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Abstract: This position paper reports our current endeavour towards a model-driven engineering framework to support
the dynamic configuration and deployment of complex data processing applications. In particular, our appro-
ach includes a domain-specific modelling language that abstracts the data processing tasks and at the same
time exposes the control of how these tasks are deployed on specific platforms and resources. A modelling
framework of model transformation and models@runtime engines realises the semi-automatic configuration
and deployment of the applications based on the abstract models.

1 INTRODUCTION

Data processing applications are playing an important
role in industry, partly as a result of the big data mo-
vement. These applications typically combine hete-
rogeneous, distributed and dedicated software soluti-
ons. In order to reduce operation costs, they are of-
ten deployed over cloud infrastructures that provide
on demand access to a virtually infinite set of com-
puting, storage and network resources. However, in
practice the development and operation of data pro-
cessing applications typically face two challenges: (i)
the complexity and time required to learn as well as
to design and integrate the many existing general pur-
pose frameworks and (ii) the complexity of operation,
maintenance and evolution of the applications.

As a result of the first challenge, a large proportion
of the data engineers’ effort is dedicated to configura-
tion and deployment activities. It is complex to pro-
perly configure and connect the many general purpose
frameworks (e.g., Hadoop, Storm, Spark, Kafka, etc.)
and to deploy them on the adequate infrastructure
(e.g., OpenStack VM, Amazon DynamoDB). Part of
this challenge can be addressed by providing a pro-
per abstraction hiding some platforms specificities as
well as by facilitating the reuse and sharing of part
of the system. Some cloud providers offered graphi-
cal data processing environments, such as Amazon
Big Data1 and Microsoft Azure Machine Learning2.

1aws.amazon.com/training/course-descriptions/bigdata/
2azure.microsoft.com/services/machine-learning/

Thanks to such environment, engineers can quickly
prototype their ideas into a runnable application. Ho-
wever, these solutions prevent developers from under-
standing and controlling how the applications are de-
ployed and run on cloud infrastructures, and also im-
plies vendor lock-in.

Moreover, as these systems must inevitably
evolve, it is challenging to maintain and evolve them
whilst minimizing down-time. In order to shorten
delivery time and to foster continuous evolution, we
should reconcile development and operation activi-
ties (Hüttermann, 2012). The DevOps movement ad-
vocates to not only automate configuration and de-
ployment of the application, but also the capability
to monitor and control the application, in order to im-
prove the both the efficiency and flexibility.

In this paper we introduce a framework to fos-
ter the continuous design, deployment, operation and
evolution of data processing applications. Our solu-
tion, called DAMF (Data Modelling Framework), is
composed of (i) a domain specific modelling language
to specify both the data flow and the deployment of
the data processing tasks and (ii) a toolset with mo-
del transformations and models@runtime engines for
the automatic deployment and adaptation of such data
processing applications.

The remainder is organised as follows. Section 2
introduces a motivating example. Section 3 introdu-
ces DAMF and Section 4 discusses our future plans.
Finally, Section 5 discusses related approaches and
Section 6 concludes the paper.
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2 MOTIVATING EXAMPLE

We use a experimental application called WHEPET
(WHEre PEople TWeet)3 to illustrate the typical acti-
vities to create, run and evolve an application exploi-
ting streams of real-time data. The objective of WHE-
PET is to show where people have recently posted
tweets.

Figure 1: Screenshot of WHEPET heatmap.

The data processing comprises the tasks of obtai-
ning the real-time tweets from the Twitter Public Stre-
aming API 4, filtering tweets with coordinates, ex-
tracting these coordinates, and rendering them on the
heatmap as depicted in Figure 1. Since how to ana-
lyse the data is not part of the challenges we address,
the algorithms are deliberately simple.

The data retrieval tasks involve heavy data load
(i.e., about 500 tweets per second during our experi-
ment), and we selected the Storm platform 5 to pro-
cess them for scalability purpose. Following Storm’s
concepts, we wrap the tweets listening, filtering and
extraction tasks as a Spout and two Bolts, respecti-
vely, and define a Topology to connect them. The
Storm topology is deployed on a Storm cluster, which
consists of four types of nodes, i.e., Supervisor, UI,
Nimbus and Zoopkeeper. The heatmap is realised in
HTML using Google Map Widgets. A Kafka 6 mes-
sage queue with a WebSocket wrapper plays as a me-
diator between Storm and the browsers.

We deployed all the required platforms, i.e.,
Storm, Kafka and Kafka-websocket, on a virtual ma-
chine from Amazon EC2. When initally running this
deployment, we noticed a big sudden drop in the rate
of real-time tweets. To solve this, we exploited the
Storm’s built-in scaling support, to add a new Storm
Supervisor node on a new virtual machine. At a la-
ter stage, we evolved the application to provide accu-
rate statistics about the number of geo-tagged tweets
posted from different countries. We developed a con-

3https://github.com/songhui/whepet
4https://dev.twitter.com/streaming/public
5http://storm.apache.org
6https://kafka.apache.org

verter from coordinates to country names. The con-
verter reads input from Kafka, and writes the output
back via a different topic. A counter program consu-
mes the output and updates a Redis database. For the
scenario we wanted to deploy and integrate this new
feature at runtime (i.e., without stopping the running
application).

The scenario illustrates the following require-
ments for DAMF:

Abstraction (R1): DAMF should provide an ab-
stract way to describe data flows and their deploy-
ments in a platform and cloud provider-independent
and -specific way, i.e., support the configuration of
data processing flows, the implementation on specific
platforms, and the deployment on provider resources
respectively.

White- and Black-Box Control on Platform
and Infrastructure (R2): As for the example above,
for some features it is possible to quickly obtain a run-
ning application, without knowing any details of the
supporting platforms. However, for some features, we
need the capability to configure the platforms them-
selves, e.g., exploiting the Storm scaling out feature.

Modularity and Reusability (R3): It should pro-
vide a modular, loosely-coupled specification of the
data flow and its deployment so that the modules can
be seamlessly substituted and reused. Elements or
tasks should be reusable across scenarios, for exam-
ple, deploying a Storm application.

Automation (R4): We expect the automatic de-
ployment of data processing applications. Indeed,
experimental scenario requires tedious manual work.
For example, we need to check the IP address and port
of KafkaWS after deployment, and use them to reset
the WebSocket server.

Reconcile Design- and Run-Time Activities
(R5): DAMF should support the continuous develop-
ment and operation and frequent switching between
design, implementation, and deployment activities.

3 THE APPROACH

DAMF leverages model-driven engineering techni-
ques to support developers and operators in develo-
ping and operating data processing applications.

3.1 Approach Overview

Figure 2 illustrates the overview of our approach. The
core of the approach is the DAML modelling lan-
guage. The language encompasses three views (ad-
dressing R1): (i) the platform-independent design of
data flows, (ii) the platform-specific deployment of

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

524



Design-(me	tools	

Run-(me	tools	

Running	System	

reflec0on	 deployment	

Pla2orm	independent	data	flow	model	

Pla2orm	specific	and	provider	independent	deployment	model	

Pla2orm	and	provider	specific	deployment	model	

Developers	

Operators	

Semi-automa0c	
transforma0on	
Synchroniza0on	

Interact	with	

break	a	data	analysis	idea	into	
tasks	and	flows	

Allocate	data	flow	opera0ons	
	on	specific	cloud	plaCorms	

Allocate	plaCorms	and	
applica0ons	on	cloud	

resources	

zookeeper Nimbus node.js

EC2 VM (mem:4GB, CPU: 95%...)

redis

omit other components...

Twitter

Filter Extract 
coordinates

Get 
tweets Queue Web

Socket HeatMap

To 
Country Queue Counter DB

(Redis)

Storm

Kafka

gettweets

filter

extract-geo

zookeeper

Nimbus supervisor

UI

kafka

kafka-ws

country

node.js
storm

twitter
-api

storm-topology

heatmap

VM (omit incoming hosting relations)

count

redis

...

Figure 2: Approach Overview.

the application, and (iii) the platform-specific and
cloud provider-specific deployment, which also inclu-
des runtime information (e.g., public and private ad-
dresses, status) once the system is deployed.

Developers start the overall design of a data pro-
cessing application from the platform-independent
model, focusing on splitting the data processing task
into sub-tasks. After that, they select the plat-
forms to implement the sub-tasks, and lead the semi-
automatic transformation from the data flow model
into a platform-specific deployment model. The de-
ployment model comprises deployable components
and how they are hosted by the abstract resources.
The component-based approach which better isolate
concerns (addressing R1) and ease reuse (addressing
R3). Developers can further adjust the generated de-
ployment model (addressing R2). If the adjustment
impacts the original overall design, the changes will
be synchronized to the data flow. Once the deploy-
ment model properly defined, developers choose the
provider of the resources, and then launch the automa-
tic deployment of the system on the selected resources
(addressing R4).

At runtime, the platform-specific model will be
enriched with runtime informations and automatically
synchronized with the running system (addressing
R5). Thus, the model represents the running system
and any change in the system (e.g., the Storm master
crashes) is automatically reflected in the model. Simi-

larly, any change on the model will trigger incremen-
tal deployment and cause the corresponding changes
on the system.

3.2 Platform-independent Modelling

We support the platform-independent view of DAML
by providing a data flow modelling language named
DAFLOW. DAFLOW helps data engineers break a
data analysis idea into tasks that are connected by
flows. In addition, it also allows data engineers to
annotate the tasks and flows with high level design
decisions (e.g., what platform will be used to imple-
ment a task).

As a platform-independent language used for
early design, we keep DAFLOW simple and generic.
The meta-model consists of only 3 essential data flow
concepts, i.e., source, task, and flow. We also in-
troduce two auxiliary concepts, i.e., group to encap-
sulate tasks, and annotation to add additional in-
formation to data flow elements. These concepts are
platform independent. The annotation mechanism en-
sures the flexibility of DAFLOW. Data engineers can
annotate, in an open style, any model elements with
the relevant information such as the platform to use,
the initial scale, etc. These annotations can be human-
readable, or machine readable to determine how the
platform-independent models are automatically trans-
lated into platform-specific ones.
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data flow WhePeT {

source TwitterStream

task TwitterListener, Filter, ExtractCoord,

HeatMap

flow TwitterStream => TwitterListener

flow TwitterListener => FilterGeoTagged

flow FilterGeoTagged => ExtractCoord

flow ExtractCoord => HeatMap

group Storm : (platform="Storm")(initsize="1")

{TwitterListener FilterGeoTagged ExtractCoord}

}

Figure 3: Initial DAFLOW model of WHEPET.

Figure 3 is an excerpt of the DAFLOW model
that captures the initial design of WHEPET (See
Section 2). In this round, we, playing the role of
data engineers, first define the sources and tasks for
analysing twitter data, and the flows between them,
using the model elements marked with corresponding
keywords. The textual model corresponds to an ear-
lier version of the graphical data flow diagram shown
in the top square of Figure 2. After defining the data
flow, we record our early technical decisions by anno-
tations, e.g., the group of three processes that handle
tweets will be hosted by the Storm platform.

High-level refinement and evolutions on the data
flow level are also performed on the DAFLOW mo-
del, such as replacing the mismatched flow with two
tasks related to the message queue and the WebSocket
wrapper, and adding new tasks to convert coordinates
to countries and count the appearance of each coun-
try. After these iterations, the final data flow evolves
into the one as illustrated in the top of Figure 2. We
omit the concrete textual model.

3.3 Platform-specific Modelling

The data flow model will be transformed into a de-
ployment model as shown in the middle part of Fig 2.
Data engineers can tune the deployment model con-
cerning platform-specific parameters and configurati-
ons, and the infrastructures to host the platform.

Figure 2 illustrates the main concepts of DADE-
PLOY model. The core concept is component. A com-
ponent can be a running service operated by a third
party (such as the Twitter Streaming API, or an AWS-
EC2 virtual machine), or a software artefact hosted
by a service (such as a Kafka message broker). Such
hosting relationship is represented by dashed arrows.
A component may also exposes provided or required
ports. A pair of matched ports can be connected by a
dependency relationship, which means that the com-
ponent with the required port “knows” how to access
the component with the provided port, and therefore

the former can invoke the latter to pull or push data.
Finally, a composite component contains other com-
ponents. The model depicted in Figure 2 includes one
composite component representing a Storm topology,
which consumes data from the Twitter Stream API,
and is hosted by a Storm platform. The platform it-
self is in turn composed by 4 different Storm nodes. It
is worth noting that in this case the hosting relations-
hip is between two composite components, which me-
ans that the developers do not need to care about how
the components within a storm topology is distributed
into the different storm nodes - this is automatically
handled by the storm platform. The last component
inside the Storm topology will publish the extracted
coordinates to Kafka. In the same time, the WebSoc-
ket wrapper subscribes to the same topic and sends
the wrapped coordinates via WebSocket messages to
the heatmap.

DADEPLOY provides a formal concrete syntax
in a textual format. Figure 4 shows a sample mo-
del which defines two of the components depicted in
Figure 2, the heatmap and the WebSocket wrapper.
The example involves a key concept in DADEPLOY,
i.e., prototype, borrowed from the JavaScript object-
oriented language, which also facilitates reusability
(R3) and abstraction (R1). A component can be de-
rived from another component as its prototype. The
new component inherits all the features (i.e., attribu-
tes and ports) from its prototype, as well as the values
already bound to these features. Inside the definition
of the new component, we add new features or over-
ride values of features defined by the prototype. For
example, in Line 1 of Figure 4, we first defined a com-
ponent to implement a HTTP server that can host one
simple HTML file. The component is inherited from
dockercomp, a predefined component for any Doc-
ker images. Inside the one-page-httpd, we set the
actual image (the official python image) and the com-
mand associated to this image to download an HTML
file and start a built-in python http server to host it.

Finally, the configuration part defines the com-
ponent assembly of the application. It contains a
heatmap component inherited from one-page-http,
with a specific port 80 and a concrete page, and anot-
her component for the WebSocket wrapper. The two
components are connected by a link between the re-
quired and provided ports from the two components,
respectively. The components will be connected au-
tomatically during deployment: According to the link
in Line 19, the tool will check where ws is deployed,
in order to set the address and port values inside the
required port heatmap.wsport. These values will be
assigned to an environment variable ws inside the doc-
ker container (Line 14), for the http page to access the
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1 component one-page-httpd prototype dockercomp{

2 image: "python:2"

3 command: "wget $this.resource;
4 python -m SimpleHTTPServer 80"

5 portmaps: {$this.httpport:80}
6 httpport: None

7 resource: None

8 }

9 configuration WhePeT{

10 component heatmap prototype one-page-httpd{

11 httpport:80

12 resource: "https://github.com/songhui/\

13 bigml-attempt/blob/master/vsempl/index.html"

14 environment: "ws=$this.wsport.ip: \

15 $this.wsport.port"
16 required port wsport

17 }

18 component ws prototype kafka-ws

19 component vm prototype ec2-big

20 link heatmap.wsport -> ws.wsport

21 host ws on vm

22 }

Figure 4: Excerpt of the DADEPLOY textual syntax.

WebSocket server.
The DADEPLOY model is machine-readable, and

can be automatically deployed by DAML engine into
a running application. The engine utilizes the me-
chanisms pre-defined along with a number of prede-
fined root components, such as dockercomp, execu-
table JAR file, EC2 virtual machine, etc. For each
of these root components, the engine has built-in lo-
gics to automatically deploy it on the host component.
Considering the heatmap component as an example,
the engine will use the docker deployment logic defi-
ned with the root component dockercomp and com-
pose the following docker commands, to be executed
via ssh on the virtual machine.

docker run -d -p 80:80 python2 \\
-e "ws=172.0.2.15:7080" \\
bash -c "wget https://.../index.html && \\
python -m SimpleHTTPServer 80"

Once the configuration model is completed, we
specify the resources providers, e.g., using the VM
from EC2. The runtime engine will automatically de-
ploy the components based on the generated scripts,
and return a runtime model as shown in the last part
of Figure 2. The runtime model maintains the same
structure as the deployment model if the deployment
succeeds (we omit most of the components in Figure 2
for the sake of simplicity), but its resource compo-
nents carry the provider information and the runtime
status of the resources, such as the actually memory
allocated to the VM, the dynamic IP address, the cur-
rent CPU load, etc.

3.4 Support for Model-driven DevOps

The DAML modelling language is the basis for the
model-driven DevOps of data processing applicati-
ons. Depending on the focus, developers and opera-
tors can work on any of the three views. Their chan-
ges on the model will be quickly implemented as evo-
lutions of the running system, thanks to the transfor-
mations and the models@runtime engines.

The model-based DevOps of data processing ap-
plications is composed of a set of agile iterations
of developing and evolving the application, each of
which ends with visible effects on the running appli-
cation. Take our WHEPET scenario as an example,
our first iteration starts from a very simple DAFLOW
model with data retrieving and text-based represen-
ting tasks, as shown in Figure 3. The second iteration
is to scale out the location extraction component on
the DADEPLOY model. The third iteration is to intro-
duce new tasks into the DAFLOW model for country
converting. Each iteration leads quickly to changes of
the deployment of WHEPET.

The DevOps iterations are powered by the DAMF
engines which implements the transformation bet-
ween model views, and the causal-connection bet-
ween the model and the system, as shown in Figure 2.

The flow-deployment transformation (the grey ar-
row on the top of Figure 2) takes as input the DAF-
LOW model with annotations of platforms and reu-
sed component types in DADEPLOY, and generates
the DADEPLOY configurations to implement the data
flow. It is a bidirectional model-to-model transforma-
tion, with traceability support to reflect subsequent
changes on the deployment model into the original
data flow. The deployment-provider transformation
(the arrow in the middle of Figure 2 keeps the compo-
nent configuration, but generates the provider-specific
setting of the resources.

The models@runtime engine maintains the bi-
directional causal connection between the provider-
specific deployment model and the system running on
the provider’s resources. In one direction, the mo-
dels@runtime engine deploys the configuration chan-
ges on the DADEPLOY model into system changes.
The automatic incremental deployment is based on
the OS-level provider-independent deployment tools,
such as DockerCompose, as well as the provider-
specific deployment APIs. The engine supports adap-
tive planning algorithms to design and optimize the
order to invoke these built-in capabilities. In the other
direction, the engine uses the provider’s monitoring
APIs to collect the system changes at runtime and re-
flects them into the model.
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4 FUTURE WORK

On the basis of the DAML model, we will construct
the complete DAMF framework to enable the semi-
automatic DevOps supports of data processing sy-
stem. The research around DAMF are mainly along
three directions, i.e., the modelling language, the en-
gines and the applications.

For the language, we will provide both textual and
graphical model editors, together with auxiliary tools
such as model validation and auto-completion. We
will further elaborate on both our prototyping appro-
ach and the type-object pattern (Atkinson and Kühne,
2002) to improve the reuse.

We will keep improving the model-to-model
transformations and the models@runtime engines, in
order to: (i) improve the synchronization between the
models at the different levels of abstraction and (ii)
support the mainstream data processing platforms and
the cloud resource providers. We will also work on
the model-to-text transformation to support the third-
party deployment engines such as chef (www.chef.io).

Finally, we will extend DAMF with support for
the continuous delivery of trustworthy data proces-
sing applications. The model will be used to reveal
and visualize the provenance and how the data are ac-
tually flowing through the different tasks and resour-
ces.

5 RELATED WORK

This work is an extension to the approaches on model-
driven DevOps in cloud. CloudML (Ferry et al.,
2015) provides domains-specific languages and and
engines to support the vendor-independent modeling
and automatic deployment of cloud applications. Ar-
tist (Menychtas et al., 2014) provides model-based
support for the migration of legacy software into
cloud. Our approach follows the same direction but
are specific to data-processing applications, with spe-
cial views on data processing and also focuses on the
control of data processing at different levels.

The DICE project (Casale et al., 2015) also le-
verage model-driven engineering to manage data pro-
cessing applications, and aims at providing a new
UML profile for developers to understand and ana-
lyse the applications. Different from our approach,
DICE focuses on the non-functional perspectives of
the applications, such as reliability and performance,
whereas we focus on the rapid construction of data
processing from a functional point of view.

The approach is based on a set of advanced model-
driven engineering research topics, i.e., domain-

specific language engineering (Kelly and Tolvanen,
2008), bidirectional model transformation (Czarnecki
et al., 2009) and models@runtime (Blair et al., 2009).

6 CONCLUSION

In this position paper we present a model-driven ap-
proach to the development and operation of data pro-
cessing applications. Using the sample case,we reveal
the possibility and potential benefits of designing and
managing data processing applications from a high
abstract level using modelling languages, and auto-
mating the DevOps processes though transformation
and models@runtime mechanisms.
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