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Abstract: In this paper, we address the problem of the correspondarteeén 3D non-rigid human shapes. We propose
a local surface description around the 3D human body extiesni It is based on the mean of principal
curvature fields values on the intrinsic Darcyan paramegion constructed around these points. The similarity
between the resulting descriptors is, then, measured isethge of thé, distance. Experiments on a several
human objects from the TOSCA dataset confirm the accuradyegbitoposed approach.

1 INTRODUCTION Then, they, demonstrated the effectiveness of their de-
scriptor to intrinsic reflectional symmetry. (Yaron and
Non-rigid three-dimensional shapes matching has Thomas, 2009) proposed a method for only nearly-
been an active research topic in computer vision over isometric surfaces using the Mobius transform. A de-
the last years. It is a key task in many applications scriptor based on fuzzy geodesics to find correspon-
such as space-time reconstruction, motion tracking dences between sparse sets of points on shapes differ-
and recognition, shape retrieval and videos indexing. ing by extreme deformations was presented by (Sun
The goal of non rigid shape matching is to find a map et al., 2010). On the other hand, (Ovsjanikov et al.,
f : S— T between points on one surfaBgo their 2010) proposed an approach which relies on match-
equivalent points on a second surfdce ing feature points in a space of a heat kernel for a
The problem of establishing a correspondence be-given point on a surface and then the correspondence
tween non-rigid shapes remains challenging and par-is obtained by searching the most similar heat kernel
ticularly tough since the correspondence involves sur- maps . Moreover, (Yusuf Sahillioglu, 2014) proposed
faces representing different poses of an articulated ob-an algorithm relying on the dynamic programming to
jects and generally highly deformed surfaces. match shape extremities which was unable to com-
In this context, several methods have been proposedpletely alleviate the symmetrical flip problem.
for finding a correspondence between non-rigid 3D One of the alternatives centered around the notion of
shapes in the state-of-the-art. A detailed survey on minimum distortion correspondence is the method of
3D shapes matching methods was proposed by (Van(Bronstein et al., 2006). They introduced the gener-
Kaick et al., 2010). Two categories of 3D non-rigid alized multidimensional scaling (GMDS) which al-
correspondence can be distinguished according to thelows finding the minimum distortion embedding of
resolution of the matched points: sparse and dense.one surface onto another using an approximation to
Various approaches have addressed the sparse corrahe Gromov-Hausdorff distance.
spondence which aims to map a small set of points on Various prominent methods in the literature seek
a given surface. The most common ones consist onto find dense correspondence between 3D non-rigid
extracting local shape descriptors at a set of featureshapes. One of the notable approaches is proposed by
points. (Zhang et al., 2008) proposed a method which (Kim et al., 2011) consisting on combining multiple
is robust to the symmetry problem and consists on low-dimensional intrinsic maps to produce a blended
deforming a given shape to have alignment betweenmap. They, then, associated confidence and consis-
feature points and then minimizing resulting distor- tency weights to each map and find the best blending
tion. Later, (Zheng et al., 2013) proposed a shape de-to establish a final correspondence. An other alterna-
scriptor based on iso-lines of harmonic fields between tive, introduced also by (Bronstein et al., 2009) was
shape extremal points to establish a correspondence.
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based on the diffusion distance instead of the geodesic2.1 EXxtremities Extraction

one in the GromovHausdorff framework. Some at-

tempts to find dense correspondence based on embedin this section, we intend to extract extremities over
ding the shapes onto a spectral domain like the ap-the human body shapes applying the robust approach
proach of (Jiang et al., 2013) using a non-rigid vari- proposed by (Julien et al., 2006) which results a set
ant of the ICP (Iterative Closest Point) algorithm and of interest points invariant to the human pose. This
(Aalo et al., 2013) who proposed a spectral formu- approach is described below:

lation for the generalized multidimensional scaling Letx; andxs be the farthest vertices on a surface mesh
method denoted as spectral GMDS. M in the sense of the geodesic distance. We denote by
Within this context, (Taylor et al., 2012) focused on ggig(X,Y) the geodesic distance betweeandy two
matching human shapes in various poses using an efvertices orM.

ficient learned regression function for the articulated We consideg; andg, two scalar functions associated
shapes correspondences. to each vertex of M. g; andg are defined as follow:
Very recently, (Wei et a}l., 2015) devel_oped anew deep 01 = Gaig (X, X1) andgz = Gaig (X, X2)

learning approach using a convolutional neural net-
work architecture for finding dense correspondences Ve denote by, andE; the sets of the local extrema
between human bodies. of, respectlvglygl gnd o2 . Th_e set of _extremltles,
In this paper, we propose a novel approach to find a denoted byE, is defined by the intersection &f and
sparse correspondence between deformed shapes de2:

type 3D human body. Our proposal consists on an E=ENE

intrinsic local description of the human surfaces ex- figyre 1 illustrates the resulting extreme points on 3D
tremities. It is based on the construction of a lo- yman surfaces.

cal discrete representation known by Darcyan Coor- - P -

dinates System. Then, principal curvatures field are £ . N . S‘k,
computed for each discrete representation around the /{4 N \ ‘(“V“ o=t

extracted extremities. Matched points are obtained by ,. ‘/\‘\ o

measuring the similarity between their correspondent \

local representations in the sense of thalistance. \ 1
Thus, this paper will be structured as follows: In the U g {/
second section, we describe the proposed descriptol g —~ h L,
construction process. For the next section, we repre-
sent our 3D human bodies correspondence approach.
The fourth section is devoted to the experimental re- ;

sults on 3D human objects from the TOSCA dataset 2.2 Darcyan CO_OrdmateS System
and our proposed solution to handle the problem of Representation
the symmetry.

Figure 1: 3D human shapes extremeties.

After the extraction of the extreme points, local de-
scription around these points must be performed in

order to ensure the good correspondence between dif-
2 HUMAN SHAPES ferent shapes. But, for the same 3D object, different
CORRESPONDENCE meshes may exist. In fact, each mesh depends on its

initial parametrization. For this reason, we propose
We intend to establish a sparse correspondence beto use the well known Darcyan Coordinates System,
tween 3D human body objects with differentnon rigid  introduced by D'Arcy Thompson (Thompson, 1917).
deformations. We propose to make a correspondenceSuch parametrization is well adapted to our context
between these shapes extremities since they give asince it is constructed around a reference point.
good description of human body structure. The pro- Here, we, briefly, recall the construction process of
posed approach is based on an intrinsic descriptionthe Darcyan representation.
of the extreme points neighborhood using the darcyan This parametric representation materialized by coor-
representation and the principal curvature field. We dinates system relatively to a given point on a sur-
present, in this section, all the steps of the construc- face is, in fact, obtained by the superposition of the
tion of the novel local description around the extrem- geodesic level curves around the reference point and
ities points. the radial lines coming from the same point.

Thus, letS be a two dimensional differential mani-

fold, and let considet; the geodesic potential field

632



3D Human Shapes Correspondence using the Principal Curvature Fields on a Local Surface Parametrization

coming from a reference pointonS. 2.3 Principal Curvature Computation

This functionU; : S— R™ computes for any poinp

on Sthe length of the geodesic curve joining it to the Let S be a given surface.X : (u,v) € D c R> —
reference point. This function is well defined, since  (x(u,v),y(u,v),z(u,v)) € SC R® is a parametric rep-
a geodesic curve between two points of a 2D differ- resentation of.

ential manifold exists (Cohen and Kimmel, 1997). At a pointp = X(xy,X%/) onS, let consider the tangent
A geodesic level curve of value equalXoaround a  plane according to the bagis, v).

reference point on the surfaces can be formulated  The normal vector t at p is denoted byN(p) =

as follows: m respecting a chosen orientation.
L} ={peSUi(p) =A} (1) Thus, the curvature formulation is given using the fol-
L} is materialized by the set of all points &having ~ 10Wing coefficients:

— —
the same geodesic distankdrom r. Therefore, the  E =Xy.Xy,F =Xu.Xy, G=Xy.Xy,L =Xpu.- N,M =Xyu. N
surfaceS can be approximately reconstructed by all andN = x,, N

these geodesic level curves, so tigty UAL?. Ke — LNfMi
We remind as well as the process of radial lines curves Ky — ENCoEMAGL

construction from a reference poinof the surface. ~ 2(EG-F?)

Like mentioned in (Gadacha and Ghorbel, 2013), the E, F andG denote the first fundamental coefficients,
radial curves represent a solution of the following sys- while L, M, N are the second ones.

tem: P K andKy represent, respectively, the Gaussian cur-
% = —0U;(P) vature and the Mean curvatupe= X (xy, X,).
PO)=r (2) Therefore, the principal curvatures are deducted
PO | _o=a from these formulation&g = Kmax.Kmin and Ky =
. a 19 . (peoc o)
WhereP(t) is the geodesic path emanating froend 5
following the opposite gradieft directionon;. Ra-  Kmax andKgin define the principal maximal and mini-

dial lines curves, denoted I6f, are therefore gener- mal curvatures respectively.

ated according to the angular directiarwhich can

be arbitrary taken. Similar to geodesic level curves, a 2.4 Darcyan Principal Curvature Fields
reconstruction of the surfacgcan be approximated Descriptor

by UqC“.

Here we define Darcyan representatldras the su-
perposition of botn geodesic level curves amdra-
dials lines curves relatively to a given point

Relying on the Darcyan representation and the prin-
cipal curvature fields computation on this local
parametrization recalled above, we define a novel 3D

Dy (r) = {LPUCH,1<k<n 1<l <m} shape descriptor, based on intrinsic geometric prop-
Figure 2 shows the steps of the Darcyan coordinate erty, which is invariant under Euclidean motions.
system construction. We propose to compute the mean of both

principal maximal and minimal curvatures on the
intersection points of each geodesic level curve.
We denoteki,, and ki, the mean of, respec-
tively, kmax and kmn for the jth geodesic level

curve. Hence the novel descriptor is defined by

{%’%?“?%’mww%’%} . Here,

1<i<m

(b)
Figure 2: Darcyan system reconstruction: (a)-geodesa lev M indicates the number of geodesic level curves. The

curves, (b)-Radial curves. (c) The superposition of both sy  Proposed descriptor is illustrated in Figure 3.
tem of curves. (kmax, kmin)

Consequently, the Darcyan coordinates system is 7t ',‘:T
obtained by the superposition of both these sets of ¢ B R T
curves emanating from a reference point. We pro-
pose to extract the intersection points between these
t\_/vo kl_nds of curves. Th_e resulting dl_scr_et(_a paramet- Figure 3: lllustration of the proposed descriptor: (a) the
ric points are ordered since each point is indexed by Darcyan representation construction around a reference

the level of geodesic curve and the radial line it be- point, (b) the vector of curvature fiels computation and the
longs to. obtained intersection points(in red color).

T
max
=
min

(a) (b)
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Human shape extremities extraction

|

Darcyan System around the shape
extremeties

|

Principal curvature fields
computation

Distance L, computation = "
K

(, f.f" { !_' !

Figure 4: 3D human shapes matching approach.

2.5 3D Human Shapes Extremities fold. In practice, it is materialized by a 3D mesh. It
Matching is, therefore, necessary to approximate the proposed
approach on the 3D meshes. The computation of the
In order to establish non-rigid correspondence be- 9e0desic paths and distances on the triangle meshes
tween human surface objects, we compute the pro-iS achieved by the use of the Fast Marching algorithm
posed descriptor around each extreme point. The gen{Kimmel and Sethian, 1998). While for the principal
erated vectors consist on the mean of principal curva- Curvature computation, we rely on the algorithm of
ture field values over the parametric discrete points. (Meyer et al., 2002). Figure 5 illustrates the Darcyan
Thereafter, We search for the minimal distahede- intrinsic parametric representation around the extrem-
tween all the pairs of the resulting vectors to find the ities of a 3D human body mesh.
most similar ones.
The targeted matching is then acquired by finding the
similarity between the resulting descriptors. This pro-
cess is also illustrated in Figure 4.

3 EXPERIMENTATION | /

In this section, we present the experimental results in
order to test the effectiveness of our approach. We
have conducted the experiments on several 3D human
objects in different poses from the TOSCA database
(Bronstein and Bronstein, 2008) which contains 3D
objects undergoing non-rigid deformations. e A
We first of all present the approximation of the pro- Yk
posed description steps on the 3D meshes.

. . Figure 5: Darcyan representation around a human body ex-
3.1 Approximation on 3D Meshes tremities from the TOSCA dataset.

A 3D object is assumed to be a 2D differential mani-
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3.2 The Correspondence Results The resulting correspondences show, in some

) ) cases, a confusion in the human sides. Hence, a left
We evaluate our matching approach on different hu- hand or a left foot may be matched to a right one of
man objects of the TOSCA database (David, Victoria another object. This confusion is due to the symmet-

and Michael). We have chosen for each object the yjc structure of the human shape.

same number of poses. After the normalization of Tg alleviate the problem of the symmetry, we propose
these ShapeS, we haVe eXtraCted the extremities forto add another geometrica' property that Cou'd distin-
all these body shapes. We have, then, constructedyyish the right part from the left one of the human
our proposed descriptor around these selected pointsbody_ For this type of shapes, the top of the head is
Figure 6 shows some results of our correspondencethe unique extreme point that has not a symmetrical
method. equivalent.

Thus, we propose to compute the sign of the angle
between the two vectolg, andVs: the vectoVy is

a reference one. It corresponds to the tangent to the
geodesic curve at the top of the head and joining this
point to the tip of the noise. For the vecidr, it cor-
responds to the tangent at the top of the head to the
geodesic curve joining this last point and the other se-
lected extremities (Figure 8).

Figure 8: Geodesic curves joining the top of the head and
the hand extremities.

Figure 6: Correspondence results for various human mod- .
els from the TOSCA dataset, green lines indicate correct ~ The computed angle for the right part of the hu-
matches. man body has an opposite sign comparing with the
one of the left part. This process allows to raise
The obtained correct correspondence percentagesyp the correspondence results as shown in Figure 9.
range from 80% to 100% for the three human models For the object David the percentage of correct corre-
in the chosen poses. The bars colored in blue, in Fig- spondence increases from 86% to 96% for the object
ure 7, show the correct matching rates. We deem thatpayid and from 80% to 92% for the object Michael.

our approach seems to be able of handling 3D humanThe green bars in Figure 7 show the new percentages.
shapes with various poses.

Rates of correct correspondences
100 ! ' !

90

80

0

|
e

60

S0

40-

o Figure 9: Correspondence after the symmetry correction.

% of good correspondence

s 4 CONCLUSIONS

Figure 7: The Correspondence rates for human models from

the TOSCA dataset, the blue and green colors indicate, re-In this paper, we have proposed a novel approach to
spectevely, the percentage of the correct matches and theestablish the correspondence between 3D human bod-
obtained ones allevating the problem of the symmetry. ies undergoing non-rigid deformations. We have pre-

sented a novel intrinsic description based on a princi-
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pal curvatures computation on a local parametrization

using the Darcyan coordinates system. We have also

proposed a solution for the problem of the symmetri-
cal extremities. The obtained results show the perfor-
mance of our proposed method for studying the 3D
human body matching.

In future works, we intend to achieve the optimal res-
olution of the local Darcyan representation by find-
ing the suitable number of the geodesic levels and the
radial lines curves. We propose also to perform the
experimentation on others 3D human databases with
different properties and to test the robustness of the
intrinsic descriptor to the noise.

REFERENCES

Aalo, Y., Dubrovina, A., and Kimmel, R. (2013). Spectral
generalized multi-dimensional scaling. pages 380—
392.

Bronstein, A. and Bronstein, M. (2008). Regularized péartia
matching of rigid shapes. IBuropean Conference on
Computer Vision, pages 143—-154. Springer.

Bronstein, A. M., Bronstein, M. M., and Kimmel,
R. (2006). Generalized multidimensional scal-
ing: a framework for isometry-invariant partial
surface matching. Proceedings of the National
Academy of Sciences of the United States of America,
103(5):1168-1172.

Bronstein, A. M., Bronstein, M. M., Kimmel, R., Se-
ries, I. M. a. P, Hall, L., and E, C. S. S. (2009).
A Gromov-Hausdorff Framework with Diffusion Ge-
ometry for Topologically-Robust Non-rigid Shape
Matching. pages 612-626.

Cohen, L. and Kimmel, R. (1997). Global Minimum for Ac-
tive Contour Models.International Journal on Com-
puter Vision, 24(1):57-78.

Gadacha, W. and Ghorbel, F. (2013). A stable and accurate
multi-reference representation for surfaces of R3: Ap-
plication to 3D faces descriptionEEE |nternational
Conference on Automatic face and Gesture Recogni-
tion (FG2013), Shanghai- China.

Jiang, L., Zhang, X., and Zhang, G. (2013). Partial
shape matching of 3D models based on the Laplace-
Beltrami operator eigenfunctiodournal of Multime-
dia, 8(6):655—-661.

Julien, T., Mohamed, D., and Jean-Philippe, V. (2006).
Invariant highlevel reeb graphs of 3d polygonal
meshes. International Symposium on 3D Data Pro-
cessing, Misualization, and Transmission (3DPVT),
page 105?112.

Kim, V. G., Lipman, Y., and Funkhouser, T. (2011).
Blended intrinsic mapsACM Transactions on Graph-
ics, 30(4):1.

Kimmel, R. and Sethian, J. a. (1998). Computing geodesic
paths on manifolds. Proceedings of the National
Academy of Sciences of the United States of America,
95(15):8431-8435.

636

Meyer, M., Desbrun, M., Schroder, P., and Barr, A. H.
(2002). Discrete Differential-Geometry Operators for
Triangulated 2-Manifoldslnternational Workshop on
Visualization and Mathematics.

anikov, M., Mérigot, Q., Mémoli, F., and Guibas, L.
(2010). One point isometric matching with the heat
kernel. Eurographics Symposium on Geometry Pro-
cessing, 29(5):1555-1564.

Sun, J., Chen, X., and Funkhouser, T. A. (2010). Fuzzy

Ovsj

geodesics and consistent sparse correspondences for:

eformable shapes. 29(5):1535-1544.

Taylor, J., Shotton, J., Sharp, T., and Fitzgibbon, A. (3012
The vitruvian manifold: Inferring dense correspon-
dences for one-shot human pose estimation. pages
103-110.

Thompson, D. (1917).0n growth and form. University
press in Cambridge, Cambridge, MA.

Van Kaick, O., Zhang, H., Hamarneh, G., and Cohen-Or, D.
(2010). A Survey on Shape Corresponden&am-
puter Graphics Forum, xx:1-23.

Wei, L., Huang, Q., Ceylan, D., Vouga, E., and
Li, H. (2015). Dense human body correspon-
dences using convolutional networkarXiv preprint
arXiv: 1511.05904.

Yaron, L. and Thomas, F. (2009). Mdbius voting for surface
correspondence. 28(3):72.

Yusuf Sabhillioglu, Y. Y. (2014). Multiple shape correspon
dence by dynamic programming. 33(7):121-130.

Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., Van Kaick,
0., and Tagliasacchi, A. (2008). Deformation-driven
shape correspondencé&urographics Symposium on
Geometry Processing, 27(5):1431-1439.

Zheng, Y., Tai, C.-L., Zhang, E., and Xu, P. (2013). Pair-
wise harmonics for shape analysiEEE transactions
on visualization and computer graphics, 19(7):1172—
1184.



