
Secure APIs for Applications in Microkernel-based Systems

Mohammad Hamad and Vassilis Prevelakis
Institute of Computer and Network Engineering, Technical University of Braunschweig, Braunschweig, Germany

{mhamad, prevelakis}@ida.ing.tu-bs.de

Keywords: Secure APIs, Security.

Abstract: The Internet evolved from a collection of computers to today’s agglomeration of all sort of devices (e.g.
printers, phones, coffee makers, cameras and so on) a large part of which contain security vulnerabilities. The
current wide scale attacks are, in most cases, simple replays of the original Morris Worm of the mid-80s.
The effects of these attacks are equally devastating because they affect huge numbers of connected devices.
The reason for this lack of progress is that software developers will keep writing vulnerable software due to
problems associated with the way software is designed and implemented and market realities. So in order to
contain the problem we need effective control of network communications and more specifically, we need to
vet all network connections made by an application on the premise that if we can prevent an attacker from
reaching his victim, the attack cannot take place. This paper presents a comprehensive network security
framework, including a well-defined applications programming interface (API) that allows fine-grained and
flexible control of network connections. In this way, we can finally instantiate the principles of dynamic
network control and protect vulnerable applications from network attacks.

1 INTRODUCTION

Every day we come across examples of security fail-
ures that cast doubt on the reliability of today’s IT
infrastructure. We hear about compromises spanning
huge numbers of IoT devices, or about hundreds of
thousands of customer records lost. All these fail-
ures largely stem from the ability of Internet-aware
devices (or hosts) to be contacted by any other host
connected to the Internet. Our lack of effective man-
agement of these connections is allowing malfeasants
to connect to our devices and cause havoc. Another
problem lies with the applications themselves. Even
when extensively tested, they often contain vulnera-
bilities that, while extremely difficult to be detected
via traditional testing, provide the means for attack-
ers to compromise the application and potentially take
over the host. Moreover, applications developed using
vastly different development methodologies and qual-
ity often coexist in the same environment (e.g. enter-
tainment systems in cars coexisting with critical sys-
tems such as stability control, steering and breaking)
allowing stepping stone attacks.

The need to protect these applications from being
contacted by random hosts from across the Internet
has been well understood since the original Morris
worm of the mid-80s. Unfortunately, the solutions
proposed proved inadequate and in some cases exac-

erbated the problem. For example firewalls have the
ability to guard the entrances of networks and allow
only ”good” guys to connect to internal hosts. Ini-
tially, firewalls proved quite effective, but over the
years, they gradually became irrelevant (Niederberger
et al., 2006) as WiFi connections allowed firewalls
to be bypassed and Transport Layer Security (TLS)
(Dierks and Rescorla, 2008) ensured that traffic flow-
ing via these firewalls is encrypted so that they are
incapable of monitoring it for attacks.

In a typical banking application scenario, the cus-
tomer uses TLS to connect to the banking application
running on the banks servers (Hiltgen et al., 2006).
The connection is cleared by the firewall before the
customer is identified by the system. This is so be-
cause identification is handled by the application af-
ter the TLS session has been established. Thus, not
only we are forcing the firewall to allow all connec-
tions from the public Internet to our application, but
we also prevent any network-based intrusion detec-
tion system from monitoring the data exchanged over
the encrypted connection.

It is thus crucial for the connection request to be
vetted before it is allowed to reach the application.
The problem with the traditional way of controlling
access to the application, is that it involves a lot of
manual configurations (e.g. configuring packet filters
etc.), requires administrator access and is, thus, ex-

Hamad, M. and Prevelakis, V.
Secure APIs for Applications in Microkernel-based Systems.
DOI: 10.5220/0006265805530558
In Proceedings of the 3rd International Conference on Information Systems Security and Privacy (ICISSP 2017), pages 553-558
ISBN: 978-989-758-209-7
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

553

pensive, slow and error prone. We, therefore, need a
faster, automated way for access control. We propose
to de-couple the access control mechanism from the
network code and use a policy engine to evaluate re-
quests if authorized, and to reconfigure the system ac-
cordingly. In this way we can accommodate dynamic
scenarios such as load balancing or failure recovery.

Our mechanism should also allow interactions be-
tween applications running in distributed control sys-
tems such as those found in vehicles, airliners, etc.
Numerous hacking demonstrations on car ECUs have
shown that once access to the internal communica-
tion bus is gained by the attacker, then the entire ve-
hicle is compromised (Koscher et al., 2010). Tradi-
tional approaches have proven to be too inflexible for
complex distributed environments so we had to look
for a better solution based on the distributed firewall
model proposed by Ioannidis et al (Ioannidis et al.,
2000). Under this framework each connection re-
quest must include appropriate authentication and au-
thorization to allow both the sending and receiving
hosts to decide whether to allow the connection re-
quest to go through. In this way, there is no need to
pre-configure the elements of the distributed system
with access control information, but the communica-
tions policy is dynamically constructed as communi-
cations requests are made and granted. Eventually we
will have a set of secure links connecting applications
running on different hosts, but unlike the static con-
figuration model, new requests can be accommodated
and integrated into the overall system policy.

Any distributed security paradigm will eventually
fail unless it can be used by the application develop-
ers. By providing a proper security application-layer
developers will be able to implement applications that
use secure communications efficiently. Moreover,
this layer will make it more convenient and applicable
for protecting the application communications.

In this paper, we present new APIs that give any
application the power to control its security policy
by providing sufficient configurations to the security
layer. This enables an application to get the relevant
information about the applied security mechanisms
and all the parameters of the secure channel. We also
provide APIs which allow any application to authen-
ticate the requesters identity and indicate whether this
request is authorized or not based on the security pol-
icy of the receiving application. The authorization de-
cision will not be based on packet filtering and Ac-
cess Control Lists (ACLs) mechanisms. We use the
Keynote trust management (Blaze et al., 1999) model
to enable the application to determine the allowed net-
work access regarding credentials presented by the re-
mote application, which should conform to the local

policy of the application.
The rest of the paper is organized as follow. In

Section 2, we provide a short background and some
related works. Section 3 explains the design of the se-
cure APIs. The implementation of APIs is detailed in
Section 4. In Section 5, we discuss some evaluation
asspects. Finally, Section 6, contains some conclud-
ing remarks.

2 BACKGROUND AND RELATED
WORK

Many mechanisms and protocols were defined to pro-
tect sensitive and critical system resources. TLS is
one of these techniques which is used to secure com-
munications at the application layer. It uses encryp-
tion and authentication to keep communications pri-
vate between two devices; typically a web server
(website) and a browser. TLS is limited to TCP and
STCP based protocols. An adaptation of TLS for
UDP protocol is available; it is called DTLS. How-
ever, it is not widely used. Numerous modifications
on the application’s source code are required to run it
over TLS. In some circumstances, these changes im-
pose significant complexity overhead.

Another important mechanism is Internet Proto-
col Security (IPsec) (Kent and Seo, 2005). It was de-
signed to provide network security services to protect
Internet datagrams. It provides its security services
over two protocols: the first one is called Authentica-
tion Header (AH) (Kent and Atkinson, 1998a) which
provides origin authentication, data integrity and op-
tional replay attack protection. The second protocol
is called Encapsulating Security Payload (ESP) (Kent
and Atkinson, 1998b) which provides the confiden-
tiality and authentication of the exchanged data. Al-
though IPsec was introduced a few years ago, its us-
age was confined to VPN implementation. The lack
of APIs was one of the main reasons that limited the
adoption of the IPsec to provide end-to-end security
(Bellovin, 2009), (Ioannidis, 2003). Without these
APIs, applications were not able to interact with the
IPsec layer and verify whether IPsec services are be-
ing used underneath. The requirements of an applica-
tion to interact with security layer were specified by
Richardson and et al. (Richardson and Sommerfeld,
2006). They claimed that each application should be
able to:

1. Determine HOW a communication was protected,

2. Identify WHO is the remote party,

3. Influence HOW the protection should take place,
and

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

554

4. Indicate WHY an authorized communication
failed.

All these requirements should be carried out as a set
of APIs which could be used by the applications.

McDonald (McDonald, 1997) first proposed the
implementation of such APIs. He introduced the con-
cept of IPsec API as an extension to the BSD Sockets
where applications could provide their configuration
per socket. Wu et al. (Wu et al., 2001) provided
an API which gives the application the capability to
choose the IPsec tunnel which will be used to protect
outgoing packets. It also enables the application to
know which tunnel was used to receive a particular
incoming packet. Information are extracted from the
IPsec header, associated with the received data and
then delivered to the application regarding the used
protocol (TCP, UDP). However, their APIs did not
manage the creation of the IPsec tunnels by the ap-
plication.

According to Arkko et al. (Arkko and Nikander,
2003), the lack of APIs is not the only problem in
the IPsec design. The current security policy mecha-
nism is another stumbling block the adoption of IPsec
faces, in the end to end application-level protection.

Yin and Wang in (Yin and Wang, 2007) suggested
a solution fix for the lack of the IPsec policy sys-
tem by introducing a mechanism that makes applica-
tions aware of the IPsec policy. They implemented
a socket manager which detects the sockets’ activ-
ities of the running application and report them to
the application policy engine. The engine gets the
application policies, which are stored in the policy
repository. It processes them and then writes fine-
grained policies into the Security Policy Database
(SPD). In their work, they did not change the exist-
ing IPsec/IKE infrastructure. They kept using host
authentication rather than application-based authenti-
cation which is required to secure application commu-
nications. Pereira et al. (Pereira and Beaulieu, 1999)
tried to provide a user-based authentication schem
within the IKE implementation by introducing new a
exchange phase, which was called p̈hase 1.5.̈ Within
this invented phase, challenge-response messages are
exchanged between the remote user and the security
gateway.

3 DESIGN

Although IPsec’s application-agnostic design is an
advantage, in the sense that IPsec can protect applica-
tions without any modification to their source code, it
is also a disadvantage because (a) the application can
not request a secure connection, (b) it can not spec-

Application

Sec_API

Active
Policy

Decision

Trust
Management

System

KeyNote

socket call verify add, delete, search

Global
Policy

Application

Credentials

Application

Application
Credentials

Application

Network
Stack

Application
Credentials

Figure 1: Application uses the secure API to interact with
the trust management system and the security layer in the
network stack (i.e. IPsec).

Authorizer: Trusted_Public_key

Licensees: App_Public_key

Conditions: (Src_ip_address ==ANY
&& Dst_device_name == My IP
&& Src_port == ANY
&& Dst_port == (80 || SSL PORT)
&& Security_level >= SL_INTEGRITY && Priority_level == HIGH
-> “ALLOW“

Signature: Trusted_Private_key

Figure 2: An example of a security credential which was
given to an application.

ify parameters of the secure connection, (c) and it can
not verify whether its connection is secure or not. In
this work, we try to handle some of the obstacles by
providing suitable APIs which enable the application
to do:

3.1 Overriding the Security Policy

Using static security policies is one of the main draw-
backs of the existing security implementation. For
example, SPD selectors which are used with IPsec
should be specified in advance. These selectors con-
tain the IP addresses and port numbers. In some cir-
cumstances, some selectors are not available in ad-
vance, such as the port number is not always static for
some protocols. Consequently, such selectors are left
empty in the IPsec security policy. Later, when two
different applications on the same host with different
port numbers, try to connect to the same remote ap-
plication, there will be no distinguishable selectors to
differentiate their two separate connections. Thus, the
need of dynamic management for the IPsec policy is
critical.

Secure APIs for Applications in Microkernel-based Systems

555

Supplying the application with the ability to define the
security policies might solve such a problem. Each
application should be authorized to set up and up-
date its security policy which fulfills its requirements
dynamically. Authorization is required to prevent
the application from tampering with the security pol-
icy parameters which belong to different applications.
The decision whether the application admitted set-
ting the security policy is made by the trust manage-
ment system. The trust management system, shown
in Figure 1, contains KeyNote engine which eval-
uates the potential action of each application. The
request should be consistent with the global system
policy, to be authorized. The global system policy
represents the least accepted security parameters and
system-wide security configuration. Each application
has communication credentials, as shown in Figure 2,
which assure the ability to initiate an authorized con-
nection as long as it does not conflict with the global
policy.

Dynamic management will ensure interdepen-
dence between the policy rule and the connection’s
characteristics. To deal with the dynamic port num-
ber problem, we bind each application’s connection
to a port from the static ports pool. In the same way,
if the IP address is left empty in the application pol-
icy, it will be assigned to the host IP address. When
an application would like to set up a connection with a
remote one by Sec bind, Sec connect, Sec sendto, or
Sec recvfrom it will provide its security context which
contains attributes of the proposed action as shown in
Table 1.

All the proposed functions are using the same
parameters of the comparable socket functions (i.e.
bind, connect, sendto, and recvfrom) besides two new
parameters for credentials and the security context:

int Sec_connect(connect() parameters,
char* credential,security_context* sec_cont)
int Sec_bind(bind() parameters,
char* credential,security_context* sec_cont)
int Sec_sendto(sendto() parameters,
char* credential,security_context* sec_cont)
int Sec_recvfrom(recvfrom() parameters,
char* credential,security_context* sec_cont)

Security context and the credential (it could be
chain of credentials) are, all together, delivered to the
trust management system which will check whether
an application is authorized to set up such a connec-
tion or not. It will determine whether the proposed
action is compliant with the global policy by apply-
ing the security context parameter to the credential’s
conditions. In the case of an authorized request, a new
security rule will be added to the SPD. In addition to
that, a reference from this rule will be stored in the

protocol control blocks (PCBs) structure associated
with the socket. This reference will be used later to
delete this rule when the application closes the con-
nections (i.e. Sec close).
int Sec_close{socket s)

3.2 Interacting with Security Layer

By placing the IPsec mechanisms in the network
layer, the designer created an abstraction layer that
decouples the applications from the security of its
communications. In other words, the applications
cannot easily determine the identity of their commu-
nicating parties or the characteristics of the security
selected on the communication link. By contrast, if
the applications use TLS, it can both authenticate their
remote party and specify the form of encryption used
for the communication.

Providing sufficient APIs, which enable the appli-
cation to interact with the IPsec layer, will increase
the application comprehension about the used secu-
rity mechanisms in the ground layers. The proposed
APIs enable any application to determine if an incom-
ing communication is protected or not. In the case
of protection, it grants an application the right to re-
trieve the security properties which were used to pro-
tect the data. These security properties could contain
the cryptographic algorithms which were used, the
length of the key, the type of security service (con-
fidentiality, or integrity) etc. Each application will be
authorized to get the security parameters which relate
to its connection. The default security settings, which
is defined in the global policy, are available to any ap-
plication.

The Sec getsockopt and Sec setsockopt system
calls manipulate the options associated with a socket.
Table 2 describes the security services which could
be used : Each of the options presented in Table 2 can
have different security levels associated with it (i.e.
SEC NONE, SEC BYBASS, SEC USE, etc.). The
relevant information (security levels, security service,
etc.) is stored in PCB’s structure associated with the
socket.

int Sec_getsockopt(socket s, Sec_service srv,
Sec_level lvl, void *optval,int *optlen)
int Sec_setsockopt(socket s, Sec_service srv,
Sec_level lvl, void *optval,int *optlen))

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

556

Table 1: Security Context Fields.

Field Description
Ports numbers Port numbers which application listens to and the remote port number (it can be ANY)
IP addresses IP address used by the application and the remote IP (it can be ANY)
Issued Time Time when the request was issued, it is used to prevent replay attacks

Others Another security properties such as encryption algorithm, level of security, etc.
Signature Requester application signs all the previous fields by its private key

Table 2: Security Services.

SEC AUTH Refers to the use of authentication for the connection
SEC CON Refers to the use of encryption for the connection

SEC AUTH CON Refers to the utilization of both authentication and encryption

3.3 Providing the Ability
of Authorization and Authentication

The existing certificate authority does not assure the
trustworthiness of the key owner, but merely authen-
ticates the owner’s identity. However, we are not only
interested in identifying the remote part. We need a
mechanism that tells us the allowed actions that the
remote part is able to perform . The certificate in-
frastructure does not handle the decisions whether the
remote party is allowed to access services or not. This
decision is left up to the application.

Within the proposed APIs layer, we give the appli-
cation the ability to authenticate and decide whether
the remote peer is authorized to do some actions de-
pending on its credentials and the local policy in an
easy manner. In other words, we combine the authen-
tication with access control. Moreover, the applica-
tion is able to get the remote party’s identity and cre-
dentials.

int Sec_getremoteCredentials(socket s,
char * credentials)

int Sec_getremoteKey(socket s, char * key)

4 IMPLEMENTATION

We started our implementation by providing a set of
APIs which function on the socket layer of the net-
work stack and interact with the IPsec layer. Practi-
cally, in the monolithic operating systems (OS), such
as Linux and Windows, IPsec and the network stack
are implemented in the kernel; this limits our ability to
develop our APIs. On the other hand, Within Micro-
kernel OS, IPsec, which is integrated into the TCP/IP
stack, is implemented in the user space. This gave
use more scalability and functionality to implement
the required APIs. Thus, we implemented our APIs
on a Raspberry PI computer running a Microkernel
OS; we used Genode OS (Genode Labs GmbH,).

We used an existing embedded IPsec infrastruc-
ture, which was implemented on Genode OS by
Hamad et.al (Hamad and Prevelakis, 2015), to deve-
lope our security APIs. For the policy framework,
we used a framework that was proposed by Preve-
lakis et.al (Prevelakis and Hamad, 2015) to provide
a mechanism to maintain the integrity of the appli-
cations credentials and enforce them during the run-
time phase. Keynote library was ported to Genode OS
which was used to evaluate the applications requests.
We implemented many APIs to provide the intraction
between the trust managment system and the active
policy repository (as shown in hown in Figure 1).

5 EVALUATION

Security has a price; it is clear that using our APIs
imposes some overhead. Such overhead comes from
policy evaluation, credential verification and provid-
ing security services (i.e. IPsec). From the various se-
curity overheads, we have found in (Hamad and Pre-
velakis, 2015) that the operational security overhead
of security services is very low after the configuration
is over.

In the other hand, the overhead of evaluating the
credentials and the operation of the policy engine is
significant, but it occurs only when a new connection
request must be considered (i.e. it is compliant with
the policy). Hence, the cost must be amortized over
the lifetime of the connection. In vehicular platforms,
connections tend to have a long lifetime. So, this par-
ticular overhead is not significant. Moreover, various
optimization techniques, such as caching verified cre-
dentials and policy, may be used to reduce the cost of
policy evaluation.

Secure APIs for Applications in Microkernel-based Systems

557

6 CONCLUSIONS AND FUTURE
WORK

Providing the proper security application-layer can
increase the ability of applications to use secure com-
munication efficiently. In the same time, it will make
it more convenient and applicable for protecting the
application communications.

In this paper, we implement new APIs which give
any application the ability to control its security pol-
icy by providing sufficient configurations to the se-
curity layer. Moreover, it enables an application to
get the relevant information about the applied secu-
rity mechanisms and all the parameters of the secure
channel. We also provide APIs which allow any ap-
plication to authenticate the requester’s identity and
indicate whether this request is authorized or not,
based on the security policy of the receiving appli-
cation. The authorization decisions are not based on
packet-filter and ACLs mechanisms.

Adoption of our secure APIs by applications
caused a performance overhead. However, our im-
plementation is still in a proof-of-concept stage; dif-
ferent optimization methods could be used to reduce
this overhead. Hence, as future work, we intend to
implement some of the optimization methods such as
cashing the verified credentials and check its effects
on the performance. On the other hand, we plan to
do more measurement studies and compare the per-
formance of our APIs against existing protocols such
as TLS.

ACKNOWLEDGEMENT

This work was supported by the DFG Research Unit
Controlling Concurrent Change (CCC), funding num-
ber FOR 1800. We thank the members of CCC for
their support.

REFERENCES

Arkko, J. and Nikander, P. (2003). Limitations of ipsec pol-
icy mechanisms. In Security Protocols, 11th Inter-
national Workshop, Cambridge, UK, April 2-4, 2003,
Revised Selected Papers, pages 241–251.

Bellovin, S. (2009). Guidelines for specifying the use of
ipsec version 2. BCP 146, RFC Editor.

Blaze, M., Feigenbaum, J., Ioannidis, J., and Keromytis,
A. D. (1999). The keynote trust-management system
version 2. RFC 2704, RFC Editor.

Dierks, T. and Rescorla, E. (2008). The Transport Layer
Security (TLS) Protocol Version 1.2. RFC 5246 (Pro-
posed Standard).

Genode Labs GmbH. Genode OS Framework.
https://genode.org/ [last access on Jan 2017].

Hamad, M. and Prevelakis, V. (2015). Implementation and
performance evaluation of embedded ipsec in micro-
kernel os. In Computer Networks and Information Se-
curity (WSCNIS), 2015 World Symposium on, pages
1–7. IEEE.

Hiltgen, A., Kramp, T., and Weigold, T. (2006). Secure
internet banking authentication. IEEE Security & Pri-
vacy, 4(2):21–29.

Ioannidis, J. (2003). Why don’t we still have ipsec, dammit?
In NDSS 2003.

Ioannidis, S., Keromytis, A. D., Bellovin, S. M., and Smith,
J. M. (2000). Implementing a distributed firewall. In
Proceedings of the 7th ACM conference on Computer
and communications security, pages 190–199. ACM.

Kent, S. and Atkinson, R. (1998a). Ip authentication header.
RFC 2402, RFC Editor.

Kent, S. and Atkinson, R. (1998b). Ip encapsulating secu-
rity payload (esp). RFC 2406, RFC Editor.

Kent, S. and Seo, K. (2005). Security Architecture for the
Internet Protocol.

Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno,
T., Checkoway, S., McCoy, D., Kantor, B., Anderson,
D., Shacham, H., et al. (2010). Experimental secu-
rity analysis of a modern automobile. In 2010 IEEE
Symposium on Security and Privacy, pages 447–462.
IEEE.

McDonald, D. L. (1997). A Simple IP Security API Exten-
sion to BSD Sockets. Internet-Draft draft-mcdonald-
simple-ipsec-api-02, Internet Engineering Task Force.

Niederberger, R., Allcock, W., Gommans, L., Grünter, E.,
Metsch, T., Monga, I., Valpato, G. L., and Grimm, C.
(2006). Firewall issues overview.

Pereira, R. and Beaulieu, S. (1999). Extended Authenti-
cation Within ISAKMP/Oakley (XAUTH). Internet-
Draft draft-ietf-ipsec-isakmp-xauth-06, Internet Engi-
neering Task Force. Work in Progress.

Prevelakis, V. and Hamad, M. (2015). A policy-based com-
munications architecture for vehicles. In International
Conference on Information Systems Security and Pri-
vacy, France.

Richardson, M. and Sommerfeld, B. E. (2006). Require-
ments for an IPsec API. Internet-Draft draft-ietf-btns-
ipsec-apireq-00, Internet Engineering Task Force.

Wu, C.-L., Wu, S. F., and Narayan, R. (2001). Ipsec/phil
(packet header information list): design, implementa-
tion, and evaluation. In Li, J. J., Luijten, R. P., and
Park, E. K., editors, ICCCN, pages 206–211. IEEE.

Yin, H. and Wang, H. (2007). Building an application-
aware ipsec policy system. IEEE/ACM Transactions
on Networking, 15(6):1502–1513.

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

558

