On using Colors in UML Models

Gefei Zhang
Hochschule fiir Technik und Wirtschaft Berlin, Berlin, Germany

Keywords: Modeling, Colors, Visual Aid, UML.

Abstract:

Using colors has been recognized by Software Engineering research as helpful to make graphical software

models more comprehensible. However, guidelines of where and how to use colors have been only little
investigated yet. In this paper, we give two simple examples and propose some guidelines of where and how
to use colors in UML models efficiently. Our guidelines may provide valuable help to use colors as a visual aid
of software models and thus reduce the cognitive load of software developers in Model Driven Engineering.

1 INTRODUCTION

Color is an important visual element. It is said to
“have the strongest effect on our emotions” (artyfac-
tory, 2016). Colors are used in a large amount of
graphical documents to show relationships between
ordinal attributes, distinguish different categorical at-
tributes, or to highlight certain parts of the document.

In Software Engineering, techniques of graphical
modeling have been widely adopted. UML (OMG,
2015) and BPMN (OMG, 2011) are two promi-
nent examples of successful graphical modeling lan-
guages. In graphical software models, however, col-
ors still play an insignificant role; many models are
monochrome, although using colors has been recog-
nized as helpful to enhance the comprehension of
software models, see (Reijers et al., 2011; Yusufetal.,
2007).

One of the reasons is that so far there has been
only under proportional research on concrete guide-
lines of where and how to use colors in software mod-
els. In this paper, we show some examples of where
colors may be used in software models, and, based on
the examples, we discuss some dos and dont’s of us-
ing colors. Our examples and discussion are based on
the UML, while the principles are applicable to any
graphical software modeling language.

The remainder of the paper is organised as fol-
lows: in the following Sect. 2 we show where to use
colors by some examples of coloring model elements
of UML diagrams, including both structural and be-
havioral models. Based on the examples, we discuss
in Sect. 3 some dos and don’ts of using colors. In
Sect. 4 we discuss related work, before we conclude

Zhang G.
On using Colors in UML Models.
DOI: 10.5220/0006262605090514

and outline some future work in Sect. 5.

2 WHERE TO USE COLORS

We show where colors may be applied in UML mod-
els by two examples. The first example is a class di-
agram modeling the structure of the well known Ab-
stract Factory pattern (Gamma et al., 1994). In the
second example we consider a state machine model-
ing a simple computer game.

2.1 Using Colors to Group Model
Elements

In software models different colors may be used to
put model elements into different groups. If model el-
ements of the same group are colored with the same
color, and model elements of different groups are col-
ored with colors that are easily distinguishable from
each other, then colors provide a visual aid for the
reader of the model to grasp the groups and under-
stand the model better.

For example, the class diagram shown in Fig. 1(a),
which was taken from (doFactory, 2016), models
the structure of the Abstract Factory design pat-
tern, where ConcreteFactoryl is responsible to cre-
ate instances of ProductA1 and ProductB1, while
ConcreteFactory2 is responsible to create instances
of ProductA2 and ProductB2. Since Fig. 1(a) is
monochrome, the reader has to follow the ar-
rows with dashed lines carefully, which repre-
sent UML dependencies relationships, to realize that

509

In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 509-514

ISBN: 978-989-758-210-3

Copyright (© 2017 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

Client AbstractFactory

+CreateProductAf)
+CreateProductB()

iy

AbstractProductA

ConcreteFactory1 ConcreteFactory2
ZP éﬁ +CreateProductAl) [+ CreateProductAf)
+CraateProductB() +CraateProductB()
ProductA1 ProductA2 T T T T
R) - | |
| | |
| | |
I~ | | |
e J | |
| |
| |
AbstractProductB | |
| |
| |
| |
| |
5% l l
| |
ProductB1 ProductB2 | |
R e e |
|
|
|

(a) Black and white

Client AbstractFactory
+CreateProductAf)
+CreateProductBi)

AbstractProductA

(b) Colored

Figure 1: Abstract Factory Pattern.

ConcreteFactory1, ProductA1 and ProductB1 belong to a
product family, and that ConcreteFactory2, ProductA2 and
ProductB2 belong to another product family. If there
were more product families, this relationship would
be even less obvious.

In Fig. 1(b), we use colors to emphasize the re-
lationship of “belonging to the same product family’:
ConcreteFactory1, ProductA1 and ProductB1 are colored red,
and ConcreteFactory2, ProductA2 and ProductB2 are colored
blue. The classes of the same color are easily per-
ceived as having “something in common”, while the
classes of different colors clearly belong to different
groups. The product family relations are therefore
made more apparent.

2.2 Using Colors to Show Special
Behaviors

In behavior models, relationships between model el-
ements are usually even more complex. The model
reader often needs to understand the interactions of a
whole number of model elements in order to under-
stand the relations between the model elements. Us-
ing colors to highlight these relationships may pro-
vide a visual aid to understand the model more easily.

For example, Fig. 2(a), which was taken
from (Zhang, 2012), shows a UML state machine
modeling the behavior of a player during a certain
part of a computer game. Very simply speaking, the
player—a magician—starts in a state where they has

510

to chose a NewLevel. Upon completion of the prepara-
tions they is transferred into the Play state which con-
tains two concurrent regions, modeling two different
aspects of the magician’s intelligence. The upper re-
gion describes the possible movements of the player:
in each level they initially starts in an entrance hall
(Hall), from there they can move to a room in which
magic crystals are stored (CrystalRoom) and on to a
room containing a Ladder. From this room the player
can either move back to the hall or, after fighting with
some computer figure and winning, exit the level.

The lower region specifies the magician’s possible
behaviors. They may be Idle, gathering power for the
next fight, Spelling a hex, or Fighting. They may escape
from the fight and try to spell another hex, or, if they
wins the fight in the Ladder room, win the level and
move on to another level. Any time while Playing, they
can leave the game and quit. Note that the event quit
has a stereotype <prioritized>, meaning that it has a high
priority and its transition should be fired at once when
quit is received, even if there may be other events in the
event pool.

Moreover, the magician modeled in Fig. 2(a) is not
allowed to spell a hex in the crystal room. That is, the
states CrystalRoom and Spelling must not be simultane-
ously active. This mutual-exclusion rule is modeled
by the interaction of a bunch of model elements: A
variable c is introduced and used to control the access
to the two critical states: it is initialized as 0 in the
entry action of Play, increased whenever CrystalRoom or
Spelling is activated, and decreased whenever one of

On using Colors in UML Models

Play
entry / c=0
(_NewLevel |_[Hall) toCrystalRoom [CrystalRoom) toLadder {adder
ini [c==0] entry / c+ ;enou hCrystal] |
entry / init defer / toCrystalRoom exity/c—— TosePower
do / takeCrystal Level
toHall Won
777 quit
escape [c==0]
(Idle) spell | Spelling \ fight _(Fighting)
defer / train [c==0] entry / c++; defer / escape
" spellHex
exit/ c—;
‘ «prioritized» quit
nextLevel
(a) Black and white
Play
entry / c=0
(NewLevel |_[Hall) toCrystalRoom toLadder | |
. enoughCrystal
entry / init defer / toCrystalRoom Tose oweyr
Level
toHall Won
777 quit
escape [c==0]
° (Idle) spell fight (Fighting
[c== defer / escape
‘ «prioritized» quit
nextLevel
Legend M : mutual exclusion W : prioritized
(b) Colored
Play
entry / c=0
(NewLevel) | [Hall 1) toCrystalRoom [~ CrystalRoom () toLadder (adder| |
ini c==0 enoughCrystal
entry / init defer / toCrystalRoom [c==0] Sgittry//grr ;Iose nCry: T
do / takeCrystal Level
toHall Won
777 quit
escape [c==0]
(Ide) spell (Speling) fight _(~ Fighting
defer / train | [€==0] entry / c++; defer / escape
3 spellHex
exit/ c——;
‘ quid
nextLevel

(c) Using icons

Figure 2: State machine with mutual exclusion.

the two states is deactivated. The three transitions that
activate the two states (from Hall to CrystalRoom, from
Idle to Spelling, and from Fighting to Spelling) are guarded
by conditions, such that they are only fired when ¢
equals 0, which means that the other critical state is
currently inactive and the mutual exclusion rule is sat-
isfied. A subtle point is that we have to declare the
events toCrystalRoom, spell, and escape to be deferrable in
the states Hall, Idle, and Fighting respectively. In this way
the transitions are postponed if the other critical state
is active, and will be automatically resumed without
requiring the events to be sent again. Otherwise the
events would be lost in case exactly one of the critical
states were active, since the event would then be taken

from the event pool without firing a transition.

Since the mutual exclusion behavior is modeled
by the interaction of a bunch of model elements, in-
cluding increment and decrement of variables, check-
ing guard conditions at several transitions, and de-
ferring events, the behavior is hard to comprehend.!
However, we can fill the states CrystalRoom and Spelling
with the same color (in Fig. 2(b): red) to highlight that
these states have “something special”, and, since they
share the same color, this something special is actu-
ally something in common. Moreover, we also give

I Actually, this is an intrinsic issue of standard UML
state machines, see (Zhang, 2012).

511

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

the event quit a color (in Fig. 2(b): blue), highlighting
that it has a special semantics (being handled imme-
diately, even if there are also other events in the event
pool).

Additionally, we put a legend in Fig. 2(b) to make
clear that in the figure, the color red means mutual
exclusion, and that the color blue means high priority.
This way, the fact that the two states are mutually ex-
cluded is efficiently alerted to the reader of the model.

3 DOS AND DON’TS

Based on the above examples of where to use col-
ors appropriately in UML class diagrams and state
machine models, we discuss some dos and dont’s of
color usage, and give a brief comparison of using col-
ors and icons that may be defined as part of stereo-
types, one of the standard UML extension mecha-
nisms.

Use Colors only to provide Redundant
Information, don’t rely Solely on Colors

Colors, as compared with shapes or texts, cannot al-
ways be seen properly. For example, modelers and
software developers may be color blind, or a software
artefact may be printed on paper by a monochrome
printer. Therefore, it is very important not to present
information by colors only. Colors should only be
used to highlight some information that are already
modeled otherwise. The purpose of using colors in
graphical models is rather to enhance the user expe-
rience, letting the user to understand the model more
easily, than to provide information modeled by colors
only.

Keep Colors consistent with the Model, avoid
Inconsistency

Since the information provided by colors should be
redundant, it is important to make sure that this in-
formation is kept consistent to the model when the
model is modified. For instance, if our computer
game evolves to a new version and the behavior of
the computer player in Fig. 2(b) is changed such that
the event quit is no longer prioritized, then its color
should also be removed. Otherwise the reader would
only feel confused.?

2This phenomena is well known in programs with com-
ments that no longer match the code.

512

Use colors only to provide qualitative information,
don’t model precise quantitative information by
colors.

The human cognition of colors is imprecise. Color
nuances are hardly perceived. Therefore, it is better
to use different (distinguishable) colors for model ele-
ments in different categories, rather than using similar
colors for quantitative differences.

Use Colors only to provide Simple, Highlighting
Information, don’t Model Complex Logic with
Colors

Colors are a very good means for highlighting and
alerting. Usually, colors are good to represent simple
notifications rather than complex logic. For instance,
in Fig. 2(b), we used colors only to show that the two
states have something in common, and it is the leg-
end that explains what the common thing is. More
detailed logic, such as how the state machine waits
to enter the critical states, should not be modeled by
colors.

Consider using a Legend, don’t let the Reader
Guess

If some special semantics (e.g., mutual exclusion
in Fig. 2(b)) is highlighted by a color, then it may
be helpful to provide a legend, which explains very
briefly what the color means in a few words. Other-
wise the reader would only see that the colored model
elements are “somehow” different, but usually do not
understand what the difference is.

Prefer Using Colors to Icons

Icons are also used in the UML to show that some el-
ements are “somehow different”. Usually, these ele-
ments are stereotyped, and defined in a so called UML
profile. Stereotyping is actually one of the standard
extension mechanisms of the UML. A stereotyped
model element usually has a semantics which is re-
lated to, but different than that of the base element,
and may be indicated by either the name of the stereo-
type, enclosed in guillemets <« and >, or by an icon,
specified by the stereotype’s designer. For instance,
in Fig. 2(a), the event quit has a stereotype <prioritized>,
meaning that it has a high priority and its transition
should be fired at once when the event is received,
even if there may be other events in the event pool.
In Fig. 2(c), we use icon O to indicate that the
states CrystalRoom and Spelling are stereotyped, and the
icon } to indicate that the transition from Play to the
final state is prioritized. Note that usually the name

and actual semantics of the stereotype are defined in
another document, a so called UML profile. However,
the icons do alert to the reader of the model that the
two states and the transition are different than normal,
non-stereotyped states and transitions.

While icons can also be used to show that some
model elements are different than standard model ele-
ments, they usually take only a small part of the model
element, and are less prominent than colors. It is eas-
ier to see colors than icons. Also, difference between
colors is easier to perceive than difference between
icons. Therefore, colors are more suited to highlight
differences between model elements. On the other
hand, colors and icons may be used complementar-
ily, and icons may be colored. The above discussion
about dos and dont’s also applies to using colors in
icons.

4 RELATED WORK

It has been recognized that colors may be helpful
to enhance the understanding of software models,
see (Yusuf et al., 2007), focusing on UML class di-
agrams, and (Reijers et al., 2011), focusing on Petri
Nets, although these papers do not contain guideline
for the use of colors. Some guidelines regarding lay-
out of model elements are published in (AgileMod-
eling, 2016), and in (Mendling et al., 2010) the au-
thors make recommendations of the elements to use
in graphical models, e.g., that OR branching should
be used as little as possible. In these guidelines, col-
ors are not considered. To the author’s knowledge,
our paper is novel in that we provide guidelines of
where and how to use colors in UML class diagrams
and state machine models.

In programming, modern IDEs, such as Eclipse?
and IntelliJ IDEA*, usually display different elements
of a program, such as keywords, identifiers, numbers,
strings, comments, etc., in different colors, and users
can have individual settings of these colors. More-
over, simple static analysis techniques are applied, so
that erroneous code and code with bad smells, e.g.,
unused variables, are also shown in different colors
than “normal” code. This way, the programmer re-
ceives visual aids to structure and understand the pro-
gram better, and to see potential errors in the pro-
gram. To the author’s knowledge, guidelines of how
to use colors in programs have not been investigated
and published yet.

3http://www.eclipse.org/
“http://www.jetbrains.com/idea/

On using Colors in UML Models

S CONCLUSIONS AND FUTURE
WORK

We have given two examples of where to use colors
as a visual aid in UML diagrams. We considered both
structural and behavioral modeling. Based on the ex-
amples, we proposed some guidelines of how to use
colors in UML diagrams.

Future work includes development of modeling
tools to enable convenient modeling with colors, and
empirical studies on the effectiveness of our guide-
lines. We also plan to extend our guidelines to cover
other graphical modeling languages, such as BPMN
and Petri Nets.

ACKNOWLEDGEMENTS

This work has been partially sponsored by the project
“Anwendungszentrum creative Applied Interactive
Technologies” (cAPITs) of the European Regional
Development Fund.

REFERENCES

AgileModeling (2016). Modeling Style Guidelines.
http://agilemodeling.com/style/. Accessed on 2016-
11-16.

artyfactory (2016). The Visual Elements—Color.
http://www.artyfactory.com/art_appreciation/visual-
elements/color.html. Accessed on 2016-11-16.

doFactory (2016). http://www.dofactory.com/net/abstract-
factory-design-pattern. Accessed on 2016-11-16.

Gamma, E., Johnson, R. H. R., and Vlissides, J. (1994). De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison.

Mendling, J., Reijers, H. A., and van der Aalst, W. (2010).
Seven Process Modeling Guidelines (7PMG). Infor-
mation and Software Technology, 52(2):127-136.

OMG (2011). Business Process Model and Notation, Ver-
sion 2.0. Specification, Object Management Group.
http://www.omg.org/spec/BPMN/2.0/PDF/, Accessed
on 2016-11-16.

OMG (2015). Unified Modeling Language, Version
2.5. Specification, Object Management Group.
http://www.omg.org/spec/UML/2.5/PDF/, Accessed
on 2016-11-16.

Reijers, H. A., Freytag, T., Mendling, J., and Eckleder,
A. (2011). Syntax Highlighting in Business Process
Models. Decision Support Systems, 51(3):339-349.

Yusuf, S., Kagdi, H., and Maletic, J. I. (2007). Assess-
ing the Comprehension of UML Class Diagrams via
Eye Tracking. In Proc. 15" IEEE Int. Conf. Program
Comprehension (ICPC’07), pages 113-122. IEEE.

513

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

Zhang, G. (2012). Aspect-Oriented Modeling of Mutual
Exclusion in UML State Machines. In Vallecillo, A.,
Tolvanen, J.-P., Kindler, E., Storrle, H., and Kolovos,
D. S., editors, Proc. 8" Eur. Conf. Modeling Foun-
dations and Applications (ECMFA’12), volume 7349
of Lect. Notes Comp. Sci., pages 162—-177. Springer-
Verlag.

514

