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Abstract: The paper describes a lightweight mechanism for authorizing access to IoT resources within distributed sys-
tems. As more and more IoT devices arise, the demand for privacy and security increases. But since current
solutions are developed for conventional devices, the paper pursues the target of simplifying and applying ap-
proved technologies, such as OAuth, to meet special requirements of IoT devices. Therefore, the implemented
architecture follows the idea of sourcing the access control logic out, simplifying the logic of the IoT device.
Furthermore, the great diversity and fast change of IoT environments is supported by flexible policies and a
dynamic and scalable access control system. Performance tests show that sourcing the access control logic out
also helps to reduce the amount of consumed memory on an IoT device, in case that complex access logic is
given.

1 INTRODUCTION

Though the Internet of Things (IoT) is an emerg-
ing market, its popularity and chance of success is
highly associated with its safety and security. The
added value in the fields of assisted living (e.g. Smart
Home), sustainability (e.g. Smart City) and cost-
efficiency (e.g. Industry 4.0) contributes to IoT be-
ing a trendsetting technology. Due to private, pub-
lic and economic actors as key drivers, IoT services
are characterized by a large heterogeneity and a grow-
ing number which makes security concerns even more
serious (Zhang et al., 2014). Since the internet is
still the core of IoT, old security issues become more
important while new risks arise: Next to data se-
curity and privacy, the physical safety of machines
and human operators is a new aspect which need to
be considered when implementing IoT systems. But
IT security models are mostly designed for conven-
tional systems with high computing power and large
hard disk capacities, whereas IoT devices only pro-
vide limited resources (cf. Section 2.1) in terms of
CPU performance, memory capacity and energy sup-
ply (Jing et al., 2014). Further on, these limitations
must be involved in the process of implementing a
secure environment for IoT devices: As well as IoT
itself, security models must be scalable, manageable,
lightweight and must perform properly in distributed
systems (Gusmeroli et al., 2012).

This work therefore focuses on the special secu-
rity subtask of access control, i.e. who can access
which IoT services and data under what conditions. It
investigates the question of how approved techniques
can be simplified and applied to an IoT environment,
providing secure access to IoT resources while meet-
ing specific needs of IoT devices. Furthermore, it
needs to be analyzed if the great diversity and fast
pace of IoT environments can be covered by flexible
policies and their dynamic configuration. The goal
of our work is to outsource access control logic us-
ing widely established technologies such as OAuth.
By outsourcing the access control application logic to
a more powerful network participant, the actual de-
vice will be relieved. Outsourcing the access control
logic to a centralized component must be done with
respect to the constraints, given in the IoT context and
the challenges that come up in distributed systems.
In addition to the relief of the IoT device, the cen-
tralization of the access control system moreover en-
ables a redundancy-free and consistent management
of the access policies by which no synchronization
of access control information between IoT devices is
needed. The main focus of attention is the authoriza-
tion on the basis of Attribute Based Access Control
(ABAC) together with the employment of a User-to-
Token approach (Sandhu and Samarati, 1996) to min-
imize authentication and authorization efforts at the
IoT device. Thus, an access control system with a
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specific policy language is implemented, providing a
well performing authorization structure to outsource
access control logic. Furthermore, this approach en-
ables a dynamic configuration of IoT devices to user
privileges. It is easy to express who might access
which devices under what conditions and to change
this configuration.

One application scenario for such a system is a
smart home, where heating, lights or garage doors can
be controlled remotely and the front door locks/un-
locks automatically once dedicated devices enter or
leave a range of 1m. Heating and lights might be (re-
motely) controlled either by the residents or anyone
who is actually inside the house. The front door and
the garage door might be controlled from dedicated
devices, e.g. dedicated smart phones. Therefore, dif-
ferent policies are required that check different condi-
tions like is a resident or is inside the house.

This work first provides a basic understanding of
the applied technologies and procedures (Section 2).
This leads to the conceptual architecture (Section 3),
whereupon a basic proof of concept is implemented
and evaluated (Section 4). Further on, the paper refers
to related work (Section 5). Finally, we draw some
conclusions and indicate future work (Section 6).

2 FOUNDATIONS

This section describes the foundations of this work,
introducing key characteristics of IoT devices and
existing technologies upon which the architecture
builds.

2.1 IoT Devices

IoT describes the networked integration and inter-
connection of formerly unconventional everyday ob-
jects with embedded systems into the internet. After
making the devices communicative by IP addressing,
the physical objects are now represented as Cyber-
Physical Systems (CPS) in a network. As a conse-
quence and due to their sensors and actuators, the
devices are capable of monitoring, operating, regu-
lating, optimizing and mining data. But as already
stated in Section 1, IoT devices lack of some charac-
teristics, compared to traditional technical appliances
(Gusmeroli et al., 2012; Jing et al., 2014):

Processing Performance and Memory Capac-
ity. Due to cost efficiency, devices are highly ori-
ented according to their target applications and needs,
which is why simple devices may only provide small
processors with low computing power. The same ap-
plies to the availability or capacity of memory.

Energy Supply. Moving devices are usually pow-
ered by batteries: Hence, their power supply is lim-
ited. This is why IoT devices must consume as little
energy as possible.

Bandwidth. A low connectivity can be a result of
operating in outdoor environments, requiring wireless
communication.

Updatability and Connectivity. Being dis-
tributed, updating IoT devices or whole environments
can be tough, once the system is in live operation.
Further on, IoT devices must be accessible by vari-
ous other devices and applications.

These limitations cause consequences in design
requirements for IoT applications:

Distributed Architecture. Outsourcing applica-
tion logic to powerful hosts reduces the processing
efforts of the actual IoT devices. Representational
State Transfer (REST) (Fielding, 2000) is an archi-
tectural style to describe highly scalable and well per-
forming, distributed systems. Therefore, REST is an
ideal candidate to build IoT applications on. Still, the
communication has to be reduced, using lightweight
protocols for instance.

Customized Scope of Application. The highly
tailored integration of software and hardware often re-
stricts IoT devices to very specific functions. There-
fore, the main focus of its software and processing ca-
pacity lies on the core application which allows addi-
tional logic (such as access control) to be outsourced.

Real-Time Ability. Availability and fast response
times are frequently demanded. On the application
layer, a lean software with as little processing time as
possible supports the requirement of quick responses.

Protocols. Since HTTP supports REST and is
one of the most widespread royalty-free protocols, it
brings together as many devices and applications as
possible.

After an awareness of the limitations of IoT de-
vices has been created, it is clear that IoT environ-
ments need adjusted architectures to fulfill their re-
quirements.

2.2 OAuth

OAuth is an open protocol, designed to share user data
(resources) between HTTP clients and server applica-
tions without revealing user credentials (Boyd, 2012;
Sun and Beznosov, 2012). Version 2.0 of the proto-
col is defined by the Internet Engineering Task Force
in RFC 67491. The protocol introduces four major
roles:

Resource Owner. The subject that is capable
to grant or prohibit access requests to dedicated re-

1https://tools.ietf.org/html/rfc6749
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Figure 1: OAuth - Client Credential Grant flow.

sources. This role is also referred to as User in case
that the resource owner is a human.

Resource Server. The aforementioned resources
are located at a resource server. The server only grants
access to the resources if the requesting party has a
valid access token.

Client. A client is an application that wants to
access protected resources of another application.

Authorization Server. A server that assigns ac-
cess tokens to clients, depending on the access deci-
sion of the resource owner.

OAuth also specifies several authorization flows
such as the Authorization Code flow, also known as
Web Server flow: A user (a resource owner) utilizes
an user agent, such as a browser, to access a client ap-
plication. The client application wants to access pro-
tected resources and therefore starts the OAuth pro-
cess. A redirect response from the client application
to the authorization server is returned back to the user.
For example, if the client application wants to access
the user’s data on Facebook or Twitter, the client ap-
plication sends a redirect to an authorization server,
including the privileges (scopes) that the client appli-
cation asks for. The user agent performs this redirect
and the authorization server responds with an autho-
rization interface. The user might enter its credentials
and either grant or prohibit the access request. If the
request is granted, the authorization server creates an
access code and returns it back to the user agent. The
agent in turn forwards it to the client application. The
client application can now request an access token
from the authorization server using the access code.
Once a valid access code is sent to the authoriza-
tion server, the server responds with an access token
that can be used to access the resource. The resource
server validates the access token either by asking a to-
ken inspection endpoint of the authorization server or
by checking the signature of the token. If the token is
valid, the server reads the associated scope informa-
tion of the access token and returns the requested re-
source to the client. To summarize, an user delegates

access rights on his own data from one application to
another application. These are ad hoc interactive de-
cisions by a resource owner using a browser (or more
generally, an user agent). Access rights are conveyed
as scopes which are identifiers with a simple struc-
ture. It is the task of the resource server to translate
the scope into an access right. Beyond this delegation
of access to owned resources, OAuth does not specify
any kind of access control model (defining who can
access which resources under what conditions).

OAuth’s Client Credential Grant flow (cf. Figure
1) is a simplified version of the Authorization Code
flow. In this case, clients are allowed to access re-
sources without asking the user for permission. This
case can be used, if the client itself owns the data or if
there is a previous arrangement with the authorization
server (RFC 6749, section 4.4, p. 39).

2.3 ABAC with RestACL

Due to the fact that IoT devices are integrated in dis-
tributed systems, an efficient access control system,
which meets the requirements of such environments,
is required. The large heterogeneity and a growing
number of devices must also be supported, as well
as an increasing complexity of access rules. In con-
trast to traditional access control models, Attribute
Based Access Control (ABAC) seems to be an appro-
priate concept that can handle these needs (Ferraiolo
et al., 2015). Role Based Access Control (RBAC), for
example, builds on thoughtful role engineering with
which users are assigned to certain roles. Permission
is associated with these roles, no matter which other
conditions exist. If only few roles exist, RBAC can
be the model of choice, but with a growing variety,
RBAC reaches its scalability limit as you cannot de-
fine roles for every single access condition without
facing explosions in the number of roles (Gusmeroli
et al., 2012). The advantages of ABAC show up with
the need of complex, various and frequently chang-
ing access policies. Its biggest benefit is the flexibil-
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ity, as permission can be assigned to entities whose
attributes meet the criteria of certain policies: Per-
mission is no longer related to roles, but to attributes.
Permission to access other information can depend on
additional policies by which externals, such as after-
sales services, can monitor the devices.

Due to the higher complexity of evaluation,
ABAC needs an efficient access control mechanism.
(Hüffmeyer and Schreier, 2016a) introduces the REST
Access Control Language (RestACL) which is suited
for resource oriented environments due to its scala-
bility and utilization of the concepts of Representa-
tional State Transfer (REST) (Fielding, 2000). Fur-
thermore, RestACL is built on the paradigms of the
ABAC model (Hüffmeyer and Schreier, 2016b).

RestACL uses so called Domains to map between
resources and access policies. An entry consists of a
resource, addressed by a Uniform Resource Identifier
(URI), and subresources of that resource are mapped
to access policies. Listing 1 shows a RestACL do-
main. The domain contains one resource (the garage
door from the application scenario) and GET or PUT
access to this resource is handled by policy P1. Send-
ing a PUT request to the state subresource of the
garage resource might open or close the physical
garage door. Sending a GET request reads the ac-
tual state which allows to check whether the door is
opened or closed. Policy P1 checks whether the PUT
request is sent from a dedicated device. For exam-
ple, a dedicated device might be the smart phone of a
single resident.
{
"uri":"https://my.smarthome.com",
"resources":[{
"path":"/garage/state",
"access":[{
"methods":["GET, PUT"],
"policies":["P1"]

}]
}]

}

Listing 1: A RestACL domain protecting one resource.

During the winter break, the residents now might
go to holiday. While the residents are on vacation, the
neighbors might be allowed to park inside the garage.
Therefore, a new policy P2 can be created that checks
if the requesting subject is the device of the neighbor
(using a first attribute like a device code) and if the
date is during the holidays of the residents (using a
second attribute like date/time). This policy can be
simply added to the policies that control access to the
garage door state to enable the neighbors to open or
close the garage door.

Due to space limits, Listing 2 shows a simpler
RestACL policy which checks against the attributes of

an access control request: According to the function
and its arguments, an effect is returned, if the
function computes to true. To access the garage
state resource mentioned in Listing 1, the value of
the attribute (the device code to identify dedicated
devices) must be equal to 123456789. If this applies,
the access request is permitted, which means that the
requesting subject is allowed to access the resource.
The implemented prototype therefore takes advantage
of RestACL as its security mechanism along with
ABAC as its security model.

{
"policies":[{
"id":"P1",
"effect":"permit",
"priority":"1",
"condition":{
"function":"equal",
"arguments":[{
"category":"device",
"designator":"code"

},{
"value":"123456789"

}]
}

}]
}

Listing 2: A RestACL policy depending on the device
code attribute.

Listing 3 shows an access control request using
RestACL. The above mentioned domain entry is used
to map such a request to a policy (cf. Listing 1). The
attributes of the access control request are then eval-
uated against the access conditions, specified in the
policy. Resource orientation matches both the dis-
tributed system and the access control logic and there-
fore enables a fast mapping of security policies, based
on the resource and the access method. Domains and
policies are held in different Repositories which en-
ables a simplified and independent permission man-
agement.

{
"uri":"https://my.smarthome.com/garage/state",
"method":"PUT",
"attributes":[{
"category":"device",
"designator":"code",
"value":"123456789"

}]
}

Listing 3: A RestACL access control request containing the
device code attribute.
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3 ARCHITECTURE

The architecture benefits from the advantages of
ABAC and regards the limitations of IoT devices:
Outsourcing the access control system simplifies the
actual application logic, but raises the communica-
tion effort. The centralized repositories as shared re-
sources furthermore implicate benefits, such as non-
redundancy, changeability and data consistency. The
system can simply be extended, as only the domains
and policies of new resources have to be added to the
central repositories. Thus, it allows the integration
and modification of both resources in the environment
and protection rules in the access control system with
little effort. Due to its architecture, the system is an
example for following the principles of REST.

3.1 Design Guidelines

Outsourcing access control logic is not a trivial task
and the architecture of the distributed access control
system should respect the following design guide-
lines.

Reduced Device Efforts. The CPU and memory
load of the IoT devices are to be reduced. Therefore,
an easy manageable, centralized access control sys-
tem with a dynamic configuration of resource permis-
sion is required.

Simplified Client Authentication. All clients
have to authenticate themselves to the IoT device, ex-
cept trusted clients. Therefore, a token approach is
used to reduce authentication efforts at the IoT de-
vice side. A more powerful Authorization and Access
Control Server carries the authentication efforts and
issues Tokens that can be easily validated at the device
side. Therefore, no complex authentication procedure
is necessary between clients and IoT devices. Hence,
even the trust mechanism is relocated from the IoT
device to the authorization and access control server.

User Authentication. Besides authentication of
client applications, authentication of users has to be
considered when access conditions depend on user at-
tributes. If the client is trusted by the server, the client
might handle the user authentication itself and simply
include user attributes in the token request. Other-
wise, more complex solutions could redirect the user
authentication to the authorization and access con-
trol server using for instance the OAuth Authorization
Code flow. This scenario would enhance the system
towards a complete identity and access management.
Since the research questions of this paper remain in
both cases the same, the implemented solution as-
sumes the simpler case of trusted clients although the
architecture supports both cases.

The following architecture assumes that user at-
tributes are part of the RestACL access control re-
quest (cf. Listing 3) and that the client can be trusted
directly by the authorization and access control server.
Mechanisms to establish trust in the triangle user, ac-
cess control and IoT are not in the scope of this paper.

Configuration Regulations. All IoT devices
must be registered at an authorization and access
control server. The authorization and access control
server information is deposited whilst the setup of the
IoT device by a policy engineer. Note that this might
be automated, depending on the application. The con-
figuration includes setting of the token lifetime and of
policy preferences.

Scalability. Several authorization and access con-
trol servers must be capable to manage a variety of
IoT devices. As further authorization and access con-
trol servers and especially IoT devices can be inte-
grated dynamically, the architecture must be scalable
and highly flexible to support various kinds of appli-
cation and access logic.

Flexibility. Various types of access conditions
must be representable. Therefore, permissions are
only granted on the basis of attributes. The authoriza-
tion and access control server checks access rights of
all clients according to the attributes. The attributes
must comply with the semantics of the access poli-
cies.

Privacy. The transmission protocol is generally
universal. Nevertheless, a secure (and private) trans-
mission must be ensured (Section 4.1).

Reduced Communication Overhead. As the
least possible communication effort is intended, the
number of exchanged messages must be reduced to
a minimum. Hence, the IoT device should not con-
sult the authorization and access control server after
receiving a token.

3.2 Components and Communication
Flow

Sharing data with multiple users is a crucial require-
ment in IoT environments. Because an IoT device
might provide several resources, it might not be suf-
ficient to ask for user permission every time a re-
source is requested. Therefore, we utilize an attribute-
based access control system, that enables the user to
specify various kinds of access policies at the autho-
rization and access control server side. In addition,
we used the concept of Client Credential Grant flow
(with slight modifications of the request and response
formats) as token flow sequence between clients, au-
thorization and access control server and IoT devices.
Using this combination enables a much more dynamic
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access control system that is founded on established
technologies. If a client requests access to a resource
of an IoT device, the authorization and access control
server checks if the access policies for this resource
are met before granting an access token.

Figure 2: Distributed Access Control Architecture.

Figure 2 depicts the components and the main
communication flow. Once an IoT device is set up and
the URI of the authorization and access control server
is configured, the device starts its one-time configu-
ration process. Therefore, the device sends config-
uration data to the authorization and access control
server (Message 1). These data contain the token life-
time as well as the access policies that must be eval-
uated, in case the resources of the device are tried to
be accessed. If the configuration data are valid, the
authorization and access control server responds with
a verification key that can be used to validate access
tokens that are issued by this authorization and ac-
cess control server (Message 2). From now on, the
IoT device does not need to contact the authorization
and access control server again. Note that the devices
still might send changes of the access configuration to
the authorization and access control server if desired.
Resources are directly addressable, using their unique
URI. If a client requests a resource of the IoT device,
a token (including a signature) is expected and must
be successfully validated. Otherwise the IoT device
must not grant access to the resource. The IoT device
therefore compares the actual request to the request
conditions, given by the token (e.g. the device com-
pares whether the source IP address of the incoming
request matches the client IP address mentioned in the
token). If the request matches the token and the valid-

ity period has not already been expired, access can
basically be granted.

A client now may authenticate itself to the autho-
rization and access control server and ask for a token
(Message 3). Therefore, the client sends the user au-
thentication data as well as request data (the URI of
the desired IoT resource, the access method and, in
case that the client is trusted, the subject attributes,
which are supplied by the client). Further attributes,
e.g. attributes of the requested resource or environ-
mental attributes, like the actual date, are allocated at
the authorization and access control server. If the au-
thentication procedure was successful and the policy
evaluation indicates that the client is allowed to ac-
cess the resources, the authorization and access con-
trol server issues a token and returns it back to the
client (Message 4). The implemented prototype uses
special HTTP status codes to indicate whether a to-
ken could be issued. If a token was issued, the autho-
rization and access control server responds with the
code 280 and returns the token. If the token could
not be issued, the server responds with the status code
480. Note that Figure 2 shows a simplified version
of the communication flow to increase the readability.
Clients likely do not know the related authorization
and access control server, if they try to access a re-
source of an IoT device for the first time. Therefore,
a client usually tries to access the resources of an IoT
device without a token. The IoT device then refuses
this request and responds with a redirect that points
to its related authorization and access control server.
From now on the client might ask the authorization
and access control server for an access token before
trying to access the resource of the IoT device.

Finally, the client contacts the IoT device, trans-
mitting the issued token (Message 5). If the to-
ken matches the request and the signature is valid,
the resource is returned (Message 6). The imple-
mented prototype does so by using special HTTP sta-
tus codes: 290 for a successfully validated request,
490 in case that the validation has failed.

For example, the resident of the smart home might
want to open his garage door. The resident there-
fore sends a request to the authorization and access
control server containing his authentication data. The
authorization and access control server loads various
attributes of the requesting subject, the requested re-
source and environmental attributes like the actual
time and date. In the application scenario, for ex-
ample, the authorization and access control server
loads at least the device code attribute of the re-
questing device. The authorization and access con-
trol server therefore either must implement its own at-
tribute repository or employ external attribute sources
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such as identity providers to load the attributes. De-
tails about attribute provisioning can be found in
(Hüffmeyer and Schreier, 2016c). Note that clients
might also send attributes in case that the client can be
trusted. The authorization server formulates an access
request and passes the access request to a RestACL
engine. The engine then checks which policies need
to be evaluated in order to access the garage state re-
source. These policies are then evaluated against the
attributes. If the evaluation was successful, the au-
thorization and access control server delivers a signed
access token back to the resident. Using this token,
the resident now can open the garage door.

3.3 Token Concept and Integrity

Tokens provide the link between authorization and ac-
cess control servers and IoT devices and replace their
direct communication. Although clients need to ask
the authorization and access control server for a to-
ken, they are not generally valid, but issued for ded-
icated requests. If the attributes of a user match the
access policy of the authorization and access control
server, the client is given a refined and specialized
OAuth like token. Considering Listing 4, tokens con-
tain the scope of the request (or a set of requests).
Therefore, a token has a validity period (resp. a ex-
piration time stamp) and contains all IP addresses of
all requesting subjects. Since the authorization and
access control server only authorizes explicit requests
and returns customized tokens, the IoT device simply
has to verify the terms of the token against the ac-
tual request (see Section 4.1 for thoughts on Replay
Attacks). If the token matches the request, access is
granted. Due to a signature, tokens cannot be modi-
fied during their transference.

{
"token":[{
"lifetime":"01.01.2017 12:01:00",
"resources":["https://my.smarthome.com/

garage/state"],
"device":"https://my.smarthome.com/garage",
"client":"1.2.3.4",
"auth_server":"https://my.smarthome.com/

authorization",
"method":"GET"

}], "signature": [{
"value":"1a7b6062c6fb8fc2511036df6178 ..."

}]
}

Listing 4: A sample token as issued by the authorization
and access control server.

Every token is signed after its creation with a hash
value. To ensure integrity, the hash value is encrypted
by the authorization and access control server with

a private key. The authorization and access control
server provides the corresponding public key (the ver-
ification key) to IoT devices during its configuration
process. Knowing the public key, the IoT device can
decrypt the signature and compare it with its own hash
computation to validate the integrity. To verify the in-
tegrity of the token, the IoT device hashes the token it-
self, decrypts the signature of the token and compares
both hash values. If they match, the token is valid and
the resource is returned to the client – if they differ,
the token has been modified during its transmission
(Section 4.1) and an error code is returned. Although
every participant can possibly decrypt the signature
(when knowing the public key), none of it can encrypt
a modified hash value, since the private key is merely
known by the authorization and access control server.
Furthermore, only authenticated clients can apply for
a token at the authorization server. Hence, no more
authentication against the IoT device is required.

4 PROOF OF CONCEPT

The proof of concept focuses on centralized access
control in distributed systems combined with token
concepts. It therefore only provides one component
in a whole security environment, as stated in Section
4.1. In return, it takes a closer look at the integration
of a particular access control system. Further on, the
concept realizes the setting of the token lifetime, an
entry in the domain repository and the applied access
polices through manual input at the IoT device. The
system relies on HTTP using proprietary status codes.
It makes use of HTTP, also because of its benefits,
such as the native support for mobile devices, the con-
venient usage within Jersey2 and the free use, due to
it being an open standard. It can also be replaced by
HTTPS subsequently. Further on, all of the data is
transmitted within header fields.

4.1 Security and Privacy
Considerations

As the concept offers a security mechanism on the
application layer, it can rely on additional security
mechanisms such as Transport Layer Security (TLS)
and authentication procedures. As the proof of con-
cept focuses on the interaction of RestACL, tokens
and IoT devices, it provides integrity of a token due its
signature (encrypted hash) in a first version. In a sec-
ond version End-to-End Encryption (E2EE) is used
to fully encrypt the token. This ensures privacy and

2https://jersey.java.net
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prevents identity theft or Man-in-the-Middle Attacks.
To enable E2EE, a symmetric key is exchanged be-
tween the authorization and access control server and
every IoT device during its configuration phase (af-
ter the public key has been received): This PreShared
Key (PSK) cannot be spied out due to its asymmetric
encryption. In addition, replay attacks can be avoided
by including a unique usable Nonce to ensure that ev-
ery request is fresh.

4.2 Experimental Results

The implementation uses a Raspberry Pi 3 Model B
as its IoT device: It features a quad-core System on
a Chip (SoC) ARM processor with 1.2 GHz CPU
speed, 1 GB RAM and a (wireless) network interface.
It offers 4 resources, mapped to 3 physical compo-
nents: A temperature sensor, which constantly writes
the temperature into a file, can be accessed with a
GET request. Next, a LED diode can be switched
on briefly, using a PUT request. POST and DELETE
requests are represented by a LCD module, which the
client can write on or clear. Further on, the autho-
rization and access control server and the client are
represented by a 3.2 GHz iMac (4 GB RAM) and a 2
GHz MacBook (8 GB RAM) within one wireless net-
work. Note that the 1.2 GHz Raspberry Pi 3 is still
a very powerful device and considerably longer run-
times are expected when running on smaller devices
(such as the ESP82663).

The scalability depends on a dynamic integration
of entities, policies and resources into the environ-
ment and into the access control mechanism. Since
an authorization and access control server must han-
dle several IoT devices, which can have multiple re-
sources, RestACL must evaluate quickly, even when
the sizes of the repositories rise. Table 1 lists the av-
erage runtime for an access control request and its
evaluation with the help of RestACL (running on the
2 GHz MacBook) according to the amount of poli-
cies and domains. Table 2 shows the total memory
consumption is shown. As the experimental results
of (Hüffmeyer and Schreier, 2016a) already prove,
the runtime remains at a constant level although the
amount of domains and policies rises and the mem-
ory consumption increase.

To meet further needs of IoT devices, the process-
ing power and memory consumption has to be re-
duced. It is therefore to question if an own access
control mechanism on the side of every IoT device
performs better than the presented architecture. Ta-
ble 3 shows the result of a comparison between the
three different security mechanism implementations,

3https://espressif.com/products/hardware/esp8266ex

all running on the Raspberry Pi: V1 lists the runtime
when an IoT device implements its own RestACL
mechanism. Note that there will be additional ef-
forts, related to the authentication procedure which
was not included in the test series. In V1, these efforts
have to be provided by the IoT device additionally. V2
lists the performance of the asymmetrically encoded
signature (based on RSA and SHA-512), comparing
a plain token to a request, generating an own signa-
ture and comparing both signatures (as implemented
in Section 4). V3 represents end-to-end encryption of
the whole token and therefore uses symmetric token
decryption (based on AES and PSK) and compares
the token to a request.

According to the test series, the required CPU pro-
cessing power can be relieved best with a symmetri-
cally encrypted token (V3) since its efforts are close to
the efforts of the on-board RestACL system (V1) that
lacks the authentication procedure. Again, we expect
these results to differ if less powerful IoT devices are
employed. In terms of memory consumption, the best
solution depends on how many resources and poli-
cies must be supported. For larger amounts of re-
sources or policies V2 and V3 show clearly lower val-
ues while for small amounts of resources and policies
V1 shows slightly better values. It can also be found
that RestACL is much more powerful when running
on a conventional device than running on a SoC (com-
paring the runtime in Table 1 and Table 3). The same
can be expected for an authentication procedure. The
most remarkable thing that one can see from Table 2
is that the On-Board solution shows variable memory
consumption depending on how many access policies
must be supported. In contrast, the outsourced so-
lution shows fixed (and therefore predictable) values.
The required memory only depends on the implemen-
tation of the encryption library.

Next to scalability and single processing times, the
overall runtime of a request (from the very first re-
quest of the client to the last received response) is a
further key question. Adding the propagation delay
tPd (nodal processing and queueing) and the network
transmission delay tNw to the runtime tV x of one of the
access control procedures (V1, V2 or V3), the overall
runtime tTotalVx is as follows:

tTotalVx = tPd + tNw + tVx

Therefore, tTotalV1 can be computed as:

tTotalV1 = tPdC + tPdIoT +2∗ tNwC−IoT + tV1

with tPdC being the propagation delay on the client
side, tPdIoT being the propagation delay of the IoT de-
vice and tNwC−IoT being the network runtime between
client and IoT device.
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Table 1: Evaluation runtimes.

Policies
Domains 10 100 1.000 10.000

10 0.14 ms 0.14 ms 0.15 ms 0.15 ms

100 0.14 ms 0.14 ms 0.15 ms 0.15 ms

1.000 0.14 ms 0.14 ms 0.15 ms 0.16 ms

10.000 0.14 ms 0.14 ms 0.15 ms 0.16 ms

Table 2: Memory consumption.

Policies
Domains 10 100 1.000 10.000

10 1.25 MB 1.32 MB 1.92 MB 7.93 MB

100 1.32 MB 1.38 MB 1.97 MB 7.99 MB

1.000 1.87 MB 1.93 MB 2.52 MB 8.09 MB

10.000 7.35 MB 7.41 MB 8.0 MB 14.02 MB

Table 3: Security mechanism implementations.

Procedure Runtime Memory
V1: On-board 4.98 ms cf. Table 2
V2: Asymmetric 34.64 ms 1.7 MB
V3: Symmetric 5.22 ms 1.7 MB

Regarding V2 and V3, tTotalVx depends on whether
the client application performs an initial access re-
quest to the IoT device without knowing the autho-
rization and access control server and therefore with-
out a token. tPdC , tPdIoT and tNwC−IoT need to be consid-
ered twice in the very first request if the client appli-
cation is capable to store the authorization and access
control server address for each IoT device (cf. Sec-
tion 3). If the client application is not capable to do
so, they need to be considered twice for every access
request.

tTotalV2/3 = tC−AS + tC−IoT + tV2/3

with

tC−AS = tPdC + tPdAS + tNwC−AS

tC−IoT = tPdC + tPdIoT + tNwC−IoT

Because the propagation delay and network runtimes
depend on various conditions, no absolute test series
is adequate. But in general one can say that net-
work runtimes are usually in the dimension of hun-
dreds of milliseconds. Taking the long overall run-
time into consideration, the decision of sourcing ac-
cess control out becomes rather a question if a central-
ized, manageable access control system is required.
Notably faster runtimes can not be expected, but the
memory consumption can be reduced to a fixed and
therefore predictable value on the IoT device. In case
that multiple resources are provided by the IoT device
and those resources have multiple individual access

policies, the memory consumption can be remark-
ably reduced. Consideration should also be given to
the fact that, if authentication was implemented, the
client would have to authenticate against the IoT de-
vice, leading to a longer runtime of V1 and to a higher
memory consumption of the IoT device. Besides the
performance differences, the major benefit of an out-
sourced access control system is the simplification
of policy management, that allows to apply, create,
change and remove access permission on multiple de-
vices in a centralized fashion.

5 RELATED WORK

User Managed Access (UMA) is based on the OAuth
protocol and thus also offers authorization. It focuses
on keeping user login data secret, while allowing third
parties access to protected resources. It therefore sim-
ply passes on Credentials instead of unveiling the
actual access information (Machulak et al., 2010).
UMA generates more communication overhead, as all
clients have to be registered in advance and on ac-
count of further requests between the resource and
the authorization and access control server. Consid-
ering this, the benefits of the introduced architecture,
such as a lower complexity and less communication
overhead, are explained. However, UMA does nei-
ther recommend or specify an explicit access control
mechanism, nor a policy language, nor the process
of validating a token. Therefore, the example archi-
tecture is a streamlined instance of an UMA imple-
mentation with RestACL as its access control mech-
anism, creating less communication effort and being
specified for the demands of IoT devices. It focuses
on the part of authorization, which is why the autho-
rization structure is significantly more developed than
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specified in the core protocol of UMA. Unlike UMA,
the approach of this paper presupposes requirements
which allow a simplification of the UMA protocol.

Problems with outsourcing and sharing data are
discussed in (di Vimercati et al., 2007). De Capitani
di Vimercati et al. challenge the problem of shar-
ing data in distributed systems without providing it to
the public by using selective encryption. Therefore,
shared resources are encrypted using a key. Tokens
are derived from that key and can be used to access
the shared resource. The approach focuses on encryp-
tion and the derivation of keys. Access methods are
always expected to be read only and an authorization
is defined as a double of user and resource whereby
users also can be groups.

(Gusmeroli et al., 2012) focuses on a Capability
Based Access Control (CapBAC), having a token as
a representation of the capability to access resources.
In contrast to this paper, the initial credential is issued
by the owner of the resource, not by an authorization
and access control server. Furthermore, no semantics
of the access rules are defined.

As Section 4.2 already shows, IoT devices lack
of efficient decryption algorithms with which faster
processing times could be accomplished. (Zhang
et al., 2014) mentions that designing lightweight cryp-
tographic systems is still a challenging task: While
a public key system offers data integrity, data pri-
vacy and is suited for authentication, it produces more
computational overhead.

Constrained Application Protocol (CoAP) is
stated as an appropriate protocol for Machine-to-
Machine (M2M) communication – due to its simplic-
ity and low overhead, it is suited for IoT devices (Raza
et al., 2013). Since HTTPS is highly connected to
TLS as its security protocol, TCP is required which is
processed slower. CoAP utilizes Datagram Transport
Layer Security (DTLS), running over UDP which is
processed faster.

Next to simplifying protocols, (Shafagh and Hith-
nawi, 2014) focuses its attention on the hardware of
IoT devices: Although E2EE only needs the public
key crypto system at the configuration process, its
memory is allocated during the whole running time
of the application – this means less memory for the
actual application logic during the entire time span.
Hardware encryption engines within recent SoC de-
vices are not only offered for symmetrical encryption,
with only little additional cost. Acceleration engines
are also offered for public key systems and contribute
to faster processing times of encryption tasks.

6 CONCLUSION AND FUTURE
WORK

Since SoC devices distinguish from conventional pro-
cessors, they imply limitations and therefore demand
special design requirements. After stating enabling
technologies, especially OAuth, ABAC and REST,
the overall architecture is revealed. This concludes
in a closer look at all involved entities, as well as
in demonstrating a proof of concept. Furthermore,
the experimental results give an impression of how
well RestACL meets the demands of the introduced
architecture: Since the runtime remains stable, de-
spite of rising repositories, all domains and policies
can be managed by one authorization and access con-
trol server. Therefore, it is approved that a centralized
access control system with flexible policies can pro-
vide a dynamic configuration of IoT entities within a
changing environment and therefore offer the possi-
bility of configuring resources dynamically according
to attributes. As the introduced Raspberry Pi is still
a powerful device, compared to smaller IoT devices,
the rising file sizes do not meet the requirements of
IoT devices, according to their memory capacity. Es-
pecially when implementing authentication, the mem-
ory consumption of V1 increases further. This leads
even more to centralizing the access control logic and
the trust mechanism, relieving the IoT device. Con-
sidering the overall runtime (tTotalV x), the decision of
sourcing RestACL out depends on practical condi-
tions. Although the runtime increases due to a greater
communication effort, the practical benefits of a cen-
tralized access control logic are high scalability, ease
of use, non-redundancy, changeability, data consis-
tency and more convenient data backups.
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