
Building the Monitoring Systems for Complex Distributed Systems:
Problems and Solutions

Olga Korableva1,2, Olga Kalimullina1 and Ekaterina Kurbanova1,3
1ITMO University, S-Petersburg, Russian Federation

2St. Petersburg State University, S-Petersburg, Russian Federation
3“CS Information Technology” Ltd, S-Petersburg, Russian Federation

Keywords: Monitoring Systems, Complex Distributed Systems, Big Data, System Approach, Innovations,
Strategic Management.

Abstract: Complex distributed systems are of more significance nowadays, due to a broader range of its use and
because of provision of better services to users. It is clear, that system health needs continuous monitoring,
while running software apps that are ensuring the implementation of the business processes, working with
Big Data, etc. In the course of this study a monitoring system has been developed. It meets all modern
requirements, such as scalability, flexibility, comprehensiveness of necessary data and ease of use. In order
to identify unified problems in development of monitoring systems for complex distributed systems and
respectively - the solutions for their elimination, the data regarding IT-architecture most common types used
in modern companies, related to fault-points of business apps has been gathered and analysed. All of
identified problems and optimal solutions to eliminate them were aggregated in line with the three
development stages of monitoring system, such as: development of servicing model for system-of-interest,
implementing tools to detect objects of monitoring, generating a health map of system-of-interest. In order
to develop monitoring systems for complex distributed systems taking into account the architecture of these
systems, all of the gathered data was analysed, and we articulated all problems and optimal solutions for
their elimination as well.

1 INTRODUCTION

The result of this study is the development of
monitoring system of software package, designed for
production records and further turnover for all of
company’s manufactured products. The
serviceability of the software package was crucial
for the company's business, because in the case of its
failure, the shipment of manufactured products
would become impossible. To get up-to-date
information on the status of the software package, it
was necessary to design a monitoring system.

The study identified algorithm, enabling to make
this system integrated, scalable, and easy-to-use. The
implementation of the designed monitoring system
onto one of the largest Russian company gave the
option for testing of the developed algorithm.

Now, the company is already successfully
interacts with the system for 7 months. The
developed algorithm, articulation of problems and
optimal solutions of their elimination, formulated
concepts – all of it contributes to the theory and

practice of building monitoring systems, including
working with such systems as Big Data.

“Big Data” is a term, used for the combination of
complex algorithms, approaches and techniques for
gathering, processing and display of massive volume
of data (Russom, 2013), which are rapidly emerging
as a result of technological and business innovations
(Thakuriah, et al., 2015). These methods should be
not only effective in the environment of continuous
growth, but shall also possess a high level of fault
tolerance and availability (Toporkov et al., 2015).
Many algorithms are multithreaded, volumes of
information are enormous, and therefore, even
sporadic failures can lead to the loss of huge
amounts of data. Monitoring system gives you the
option to inform the administrator about detected
negative trends, what in turn, speeds up the reaction
of the administrator, and therefore increases the
level of system sounded (healthy) functioning (Yang
and Chang, 2011; Korableva and Litun, 2014).

The term “Monitoring system” refers to a
system, intended to track health (sound) status, as

Korableva, O., Kalimullina, O. and Kurbanova, E.
Building the Monitoring Systems for Complex Distributed Systems: Problems and Solutions.
DOI: 10.5220/0006271002210228
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 2, pages 221-228
ISBN: 978-989-758-248-6
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

221

well as displaying warnings for troubleshooting on
the monitored object (Guo et al., 2010; Dourish et
al., 2000; Coulouris, 2013). Monitoring of
distributed systems includes the gathering,
interpretation and display of data, related to the
interactions between processes, including running in
parallel (Joyce et al. 1987).

There is IT- architecture in any kind of business,
monitoring of serviceability of which is necessary
for early detection of failures and having solutions
for their elimination (Latyshev and Akhmetshin,
2015; Korableva and Kalimullina, 2016a). A
malfunction of IT-infrastructure for some companies
leads to downtime, which often involve material
losses.

Therefore, there is a burning reason to arrange
the system, which would allow checking on status of
all company’s IT-architecture components, as well
as timely sending alerts regarding impending
failures in work (Becker et al., 2016; Korableva and
Kalimullina, 2014).

This article describes a design concept for
monitoring systems of complex distributed systems,
developed in the course of this study and which
meets the following requirements:
• Scalability of solution
• System usability
• Comprehensiveness of developed fault-adaptive

map of system-of-interest
Based on gathered and analyzed data, have been

defined solutions for problems, which would be
faced during the process of building monitoring
system.

2 METHODOLOGY

Any system is a set of components, each of which is
subdivided into modules, which in turn can be
represented as the sum of even smaller components.
To monitor such hierarchical structures, we shall be
able to identify each component of the system. This
feature provides the following concept:
1. A class to identify the specific component of the

system is created
2. The conditional description helps clearly

determine, whether existing objects in the
monitoring system are the desired components or
not. For example, one of the most common types
of verification is the search for key in the
registry.

3. The scope of existing objects for verification in
the monitoring system is determined.

4. Based on preset parameters, the monitoring

system performs search of specified criterion on
the specified scope of objects. In case of
successful validation – an instance of a Class is
created on the object and identifies a component
of the system-of-interest.
Thus, all components of the company’s IT-

architecture identified in the monitoring system as
playing a specific role. If the same architectural
object plays multiple roles (for example, one server
is used to handle company’s database and some user
application), then this object will be identified in
monitoring system as multitasking.

Identification of roles of monitored objects
allows to get list of the system key components,
serviceability of which is crucial for this company.
To build a servicing model, it is also essential to
specify the relationship between used components.
The most common are the following types of
relationships:
• Hosting relationships
• Containment relationships
• Reference relationships

Servicing model, built in such way for the
system-of-interest, reflects all key components, their
levels and interoperations, but does not reflect the
state of the system healthy functioning. To ensure
serviceability of monitored components, a series of
validations allowing identify the health status shall
be performed In general such validations are called
monitors, and are split into 3 categories, such as: 1)
Unit monitors; 2) Dependency monitors; 3)
Aggregate monitors.

3 RESULTS

3.1 Summary of Contributions

Building monitoring systems for complex distributed
systems investigated in a number of excellent
previous articles, among which are (Sigelman et al.,
2010; Sloman, 1994; Ferdowsi et al., 2014). There
are a number of studies in the field of monitoring of
distributed systems, part of which mainly focused at
troubleshooting (Phuc and Son, 2012, 2013;
Kshemkalyani and Singhal 2008), while others
focused at performance optimization (Sharma et al.,
2013, Sambasivanm et al., 2014; Korableva and
Guseva, 2015).

This study aims to identify the problems
encountered in the process of building monitoring
system, as well as to search for solutions and their
testing during all three-development stages, such as -
development of servicing model for system-of-

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

222

interest, implementing tools to detect objects of
monitoring, generating a health map of system-of-
interest. The study proposed the solutions for the
some issues. A concept, allowing minimizing the
load on objects of the company infrastructure has
been introduced. It have been also introduced some
principles, following of which allows you to obtain a
complete, concise information about system’s
health. These concepts also focus at minimizing
administrator’s response time. The identified best
practices of using dependency and aggregate
monitors allow you to get a comprehensive health
scheme of the system, taking into account all of
existing, both explicit and hidden relationships
between objects of monitoring system. We have also
formulated principles for system’s faultfinding.
The study found the answers to the following
questions: exactly what kind of components are the
key components of the system; what is required
level of detail for key components; what values
should be set as Class variables; and whether this
setting may have a harmful impact on the
monitoring system activity. All these issues can be
combined into a single overall objective - an
implementation of scalable monitoring system,
which would not require drastic revisions due to new
input data. Such requirements are also relevant when
dealing with Big Data (Son and Phuc, 2010;
Korableva and Kalimullina, 2016b).
Completing of this task requires thorough
comprehensive approach to the analysis of the
system-of-interest. This article will describe such
approach from the perspective of the following three
scale steps:
• Development of servicing model for the system-

of- interest.
• Implementing tools to detect objects of

monitoring
• Generating a health map of system-of-interest.

3.2 Development of the System
Servicing Model

The system-servicing model is a set of Classes, as
well as a set of the relationship between them, which
as a whole is cloning the structure of the system
itself.

3.2.1 Issue 1: Choosing an Approach to
Build Servicing Model

The main dilemma when choosing an approach for
building servicing model is to define the necessary

scope of monitoring. It could be either the entire
complex distributed system or just its specific
module, serviceability of with is crucial. Moreover,
a scope of monitoring may not only be restricted by
system-of-interest, but also include the pool of all
systems that are integrated with it.

This study exposed two approaches for building
servicing model, which are in line with planned
scope of monitoring. Table 1 reflects all the
advantages and disadvantages of both approaches.
However, you cannot select one of them as all-in-
one approach to build servicing models for all kind
of systems. Each system-of-interest requires its own
optimal approach. Therefore, the best approach for
the analyzed software package is a comprehensive
approach and, in the case of monitoring for Big
Data, it is better to choose a modular approach.
Table 1 shows advantages and disadvantages of
comprehensive and modular approaches.

Table 1. Advantages and disadvantages of comprehensive
and modular approaches.

 Advantages Disadvantages

C
om

pr
eh

en
si

v
e

ap
pr

oa
ch

Reflection of
information about: 1. the
whole system under
consideration 2. systems
integrated with system
consideration

Great efforts for the
implementation of all
stages of the project

M
od

ul
ar

 a
pp

ro
ac

h

Saving time at the
following stages:
• Planning of
Architecture
• Development of
documentation
•Phase matching
•System Development

• Narrowly specialized
data
• More complex process
of system scaling
•Inability to obtain
information on the
status of related systems
• Lack of information on
the premises of negative
trends
• A large number of
blind spots

3.2.2 Issue 2: Definition of Level of Detail in
Servicing Model

The next issue of developing servicing models for
the system-of-interest is to define a list of its key
components for monitoring. Even though there is a
need to obtain full and comprehensive data
regarding monitored object, the designed monitoring
system shall be concise and user-friendly. Based on
experience in building monitoring systems for
complex distributed systems, the following
algorithm has been developed to set the level of
detail in the servicing model. This innovative

Building the Monitoring Systems for Complex Distributed Systems: Problems and Solutions

223

algorithm is taking into account all the key
components of the system and avoiding cluttering in
the design of servicing model (see Figure 1):

Figure 1: Algorithm to set the level of detail in the
servicing model.

1. Making list of essential roles, played by the
system, description of its intended use and a list
of functionalities.

2. Setting up correspondence between executing
functions and specific object components.

3. Identifying interactions between selected roles,
specifying specific components to play these
roles, involved in each of the interactions. When
it is done, one can see an outline of future
servicing model, especially a list of the essential
roles, its mandatory components, as well as
operational interrelations.

4. Definition of the list of other systems, integrated
with this system-of-interest, as well as a
description of their intended use.

5. Identification of all interactions between the
system-of-interest and other systems integrated
with it, taking into account the specific
components involved in these interactions.

6. Mapping detected roles, components and
interactions.

7. Make the analysis of the obtained map, as well as
a study of the system-of-interest for missing
components, used for system functions
execution. Making adjustments for existing map.

8. Make classification of elements on the map in
line with their levels. A good example of such a
classification is a clustered SQL Server. The top
level is the cluster itself, the next level consists
of nodes (servers) of the cluster, each of which
runs a number of utilities, ensuring the integrity
of SQL Server. In this way, the following chain

represents the classification of levels for SQL
Server in a simplified form: cluster – server –
utilities. It is also possible to make allotment into
separate classes, database roles, tasks, and other
components that play a key role for serviceability
of the system-of-interest.

9. Finalize details of the obtained classification in
line with functional tasks, performed by the
mapped elements. A good example of it might be
the scope of utilities running on the server, when
SQL Server is in place. In addition to those
utilities, that provide operability of the SQL
Server, some other Agents utilities of
contiguously allocated system can also be used
any related systems. In such case, it makes sense
to deepen classification of Class services,
making it more detailed.

10. Make analysis of the obtained classification,
refinement of the details.

11. Make classification of relationships between
mapped elements, which is based on three types
of existing relations (Hosting, Containment
relations, Reference relationships).

12. Do verification of the obtained map, which is a
framework of the servicing model under
development.

The above-described approach for choosing level of
detail, as well as identification of the scope of
monitored objects, permits to take into account
all of employed system components, and at the
same time - not overloading the design with
irrelevant data.

3.2.3 Issue 3: Choosing Concept of Setting
Objects Variables

A good practice in building a servicing model is to
set key data about objects of monitoring as variables
(parameters). This information either would be used
for health checking or would be information of
interest for system administrator and for other users.
A server name, AD site, regional location, software
version and many others that describe the given
object could serve like such parameters.
However, use of large number of parameters may
overload monitoring system and make it less
convenient to use. To avoid such situation, this study
suggested innovative concepts of setting up
parameters of objects. Figure 2 displayed their
descriptions and advantages of using.

Use of the described innovative concepts in
design of a servicing model helps to complement the
map of system-of-interest seamlessly, without
overloading database and not complicating

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

224

operational process of monitoring system, which is
under development.

Figure 2: Concepts of setting up parameters of objects.

3.2.4 Issue 4: Definition of Scope for
Subsidiary Objects

An aggregation of existing Classes on any grounds
is required in order to have an easy review on the
structure of a distributed application, as well as for
configuring a number of additional functions, when
setting up the monitoring system.

This can be configuring of various alerts and
warning messages to system administrators of
specific brunch, regarding the failures of the system
components that belong to this Office. In addition,
the optimal solution for monitoring of complex
distributed system, that has several branches, is a
logical separation of monitored objects with respect
to branches involved.

For additional logical classification of existing
objects, it is necessary to create an additional scope
for subsidiary objects. Such subsidiary objects are
Groups and Containers. The design intent of these
objects, as well as examples of their successful use
reflected in Figure 3 - "Definition of scope for
subsidiary objects".

Figure 3: Definition of scope for subsidiary objects.

3.3 Implementing Tools to Detect
Objects of Monitoring

To generate a health map of system-of-interest, the
monitoring system has to detect the required objects.
The development of this aspect of monitoring
system requires special attention, because sloppy
implementation of it could lead to a performance
downturn not only of all components and monitoring
area, but of the entire company infrastructure as a
whole. Within the framework of this study, we
identified the reasons for this negative impact and
articulated the following solutions and key
principles for implementing detection tools.

We can articulate the following key points in the
implementation of detection tools for monitored
objects:
1. To set up the optimal time-out value between

two search iterations of objects.
2. To select the lowest possible scope of existing

objects for search for the required objects.
3. To make an intense use of the detection tools,

consistent with registry data.

3.4 Generating a Health Map of
System-of-Interest

Making of health map for any system is always
based on the data, received upon verifications that
system components are compliant with some preset
condition. These verifications are called monitors,
and are divided into 3 categories: unit, aggregate and
dependency. Experience has shown that a number
of practices allow to use such categories of monitors
to build a complete and easy-to-use monitoring
system.

3.4.1 Best Practices of using Unit Monitors

Unit monitors are designed to check on any state
aspect of the system-of-interest. Given aspect could
be described by an execution of just one task or by a
number of such tasks. Within the framework of this
study, the following best practices of using unit
monitors have been articulated:
1. Allocating separate monitors to carry out of

individual tests intended for checking on the
same state aspect of the system

2. Using the smallest number of monitor states
3. Making use of warning condition, providing that:

a. there is a possibility of preventive measures
b. absence of error does not ensure health aspect
of the system

4. Making adjustments for timeout duration

Building the Monitoring Systems for Complex Distributed Systems: Problems and Solutions

225

between the verification activities based on
criticality state aspect.

All of the above-specified practices are focused on
getting of such picture healthy functioning of
monitored object, which contains complete but
concise information about occurring faults,
substantially minimizing, therefore, administrators’
response.

3.4.2 Best Practices of using Aggregate
Monitors

Usage of aggregate monitors allows you to create a
hierarchical map of health, consequently simplifying
the process of handling the monitoring system.

There are 3 the most common guidelines to
aggregate monitors:

• Accessibility
• Configuration
• Performance capacity

Further development of the monitoring system may
lead to increase in the number of unit monitors to
such an extent, that even split of conducted
verification into these 3 categories will not permit to
get rid of unreadable huge list of carried out
verifications. In such a case, if it is possible, it is
essential to set up additional subcategories that
should be a satisfactory to the only principle:
aggregating of several monitors in one aggregate
monitor should be based on any criteria, which is
common to all of the above-mentioned unit
monitors.

3.4.3 Best Practices of using Dependency
Monitors

Dependency monitors are used to verify state of any
object in the state of another object. Figure 4 shows
Code of dependency monitor in xml.

<DependencyMonitor ID="
USAIS.SQL.Cluster.Dependency.SQL.Filial
Watchers"
Accessibility="Internal" Enabled="true"
Target="BEL!USAIS.SQL.Cluster"
ParentMonitorID="Health!System.Health.A
vailabilityState" Remotable="true"
Priority="Normal"
RelationshipType="BEL!USAIS.SQL.Cluster
.Contains.USAIS.SQL.FilialWatchers"
MemberMonitor="Health!System.Health.Ava
ilabilityState">
<Category>AvailabilityHealth</Category>
<Algorithm>WorstOf</Algorithm>
</DependencyMonitor>

Figure 4: Code of dependency monitor in xml.

The essence of the design is to detect, state of what
element should be duplicated in the state of another
element. The presented section of code bears not
only identity code of dependency monitor, but also
code of the target object and source-object of the
state. Figure 5 shows the illustrative example of
dependency monitor usage – it represents a
hierarchical model of dependency monitor relating
to workflow. The client, from whom a check-up of
the database availability is carried out, plays the role
of source-object of the state.

Figure 5: The hierarchical model of dependent monitor.

The cluster of database itself plays the role of the
target object. In this case, the duplication of the state
is needed, due to specifics of verification: even
though database availability is carried out on the
client side, this aspect of health refers not to the
client, but to the database itself.

Figure 5 shows the structure of monitoring
system for under review software package, used to
display testing procedure of system workflow
availability. All clients are distributed across regions
and are subordinated to the cluster. Quantity of
dependency monitors is equal to the number of
clients monitors are set for the cluster itself. Each
dependency monitor of the cluster corresponds to
one of the clients.

Therefore, we can mark the following best
practices of using dependency monitors:
1. Using dependency monitors, if health state of

one object depends on health of another object.
2. Using dependency monitors for estimation of

subsidiary objects health status.

3.4.4 Creating a Summary Report on
Negative Trends in Running Software
Package

Thanks to all conducted work, we have a chance of
getting a summary report regarding negative trends
in running of the whole software package. This

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

226

innovative report is presented in the form of monthly
statistics, where aggregation was carried out by
month, by region, by computers that have failed, as
well as by a specific date. Moreover, statistics was
done just for those regions, where faults in system
functioning have been registered.

Figure 6 shows monthly statistics on the negative
trends in running analyzed software package.

Figure 6: Monthly statistics on the negative trends in
running analyzed software package.

4 CONCLUSIONS

In the course of this study, we managed to articulate
issues (problems) and solutions, with which
developer will be facing while building of
monitoring systems for complex distributed systems.
These concepts provide means for covering of all
the key system-of-interest components, provide ease
of handling of designed monitoring system, as well
as contribute to building of relevant, complete and
concise health map.

The described innovative concepts also facilitate
ability to make the system more flexible in the
course of its further modernization. In the process of
identifying the described concepts, all the major
stages of development for monitoring system, have
been reviewed, specifically:
1. Development of servicing model.
2. Implementing tools to detect objects of

monitoring
3. Generating a health map of system-of-interest.

All data, obtained in the study, serve the
possibility to deepen into the task of building of
visualization maps for status of the system-of-
interest, as well as to explore the possibility of
implementing automatic solution for emerging
failures in operation. That is also very important
when working with Big Data, for it is a perfect
example of an integrated system of many
components and transactions with high availability
demands.

However, for applying of preventive measures is
often require to get some statistics for the reporting

period. Such data can be formed, if an optimal
monitoring system, which is not overloaded with
redundant information, but contains a description of
all key aspects of operation for system-of-interest is
in place.

ACKNOWLEDGMENTS

The research is supported by the RFBR grant 16-29-
12965.

REFERENCES

Becker J., Kozyrev O., Babkin E., V. Taratoukhine, N.
Aseeva. 2016. Emerging Trends in Information
Systems: Recent Innovations, Results and Experiences.
Springer Int. Publ., Switzerland, ISBN 978-3-319-
23929.

Coulouris G., Dollimore J., Kindberg T., Blair G. 2013.
Distributed Systems: Concepts and Design. Fifth
edition. Addison-Wesley.

Dourish P., Swinehart D., and Theimer M.. 2000. The
Doctor Is In: Helping End Users Understand the
Health of Distributed Systems. In Proc. of the
IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management, December
2000.

Ferdowsi M., Benigni A., Löwen A., McKeever P., Monti
A., and Ponci F.. 2014. New Monitoring Approach for
Distribution Systems. Proc. of 2014 IEEE
International Instrumentation and Measurement
Technology Conference (I2MTC), 12-15 May 2014.

Ferdowsi M., Zargar B., Ponci F. and Monti A.. 2014.
Design Considerations for Artificial Neural Network-
based Estimators in Monitoring of Distribution
Systems, 2014 IEEE International Workshop on
Applied Measurements for Power Systems (AMPS
2014), (24-27 September 2014, Aachen, Germany).

GE Intelligent Platforms. http://www.ge-ip.com.
Guo, C.G., Zhu, J., Li, X.L. 2010. A Generic Software

Monitoring Model and Features Analysis. Proc. of the
2010 Second International Conference on Networks
Security, Wireless Communications and Trusted
Computing, Washington DC, 2010, pp. 61–64.

Joyce, J., Lomow, G., Slind, K., Unger, B. 1987.
Monitoring Distributed System. ACM Transactions on
Computer Systems, Vol. 5(2), pp. 121–150.

Korableva, O., Guseva, M. 2015. Activation of innovation
processes in banks as a result of the implementation of
basic basel accord provisions. Ikonomicheski
Izsledvania, Volume 24, No 3, pp. 108-128.

Korableva O., Kalimullina O. 2014. The Formation of a
single legal space as a prerequisite for overcoming
systemic risk. Asian Social Science, Vol. 10 (21), 256-
260.

Building the Monitoring Systems for Complex Distributed Systems: Problems and Solutions

227

Korableva, O., Kalimullina, O. 2016 a. An Innovative
Approach to Strategic Risk Management in Banking:
Russian Banks Case Study. WSEAS Transactions on
Business and Economics, Volume 13, Art. #25, pp.
269-282.

Korableva O., Kalimullina O. 2016 b. Strategic Approach
to the Optimization of Organization Based on the BSC
SWOT Matrix. Proceedings of the International
Conference on Knowledge Engineering and
Applications. ICKEA, 2016. Singapore, September
28-30, 2016. p. 212-215.

Korableva O., Litun V. 2014. The potential of transitive
economies’ growth based on innovative strategy.
WSEAS Transactions on Business and Economics. 11
(68), 725-736.

Kshemkalyani, A.D., Singhal, M. 2008. Distributed
Computing Principles, Algorithms, and Systems.
Cambridge University Press.

Latyshev, I. O., & Akhmetshin, E. M. 2015.
Methodological approaches to analyzing the indicators
of human capital management in the interests of
innovation development of enterprise. International
Business Management, 9(6), 1565-1570.
doi:10.3923/ibm.2015.1565.1570.

 Yang, S.Y., Chang, Y.Y. 2011. An active and intelligent
network management system with ontology based and
multi agent techniques. Expert Systems with
Applications, Vol. 38(8).

 Phuc, T.N.H., Son, L.V. 2012. Monitoring of large scale
distributed systems based on SNMP development. The
Journal of Science and Technology. Danang
University, Vol. I(8), 2012, pp. 79–84.

 Phuc, T.N.H, Son, L.V. 2013. An Online Monitoring
Solution for Complex Distributed Systems Based on
Hierarchical Monitoring Agents. Springer Int. Publ.
Proc. of the Fifth International Conference KSE 2013,
Volume 1, pp. 187-198.

Russom Ph.. 2013. Operational intelligence. Real-Time
Business Analytics from Big Data. TDWI Cheсklist
Report. http://www.splunk.com/pdfs/white-papers/
real-time-business-analytics-from-big-data.pdf-3.

Sambasivanm R., Fonseca, R., Shafer, I., and Ganger, G.
2014. So, you want to trace your distributed system?
Key design insights from years of practical experience.
CMU PDL Technical Report, CMU-PDL-14-102,
April 2014.

Sharma A., Chen H., Ding M., Yoshihira K., Jiang G..
2013. Fault Detection and Localization in Distributed
Systems using Invariant Relationships. 43rd Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 24-27 June 2013, pp. 1
– 8.

Sigelman, B., Barroso, L., Burrows, M., Stephenson, P.,
Plakal, M., Beaver, D., Jaspan, S., and Shanbhag, C.
2010. Dapper, a large-scale distributed systems tracing
infrastructure. Technical Report dapper-2010-1,
Google, April.

 Sloman, M. 1994. Network and Distributed Systems
Management. Addison Wesley.

Son, L.V., Phuc, T.N.H. 2010. Researching on an online
monitoring model for large-scale distributed systems.
Proc. of the 13th National Conference in Information
and Communication Technology, (Hungyen, Vietnam,
2010).

Thakuriah, P., N. Tilahun and M. Zellner (2015). Big Data
and Urban Informatics: Innovations and Challenges to
Urban Planning and Knowledge Discovery. In Proc. of
NSF Workshop on Big Data and Urban Informatics,
pp. 4-32.

Toporkov V., Toporkova A., Tselishchev A., Yemelyanov
D., Potekhin P.. 2015. Metascheduling and heuristic
co-allocation strategies in distributed computing.
Computing and Informatics, Vol. 34 (1), pp. 45–76.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

228

