
Combining Machine Learning with a Genetic Algorithm to Find Good
Complier Optimizations Sequences

Nilton Luiz Queiroz Junior, Luis Gustavo Araujo Rodriguez and Anderson Faustino da Silva
Department of Informatics, State University of Maringá, Maringá, Brazil

Keywords: Optimization Selection Problem, Machine Learning, Genetic Algorithms.

Abstract: Artificial Intelligence is a strategy applied in several problems in computer science. One of them is to find
good compilers optimizations sequences for programs. Currently, strategies such as Genetic Algorithms and
Machine Learning have been used to solve it. This article propose an approach that combines both, Machine
Learning and Genetic Algorithms, to solve this problem. The obtained results indicate that the proposed
approach achieves performance up to 3.472% over Genetic Algorithms and 4.94% over Machine Learning.

1 INTRODUCTION

Artificial intelligence is applied in several prob-
lems, like scheduling problems (Ansari and Bakar,
2014), natural language processing (Tambouratzis,
2016), estimate good compilers optimizations se-
quences (Martins et al., 2016).

Compilers are programs capable of transforming
source code to a target code, in a process that is di-
vided into several stages. A critical step in this pro-
cess is to apply a compiler optimization sequence
(transformations in the code) to improve the quality
of the target code (Aho et al., 2006).

Modern compilers such as (GCC, ICC and LLVM)
provide standard compiler optimization levels (O1,
O2, O3), which can be used to optimize the source
code. However, specific levels are only appropriate
for particular programs. This is because of the se-
lection process for the optimizations that will be ap-
plied to a specific program, becoming into a program-
dependent problem.

Artificial intelligence techniques are the most
common in chose compilers optimizations for spe-
cific programs (Park et al., 2012; Zhou and Lin,
2012; Jantz and Kulkarni, 2013b; Jantz and Kulkarni,
2013a; Lima et al., 2013; Junior and da Silva, 2015).
The Artificial intelligence approaches to select com-
piler optimizations can be divided in two: Iterative
Compilation and Machine Leaning.

Iterative Compilation (IC) evaluates the quality of
the target code generated by different sequences, and
returns the best target code. These approaches can use
search methods, like Genetic Algorithms, and take

much time to converge to good solutions.
On the other hand, Machine Learning (ML) ap-

proaches attempt, from previously-successful compi-
lations, to predict sequences that will have a good
performance in new programs. These methods, in
general, are faster than iterative compilation, but,
they usually have worse results (Jantz and Kulkarni,
2013b).

It is worth mentioning that finding the best com-
piler optimization sequence for a particular program
is an undecidable problem, due to the size of the
search space (quantity of optimizations provided by
the compiler and possible combinations).

This article describes a hybrid approach, that com-
bines the best ofIC andML, to mitigate the optimiza-
tion selection problem (OSP). The objective is to de-
scribe an approach that initially usesML to select po-
tential optimization sequences, considering the char-
acteristics of the test program, and then appliesIC to
adapt the potential optimization sequences to the test
program. Thus, it is expected that adapting a solution
will improve the performance instead of only using
potential sequences.

The results indicate that the hybrid approach out-
performs bothIC andML in terms of balancing perfor-
mance (speedup x number of evaluated sequences).
Furthermore, the average speedup achieved by the hy-
brid approach is superior when comparing it to the
best compiler optimization level ofLLVM.

Junior, N., Rodriguez, L. and Silva, A.
Combining Machine Learning with a Genetic Algorithm to Find Good Complier Optimizations Sequences.
DOI: 10.5220/0006270403970404
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 1, pages 397-404
ISBN: 978-989-758-247-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

397

Model Creator
(ML Algorithm)

Base Filter

Base Generator
(Genetic Algorithms)

 Training

ML Model Sequence Predictor

Feature Stractor

 Test Iterative Compilation

Adapter
(Genetic Algorithm)

Best Sequence

 Program
 Features

 Sequences Program
 Features

 Sequences

 Program
 Features

 Sequences

 Program
 Features

 Sequences

 Knowledge Base

New Source
Code

Figure 1: Mixed Approach Architecture.

2 RELATED WORKS

Zhou and Lin (Zhou and Lin, 2012) employedIC, uti-
lizing a genetic algorithm called NSGA-II, to investi-
gate multi-objective compilations. Jantz and Kulka-
rni (Jantz and Kulkarni, 2013a) proposed a strategy to
reduce the search space in order to explore dependen-
cies between the optimizations. These works applied
only IC and, thus, the starting point of the solution
did not consider the program characteristics. Further-
more, Jantz and Kulkarni only explored the relation-
ship between the optimizations.

Malik (Malik, 2010) utilized a histogram, con-
structed from the data-flow graph, to establish the
similarity between programs and, thus, select a good
optimization sequence from a database. Malik made
calculations on the histogram and createdML models,
utilizing decision-tree algorithms and Support Vector
Machines (SVM), to predict a good optimization se-
quence. Parket al. (Park et al., 2012) introduced a
program-characterization model, using a control-flow
graph, and added information about the instructions to
each node. Junior and da Silva (Junior and da Silva,
2015) evaluated the performance of different config-
urations for case-based reasoning (CBR). These works
appliedML, without taking into consideration an adap-
tive solution for each program.

Martinset al. (Martins et al., 2016) implemented
an approach that combinesclusteringwith IC, result-
ing in a very similar work to the one proposed in this
article. However, both have different strategies to se-
lect the initial optimization sequences. While Martins
et al. utilized a clustering algorithm, this article de-
scribes an approach that appliesSVM.

3 THE HYBRID APPROACH

IC is an appealing option because it achieves better
results thanML. On the other hand,ML is interesting
because it applies supervised strategies that are ca-
pable of accelerating the convergence to a good so-
lution. This article describes a hybrid approach to
solve theOSP, which aims to combine the best of both
previously-discussed approaches, and can be synthe-
sized as follows.

Suppose there exists a training set (database), con-
taining S good optimization sequences forP pro-
grams. First, the approach creates a model based on
the training set, which is used to predict good opti-
mization sequences for a particular test program. In
the second step, utilizing the created model, the ap-
proach selectsN potential optimization sequences for
the test program. Afterwards, theN sequences will
feed a solution adapter, which utilizes a strategy based
on IC to adapt (improve) the solution found in the
ML phase. Finally, the best target code found by the
adapter is returned to the user and the database is up-
dated with the new knowledge. The Figure 1 illus-
trates the process.

3.1 The Machine Learning Phase

TheML phase follows a traditional model, which con-
sists of two stages: training and testing. The training
stage aims to create a database containing good opti-
mization sequences for different programs. In addi-
tion, it provides the model that will be utilized, by the
test phase, to predict potential optimization sequences
for the test program.

Training consists in a database generator that em-
ploys anIC strategy. In addition, it creates a
database containing, for each test program, a tuple
with the following information: program features

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

398

and good optimization sequences (sequences that
possess a better performance than the best com-
piler optimization level). This information will be
filtered by the optimization goal (for example ex-
ecution time, code size) and utilized to create a
model that will be applied during the test stage.
This model connects program features with good
optimization sequences, and therefore, it is pos-
sible to predict potential sequences given a deter-
mined set of characteristics.

Test predicts potential optimization sequences for
the test program. First, this step extracts the
characteristics of the test program which are ini-
tially collected to predict potential sequences. Af-
terwards, these characteristics feed the model,
which in turn provideN potential optimization se-
quences. The assumption utilized inML is that
similar programs are those that react similarly
when compiled with the same optimization se-
quences. Therefore, if a model is capable of iden-
tifying similarities between programs, it is possi-
ble to use sequences, found for training programs,
to compile test programs.

3.2 Iterative Compilation Phase

After N potential optimization sequences are selected
in the initial phase, the next step is to adapt these
sequences to the test program. This process is per-
formed through anIC strategy.

In various works,IC usually begins with the pro-
cess of discovering good sequences randomly or em-
ploying heuristics to selectively investigate the search
space. In addition, these works do not utilize program
features to assist during the search process.

The advantage of a preliminaryML phase is that
it provides assistance to guide, based by program fea-
tures, the process of adapting a solution. Thus, it aims
to guide the process of exploring the search space, of-
fering capabilities to discover potential search points
and not random points. Consequently, better results
are expected than that obtained by other strategies
that investigate the search space using unguided pro-
cesses.

In summary, this stage performs two tasks. First,
based onN potential sequences, anIC strategy adapts
the optimization sequences, provided by the previ-
ous phase, to the test-program features and returns the
best sequence. Second, it updates the database in or-
der to maintain the acquired knowledge and reuse it.

3.3 Strategies to Feed the Database

Although the hybrid approach can operate without
feeding the database, utilizing a scheme for such pro-
cess generates knowledge in medium and long terms.
Thus, two approaches to feed the database are pro-
posed:

1. Constant feeding: for every test program com-
piled, the hybrid approach stores new information
in the database (characteristics and sequences)
and recreates the model.

2. Batch feeding: for every test program compiled,
the hybrid approach stores new information in the
database, and afterK compiled programs, it recre-
ates the model.

The constant feeding strategy has the potential of
providing recently-discovered knowledge, but has a
cost to recreate the model. On the other hand, batch
feeding reduces that cost, but does not provide knowl-
edge when it is recently discovered.

3.4 Strategies for Program
Representation

In this article, a program is represented utilizing the
characteristics proposed by Namolaruet al. (Namo-
laru et al., 2010), which are systematically extracted
from relationships between the program entities and
defined by the specificities of the programming lan-
guage. The appeal of using these characteristics is
that Namolaruet al. proves their influence in apply-
ing optimizations.

In fact, this article uses two representation ap-
proaches:

1. Based on hot functions: this indicates that the pro-
gram will be represented using only its hottest
function, because it is a portion of the code that
the compiler will have the highest benefit in opti-
mizing.

2. Based on the entire program structure: this indi-
cates that the extracted characteristics describe the
entities of the full program.

4 INSTANTIATION OF THE
HYBRID APPROACH

The hybrid approach, described in the previous sec-
tion, can be instantiated using different strategies.
Thus, this section aims to describe how it was imple-
mented.

Combining Machine Learning with a Genetic Algorithm to Find Good Complier Optimizations Sequences

399

4.1 Implementation

The proposed strategy was implemented as a tool
of LLVM 3.7.0 (LLVM3.7, 2016), which was chosen
based on the fact that it allows full control over the
optimizations. This means that it is possible to enable
a list of optimizations through the command line, in
which the position of each optimization indicates its
order of applying.

In addition, twoplugins were implemented for
LLVM: (1) libWuLars: used for extracting the pro-
gram’s hottest function, as proposed by Wu and Larus
(Wu and Larus, 1994); and (2) libFeaturesExtractor:
used for extracting the characteristics proposed by
Namolaruet al. (Namolaru et al., 2010).

4.1.1 The Machine Learning Phase

Search Space. The search space is formed by the op-
timizations that exist on the threeLLVM compiler
optimization levels:O1, O2 andO3.

Test Programs. Microbenchmarks, taken from the
test suite ofLLVM, were utilized to create the
database. Table 1 presents themicrobenchmarks.

Table 1: Microbenchmarks.

ackermann fp-convert partialsums whetstone

flops-6 nsieve-bits spectral-norm flops-3

methcall reedsolomon fib2 mandel-2

quicksort dt intmm puzzle-stanford

ary3 hash perlin flops-4

flops-7 richardsbench strcat mandel

misr fannkuch fldry queens

random heapsort lists flops-5

bubblesort oourafft perm matrix

flops-8 salsa20 towers queens-mcgill

n-body fbench flops-1 fasta

realmm himenobmtxpa pi fasta-redux

chomp oscar treesort mandelbrot

flops sieve flops-2 binary-trees

recursive ffbench lpbench regex-dna

dry huffbench puzzle pidigits

Database Creation. The hybrid approach uses a ge-
netic algorithm (GA) to reduce the search space
and find a good compiler optimization sequence
for each training program. TheGA consists in ran-
domly generating an initial population, which will
evolve through an iterative process. This proce-
dure involves choosing the parents; applying ge-
netic operators; evaluating new individuals; and
deciding which individuals will compose the new
generation.
This iterative process is performed until a stop-
ping criterion is reached. The first generation is
composed of individuals that are generated by a
uniform sampling of the optimization space. The
process for a population to evolve requires two ge-
netic operators:

1. crossover; and

2. mutation.

Crossover has a probability of 60% to create a
new individual. In this case, a tournament strat-
egy (Tour = 5) selects the parents. Mutation
has a probability of 40% to transform an indi-
vidual. In addition, each individual has an ar-
bitrary initial length, which ranges from 1 to
|Number o f Optimizations in Space|. Thus, the
crossover operator can be applied to individuals
of different lengths. In this case, the length value
for the new individual is the average of its parents.
Four types of mutation operations were used:

1. Insert a new optimization into a random point;

2. Remove an optimization from a random point;

3. Exchange two optimizations from random
points; and

4. Alter one optimization in a random point.

Both operators have the same probability of oc-
currence. In addition, only one mutation is ap-
plied over the individual selected to be trans-
formed. This iterative process uses elitism, which
maintains the best individual in the next gener-
ation. Furthermore, it executes twice: over 100
generations and 50 individuals; and over 20 gen-
erations and 10 individuals. The stop criterion
consists in whether the standard deviation of the
current fitness score is less than 0.01, or the best
fitness score does not change in three consecutive
generations. Finally, they are merged and used as
one reduced search space. The strategy utilized to
reduce the search space is similar to the strategy
proposed by Martinset al. (Martins et al., 2016)
and Purini and Jain (Purini and Jain, 2013).

Model Creation. TheML algorithm is responsible for
creating the model, and applies theSVM classi-
fier to identify similar programs. The instantiation
process uses theSVM version from thescikit-learn
library (ScikitLearn, 2016), with a linearkernel
and the decision functionone-versus-rest.
This ML algorithm was chosen based on results
obtained comparingSVM and otherML approaches
presented in literature (Park et al., 2011; Malik,
2010).

4.1.2 Iterative Compilation Phase

Initial Sequences. These are extracted from training
programs that are considered similar to the test
program. Thus, each training programP will con-
tribute with a quantity of sequences. This value is
given by:

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

400

Np =

⌈
Populationsize× DecisionvalP

∑
x∈Base

Decisionvalx

⌉
(1)

The sequence-extraction process from different
programs is done in order to generate diversity.
Therefore, the solution adapter uses a guided pro-
cedure to explore potential search points.
It is worth noting thatPopulation size is the
number of potential sequences that theML model
will provide. Thus, when this value is reached,
the selection process is interrupted and the chosen
sequences are sent to the adaptation phase.

The Solution Adapter. The solution adapter is the
GA utilized to create the database, with an initial
population of 10 individuals, and a maximum of
20 generations.

4.2 Utilizing the Approach

The hybrid approach can be described in the follow-
ing steps:

1. Creation of the database by applying aGA;

2. Exclusion of the optimization sequences that
under-perform the bestLLVM compiler optimiza-
tion levels, for each program of the database;

3. Creation of the prediction model applyingSVM;

4. Extraction of the characteristics of the test pro-
gram;

5. Calculation of the decision function, according to
the model created in Step 3, for the characteristics
of the test program;

6. Calculation of the number of optimization se-
quences that each test program will provide in the
10 potential optimization sequences, according to
the Equation (1);

7. Selection of the 10 safe1 compiler optimization
sequence and validation of the potential optimiza-
tion sequences that will be provided to the solu-
tion adapter of the (GA);

8. Attribution of the valid optimization sequences, as
in the first generation of theGA;

9. Execution of theGA on selected sequences;

10. Re-feeding of the database with all sequences cre-
ated by theGA.

Steps 1 to 7 summarize theML phase. Step 8 is
a transition phase fromML to IC. Step 9 consists in
IC. Lastly, Step 10 retains the knowledge created by

1A safe sequence means that it does not cause error on
the compiler infrastructure during the target code genera-
tion.

IC. Step 1 is executed once because it is part of the
training phase ofML, which is not dependent on the
parametrization of the model.

5 EXPERIMENTS

This section analyzes the performance of the ap-
proach proposed in this article. First, the performance
will be analyzed and compared toIC andML. After-
wards, the performance, utilizing different data sets
and hardware platforms, will be analyzed as well.

5.1 Methodology

Experimental Architecture. The experiments were
conducted on a hardware with an Intel Core i7-
3770 processor with a frequency of 3.40GHz, 8
MB cache, 8 GB of RAM and the Ubuntu 15.10
operating system with kernel 4.2.0-35-generic.

Test Programs. The Collective Benchmark
(CBENCH) was utilized for testing purposes
(excludingstringsearchand ispell), with data set
1; and the Polyhedral Benchmark (POLYBENCH)
(excludingJACOBI-1D), with data set extralarge.
Each benchmark suite consists in a batch, for the
batch feeding strategy.

Metrics. The evaluation uses four metrics to analyze
the results: (1)Speedup; (2) NPS: number of pro-
grams achieving speedup over the best compiler
optimization level, also called covering; (3)NoS:
number of sequences evaluated; and (4)ReT: re-
sponse time. The speedup is calculated as follows:

Speedup= RuntimeLevel O0/Runtime

Strategies. Table 2 summarizes the evaluated ap-
proaches.

Table 2: Evaluated Approaches.

Approach
Program

Representation

Feeding

Strategy

Compilation

Order

Maximum

NoS

The Proposed Hybrid Approaches

HHBP Hot Batch Poly-cBench 200

HHBC Hot Batch cBench-Poly 200

HHC Hot Constant Alphabetical 200

HFBP Full Batch Poly-cBench 200

HFBC Full Batch cBench-Poly 200

HFC Full Constant Alphabetical 200

Machine Learning Approaches

MLH Hot - - 10

MLF Full - - 10

Iterative Compilation Approaches

IC50 - - - 5000

IC10 - - - 200

B10 - - - 10

Combining Machine Learning with a Genetic Algorithm to Find Good Complier Optimizations Sequences

401

TheIC50 andIC10 approaches are applications of
theGA used in the creation of the database.IC50
is a strategy with 50 individuals in the popula-
tion, on the other hand,IC10 has 10 individuals.
TheB10 approach consists in applying the 10 se-
quences found by Purini and Jain, and returning
the best target code (Purini and Jain, 2013).

5.2 Performance

The obtained results are presented in Table 3.

Table 3: Summary of Experiments (GMS: geometric mean
speedup, AVG: Average).

Strategy
Speedup

NPS
NoS

Best GMS Worst Max AVG Min

HHBP 4.466x 1.997x 1.055x 46 110 51.085 10

HHBC 4.500x 1.988x 1.067x 45 117 54.845 10

HHC 4.479x 1.972x 1,056x 46 180 55.458 10

HFBP 6.000x 1.990x 1.062x 45 140 50.135 10

HFBC 4.442x 1.958x 1.068x 44 99 51.983 10

HFC 4.459x 1.954x 1.054x 43 119 52.796 10

MLH 4.491x 1.910x 1.050x 33 10 10 10

MLF 4.060x 1.903x 1.056x 35 10 10 10

IC50 4.353x 2.083x 1.075x 56 650 286.169 100

IC10 6.714x 1.930x 1.035x 46 120 53.678 10

B10 3.751x 1.801x 1.046x 24 10 10 10

O1 4.7x 1.692x 0.992x - 1 1 1

O2 4.368x 1.843x 1.033x - 1 1 1

O3 4.361x 1.844x 1.052x - 1 1 1

Speedup. It can be seen that the hybrid approach,
in all its variations, outperforms all the evalu-
ated approaches, exceptIC50. Among the dif-
ferent variations made in the hybrid approach, a
better performance is reached when applying the
batch feeding strategy. In addition, the speedups
achieved, using only the characteristics of the
hottest function, are superior to those reached by
the full program representation. This also occurs
in the pureML approaches. Thus, it demonstrates
that optimizing the hot functions is a smart strat-
egy to mitigate theOSP.
An interesting result is that constant feeding un-
derperforms when compared to batch feeding.
This indicates that inserting knowledge and utiliz-
ing it immediately does not always provide bene-
fits.
Comparing the results obtained by the hybrid ap-
proaches to the best compiler optimization level
(O3) shows that the worst result obtained by the
hybrid approach (HFC) had a gain of 5.965%, and
the best (HHBP) had a gain of 8.297%. On the other
hand, comparing the hybrid approach with pure
ML, the performance gain ranges from 4.555% to
4.940%, which proves that combiningIC andML
brings benefits in terms ofGMS. Furthermore, the
gain achieved by the hybrid approach compared

to IC10 ranges from 1.244% to 3.472%. How-
ever, the performance gain of theIC50 approach
ranges from 4.306% to 6.602% over the hybrid
approach, and it is 7.927% over the gain obtained
by theIC10 approach.

Covered Programs. TheNPS indicates the superior-
ity of the strategyIC50, which covers 95% of the
programs. The hybrid approach andIC10 cover
78% of the programs, whileB10 and ML cover
41% and 51%, respectively.

Number of Evaluated Sequences. A factor that in-
creases the response time is the quantity of se-
quences that will be evaluated. It is important to
note that toevaluate a sequencemeans to compile
and execute the program, to measure its runtime.
Therefore, reducing theNoS is crucial to reduce
the response time of the system.
The results show that it is possible to outperform
the compiler optimization levels (concerning the
GMS) evaluating a few sequences; however, re-
ducing theNoS. This is the case forMLH, MLF, and
B10.
Increasing theNoS increases the speedup and the
NPS, consequently increasing the response time.
This is the case forIC50 that reaches a better
speedup than the hybrid approach; however evalu-
ating 5 times more sequences. This indicates that
IC can reach good speedups at the cost of a high
response time. Therefore, there exists atrade-
off between performance (speedup) and response
time, which the hybrid approach balances.

Response Time. The evaluated response time is the
total time spent by the system, excluding the cre-
ation of the database since this step is executed
only once offline. The lowestRet comes from
theML andB10 approaches that consumed 42 and
43 minutes in average per program. On the other
hand, theIC10 andIC50 approaches consumed an
average of 2 hours and 18 minutes, and 14 hours
and 30 minutes respectively. Lastly, the hybrid
approach, consumed an average of 2 hours and 58
minutes per program.
The hybrid approach outperformsIC10 up to
3.47% (in regards to the speedup), adding up 29%
of the time. In addition,IC50 outperforms the
IC10 approach up to 7.927%; however, with a
increase in time of 530%. This results indicate
that the approaches that are more time-consuming
reach the best speedups, besides proving how ef-
ficient the hybrid approaches are in cost-benefit.

Observing all approaches, it is worth highlighting
that when the number of evaluated sequences grows,
the performance increases as well; however, not in

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

402

the same proportion. Thus, it is important to an-
alyze the objective of the system to decide which
strategy should be utilized. Some strategies achieve
lower speedups with a lower response time, while
others have a high response time but achieve higher
speedups.

5.3 Performance using Different Data
sets and Hardware

The experiments for different data sets were per-
formed only with constant feeding, andCBENCH due
to the availability of several data sets. Table 4 displays
the speedups based on different data sets.

Table 4: Evaluated Input.

Input
Hot Function Full Program

Best GMS Worst Best GMS Worst

1 4.116x 1.987x 1.064x 3.352x 1.966x 1,061x

10 3.178x 1.961x 1.072x 3,197x 1,947x 1,080x

20 3.184x 1.895x 1.076x 3,089x 1,890x 1,060x

It can be seen that the alteration of the data sets in-
fluences the performance, as reported in the literature
(Chen et al., 2010). The performance loss was only
up to 4.855%, independent from the characterization
of programs utilized.

It is important to note that the extraction of good
sequences, from the database, considers only static
characteristics. This has the disadvantage of not con-
sidering the program behavior by exchanging data
sets. On the other hand, it has the advantage of not
requiring the execution of the program for feature ex-
traction, which will impact on the system response
time. Therefore, a loss of up to 4.855% in perfor-
mance is appealing against the cost of executing pro-
grams.

The experiments with different hardware archi-
tectures were also executed only with the approach
of constant feeding, but usingCBENCH and POLY-
BENCH. Table 5 exhibits theGMS obtained in the ar-
chitecture described in Section 5.1 (Core-i7) and the
following infrastructure: Intel Xeon E5504 proces-
sor with a frequency of 2.00GHz, 4 MB of cache
and 24GB of RAM (Xeon). The experiment with the
second architecture considers that there is already a
database created previously. Thus, the presented re-
sults utilize the same database created in the first ar-
chitecture.

Table 5: Evaluated Architectures.

Hot Full O1 O2 O3
Xeon 2.243x 2.233x 1.935x 2.086x 2.098x
Core i7 1.972x 1.954x 1.692x 1.843x 1.844x

It can be observed that the architecture with the
Xeon processor had better results when compared to
the Core-i7 processor. Furthermore, the gain in per-
formance of the hybrid approach over the the best
compiler optimization level (03) is up to 6.491% in
the Core-i7 architecture, and up to 6.465% in the
Xeon architecture. The gains on the02 and01 levels
are very similar, where the variations reach at most
a 1%, from one architecture to another. The results
indicate that for both architectures, the gains in the
hybrid approach are approximately the same propor-
tion.

The results indicate that:

• it is possible to achieve good speedups using a
database created in a different hardware platform;

• representing programs based on their hot func-
tions is an efficient strategy to reduce the loss in
performance when the data set is changed, as well
as the hardware platform; and

• using a hybrid approach is a smart strategy to miti-
gate theOSP, regardless of the data set or the hard-
ware platform.

6 CONCLUSIONS AND FUTURE
WORKS

Finding a good compiler optimization sequence is a
program-dependent problem. An efficient approach
performs two steps. The first inspects the program
features, and based on these features, it predicts po-
tential previously-successful compilations. The sec-
ond step adapts the potential sequences to the pro-
gram. In addition, considering that a substantial
amount of runtime is spent in a small portion of the
code, such an approach is guided by the features ex-
tracted from hot functions. Thus, this paper proposed
a hybrid approach to mitigate the optimization selec-
tion problem, which combines iterative compilation
and machine learning.

The results indicate that the proposed hybrid ap-
proach outperforms both iterative compilation ap-
proaches and machine learning approaches. There-
fore, the hybrid approach is an efficient approach to
mitigate the optimization selection problem, because,
even when compared to the most aggressive iterative
compilation approach, it had a better cost-benefit.

It is intended, as a future work, to evaluate the
hybrid approach with other instantiations, altering
characteristics for program representations, machine
learning algorithms and solution adapters.

Combining Machine Learning with a Genetic Algorithm to Find Good Complier Optimizations Sequences

403

REFERENCES

Aho, A. V., S., L. M., Sethi, R., and Ullman, J. D. (2006).
Compilers: Principles, Techniques and tools. Prentice
Hall.

Ansari, A. and Bakar, A. A. (2014). A comparative study of
three artificial intelligence techniques: Genetic algo-
rithm, neural network, and fuzzy logic, on scheduling
problem. In2014 4th International Conference on Ar-
tificial Intelligence with Applications in Engineering
and Technology, pages 31–36.

Chen, Y., Huang, Y., Eeckhout, L., Fursin, G., Peng, L.,
Temam, O., and Wu, C. (2010). Evaluating Iterative
Optimization Across 1000 Datasets.SIGPLAN No-
tices, 45(6):448–459.

Jantz, M. R. and Kulkarni, P. A. (2013a). Exploiting Phase
Inter-dependencies for Faster Iterative Compiler Opti-
mization Phase Order Searches. InInternational Con-
ference on Compilers, Architecture and Synthesis for
Embedded Systems, pages 1–10.

Jantz, M. R. and Kulkarni, P. A. (2013b). Performance po-
tential of optimization phase selection during dynamic
jit compilation. SIGPLAN Notices, 48(7):131–142.

Junior, N. L. Q. and da Silva, A. F. (2015). Finding Good
Compiler Optimization Sets - A Case-based Reason-
ing Approach. InProceedings of the International
Conference on Enterprise Information Systems, pages
504–515.

Lima, E. D., De Souza Xavier, T., Faustino da Silva, A., and
Beatryz Ruiz, L. (2013). Compiling for Performance
and Power Efficiency. InInternational Workshop on
Power and Timing Modeling, Optimization and Simu-
lation, pages 142–149.

LLVM3.7 (2016). The LLVM Compiler Infrastructure
Project. http://llvm.org.

Malik, A. M. (2010). Spatial Based Feature Generation for
Machine Learning Based Optimization Compilation.
In Ninth International Conference on Machine Learn-
ing and Applications, pages 925–930.

Martins, L. G. A., Nobre, R., Cardoso, J. M. P., Delbem,
A. C. B., and Marques, E. (2016). Clustering-Based
Selection for the Exploration of Compiler Optimiza-
tion Sequences.ACM Transactions on Architecture
and Code Optimization, 13(1):8:1–8:28.

Namolaru, M., Cohen, A., Fursin, G., Zaks, A., and Fre-
und, A. (2010). Practical Aggregation of Semantical
Program Properties for Machine Learning Based Op-
timization. InProceedings of the International Con-
ference on Compilers, Architectures and Synthesis for
Embedded Systems, pages 197–206. ACM.

Park, E., Cavazos, J., and Alvarez, M. A. (2012). Using
Graph-based Program Characterization for Predictive
Modeling. InProceedings of the International Sym-
posium on Code Generation and Optimization, pages
196–206, New York, NY, USA. ACM.

Park, E., Kulkarni, S., and Cavazos, J. (2011). An eval-
uation of different modeling techniques for iterative
compilation. In2011 Proceedings of the 14th Inter-
national Conference on Compilers, Architectures and

Synthesis for Embedded Systems (CASES), pages 65–
74.

Purini, S. and Jain, L. (2013). Finding Good Optimization
Sequences Covering Program Space.ACM Transac-
tions on Architecture and Code Optimization, 9(4):1–
23.

ScikitLearn (2016). Scikit-Learn: Machine Learning In
Python. http://scikit-learn.org.

Tambouratzis, G. (2016). Applying pso to natural language
processing tasks: Optimizing the identification of syn-
tactic phrases. In2016 IEEE Congress on Evolution-
ary Computation (CEC), pages 1831–1838.

Wu, Y. and Larus, J. R. (1994). Static Branch Frequency and
Program Profile Analysis. InProceedings of the An-
nual International Symposium on Microarchitecture,
pages 1–11, New York, NY, USA. ACM.

Zhou, Y.-Q. and Lin, N.-W. (2012). A Study on Optimiz-
ing Execution Time and Code Size in Iterative Com-
pilation. In International Conference on Innovations
in Bio-Inspired Computing and Applications, pages
104–109.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

404

