized graphics 
processing units (GPUs). The GPU came about 
because of the demands of computer game players 
for more detailed graphics. Rendering a scene for a 
computer game requires many floating-point matrix 
operations. The developers of these GPUs designed 
these processors to include hundreds, sometimes 
thousands, of cores that are specifically designed to 
perform fast and efficient floating-point matrix 
operations in an effort to offload the burden from the 
CPU. An unexpected but welcomed result was that 
the GPUs could be harnessed for machine learning, 
since neural networks could also be expressed in a 
sequence of floating point matrix operations. 

Machine learning algorithms began to be 
developed and implemented in a parallel manner to 
take advantage of these GPUs. These parallel 
algorithms could now be leveraged on clusters of 
CPUs or ideally, GPUs. As a result of parallel 
implementation of machine learning algorithms 
along with fast floating-point operation via use of 
GPUs, a 9x reduction in training times is possible 
when comparing a single GPU to the single CPU 
processor with multiple cores (Brown, 2015). 

3 DATA IS THE PROBLEM 

The computational demands of deep learning 

Medical Image Processing in the Age of Deep Learning - Is There Still Room for Conventional Medical Image Processing Techniques?

307



 

algorithms are mostly addressed with use of GPUs, 
but the number of parameters that require 
optimization in a deep learning algorithm is still a 
problem. Because of the number of parameters, 
training and generalization demand a large training 
set. In several domains, publically available large 
datasets exist, for example, the ImageNet dataset. 
The ImageNet dataset has over 14 million images 
that encompass 14 thousand classes (ImageNet, 
2016). But for domains such as medicine, although 
datasets of moderate size are increasingly available, 
very large datasets on the order of ImageNet are not 
available. The largest dermoscopy image set, for 
example, is located at the ISIC project (ISIC, 2016) 
and consists of approximately 12 thousand images, 
but only about 700 of those are of melanoma. 
Because of the relatively small number of images, 
and the heavily biased number of one class (benign 
versus melanoma), researchers cannot blindly use a 
deep learning algorithm and expect good results.  

To use a deep learning approach with the ISIC 
dataset, one should augment the original dataset by 
including rotated, flipped and mirrored versions of 
the original images. Oversampling the minority class 
can be used to minimize the bias between classes. A 
researcher may also use a network trained in another 
domain, such as ImageNet or AlexNet, and use a 
technique called transfer learning to train a new 
network using the combined features of the pre-
trained network and new features specific to the 
learning task. Or a researcher may have to rely on 
manually tuned feature extractors to create an input 
vector to a learning algorithm that is not a complex 
deep learning algorithm. 

With smaller datasets, a convnet may not have  
the optimal solution architecture. For some domains, 
large image sets may not be available. For example, 
for skin lesions, the image datasets available may 
only contain 10’s or 100’s of examples of a 
particular lesion diagnosis. In the future, larger 
image sets may become available, as anticipated for 
the ISIC project. But these datasets still require 
professionals to collect, label and curate the data 
accurately and still may only increase by an order or 
two of magnitude. 

This is where conventional image processing 
may continue to excel. Since the image datasets in 
specialized fields are usually quite small, manual 
extraction of dominant features will offset the lack 
of data. These critical features are often the same 
features that professional look for in the clinic.  

4 MORE COMPLEX IMAGE 
SETS REQUIRE MORE 
IMAGES FOR SUCCESSFUL 
CLASSIFICATION 

Recent image recognition challenges, such as those 
using the ImageNet dataset (Figure 2), may include 
images with varying scenes at different scales and 
containing multiple objects. An index of image 
complexity (i.c.) can be defined for an image. 
Additionally, image complexity can be defined for 
an entire set of images. An image complexity index 
should be higher if 1) image object sizes vary widely 
in scale 2) multiple objects are present in the image 
3) distracting objects are present in the image. An 
image set is more complex if 1) average image 
complexity is higher 2) more classes of images are 
present and 3) inter-image variety within a class is 
greater. Thus the ImageNet dataset, with various 
complex scenes, is quite complex and is quite large. 
Intuitively, we may suppose that larger image 
datasets are needed for successful diagnosis of more 
complex image sets. 

 

Figure 2. ImageNet challenge result. Beginning in 2011, 
deep learning (DNN) results (solid line), began to surpass 
those obtained from traditional learning (dashed line). 
(Brown, 2015). 

5 IMAGE COMPLEXITY AND 
THE SUPERVISION 
EQUILIBRIUM 

Previous sections establish that deep learning techni- 
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ques need large datasets before accuracy exceeds 
that of conventional techniques. The size of the 
dataset needed for successful classification is 
expected to grow as images and image sets increase 
in complexity. Let us consider the case number 
spectrum, ranging from low numbers of cases to 
very high numbers of cases. We plot the number of 
cases on a log scale, shown in Figure 3. In some 
two-class problems, such as benign vs. malignant 
diagnosis, small datasets may contain equal numbers 
of images of benign and malignant cases. For the 
zero-knowledge situation, over many trials, as with 
coin flipping, we expect 50% diagnostic accuracy. 
As the number of cases grows, the expected 
accuracy of both conventional and deep learning-
based models tends to increase, with conventional 
learning accuracy higher for a small number of 
cases. As case numbers grow, at some point, deep 
learning techniques become equal in classification 
accuracy to conventional techniques, as shown in 
Figure 3. 

 

Figure 3: Our conjectured model of diagnostic success for 
conventional learning techniques (dashed line), deep 
learning techniques (solid line), and fusion techniques 
(dot-dashed line). Errors (learning gaps) persist, even with 
large case numbers, for all three techniques.  Curve 
shapes, shown here as linear functions of log (case 
numbers), are unknown. 

We may define this equilibrium point, where 
both deep and conventional learning have the same 
diagnostic accuracy as the Learning Equilibrium 
(LE). LE is a function of image complexity (i.c.). 
Different image spaces have different levels of 
complexity, due to both intra- and inter-image 
complexity, as noted above. As image space 
complexity grows, the number of images required to 
represent that complexity grows; the accuracy 
obtained for any given number of cases falls. Thus 
for high complexity image sets, the accuracy curves 

flatten, and; LE grows. We offer the conjecture that 
LE(i.c.), with appropriate smoothing, is a 
monotonically increasing function of i.c.. 

As shown in Figure 3, diagnostic success can 
never be perfect. Errors persist, even with large case 
numbers, due to imperfect knowledge of the image 
space. These gaps in knowledge in the three 
representations—the conventional learning gap, the 
deep learning gap, and the fusion gap, all become 
relatively smaller as the number of cases increases, 
but will always remain nonzero. In the real world, 
perfect diagnostic accuracy remains elusive. Even 
histopathologic “gold standards” have an inherent 
degree of uncertainty. Expert pathologists disagree 
on diagnoses (Krieger, 1994). This creates a 
challenge in image machine learning (Guo, 2015).   

Table 1: Conventional vs. Deep Learning. 

Elements favoring 
conventional machine 
learning  

Examples 

Repeating biological units 
Cells, nuclei in 
histopathologic images 

Scale invariance of features Vessel walls  
High domain knowledge Organs e.g. brain, heart 
 
Elements favoring DL Examples 

No repeating units 
Microcalcifications in 
breast cancer 

Features vary in scale Bone tumors 

6 LOW HANGING FRUIT FOR 
FUSION TECHNIQUES 

Table 1 shows types of elements in medical images 
favoring either conventional learning or deep 
learning. Types of images favoring conventional 
learning include images with repeating biological 
units as seen in histopathology,  scale-invariant 
images as seen in vessel walls, and organs such as 
brain and heart described with specific domain 
knowledge. In these areas, human-supervised 
conventional learning can add significant 
information to deep learning by adding biological 
descriptions which successfully constrain class 
output. Thus we predict that human-supervised 
conventional learning will continue to be useful in 
histopathology, brain and cardiovascular imaging. 
We may also predict that quasi-pathological 
domains using newer techniques such as 
dermoscopy, confocal microscopy and optical 
coherence tomography (OCT) may also utilize 
conventional techniques, in some cases fused with 
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deep-learning techniques for some time to come. 
Deep learning, in contrast, is already showing 
progress in automated unsupervised analysis of 
mammograms (Suzuki, 2016; Wang, 2016),  

Three deep-conventional learning fusion 
examples have already appeared in the field of 
automated histopathology. Zhong and colleagues 
fused information from deep learning and 
conventional learning (Zhong, 2017). In comparing 
multiple machine learning strategies, it was found 
that the combination of biologically inspired 
conventional cellular morphology features (CMF) 
and predictive sparse decomposition deep learning 
features provided the best separation of benign and 
malignant histology sections (Zhong, 2017). The 
deep learning arm used a pre-trained AlexNet 
network (transfer learning). The conventional arm 
used cellular morphology features, which include 
nuclear size, aspect ratio, and mean nuclear gradient. 
The researchers concluded that both CMF features 
and sparse decomposition deep learning features 
encode meaningful biological patterns. 

Wang and colleagues were able to detect mitoses 
in breast cancer histopathology images by using the 
combined manually-tuned CMF data and convolu-
tional neural net features (Wang, 2014).  

Arevalo and colleagues added an interpretable 
layer they called “digital staining,” to aid in their 
deep learning approach to classification of basal cell 
carcinoma (Arevalo, 2015). Of interest, the 
handcrafted layer finds the area of importance, 
reproducing the high-level search strategy of the 
expert pathologist. 

7 CONCLUSION 

Deep learning has shown its ability to solve, with a 
high degree of accuracy, rather complex problems. 
But conventional machine learning and image 
processing techniques should not be totally 
discounted. Deep learning’s ability does not come 
without a cost: time and dataset requirements. With 
very large datasets, deep learning is already the 
preferred method to use, but may not be ideal for 
smaller datasets. Although conventional machine 
learning and image processing may be more labor 
intensive, they provide a tool for situations lacking 
sufficient data, despite augmentation techniques. We 
offer a conjectural model which shows advantages 
for conventional learning techniques for small 
datasets; advantages shift to deep learning after 
some dataset size. We call this dataset size the 
“learning equilibrium” (LE). It would be interesting 

to study how many images are needed for deep 
learning approaches to be effective in different 
applications. Another topic for future research is to 
determine the characteristics that make one 
application require a larger dataset than another. We 
may consider the dataset size at the LE to be an 
application-specific trade-off; for applications in 
which conventional models are effective, the LE 
point will be larger.  

In some applications, such as histopathology, and 
related applications such as dermoscopy, biological 
constraints are best modeled by manually-tuned 
features. Therefore in these applications especially, 
the LE dataset size is large. In these applications 
there is still room for familiar computer vision 
techniques in the novel world of deep learning.   
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